Chapter 11 : Immunopathogenesis

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Immunopathogenesis, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap11-2.gif


Infection of the ocular conjunctiva with leads to trachoma, which remains the commonest infectious cause of blindness worldwide. The majority of men and women with genital infections are asymptomatic. This chapter reviews data related to host, bacterial, and environmental factors that affect the complicated multidimensional process and how they relate to tipping the balance towards chronic disease development. Recognizing the significance of early inflammatory events in chlamydial pathogenesis, the murine model of genital tract infection was adapted to characterize the early chemokine and cytokine response and correlate it with the chlamydial developmental cycle in vivo. Researchers have begun to identify the cellular receptors involved in -induced stimulation of cytokine release. Toll-like receptors (TLRs) act as pathogen recognition receptors (PRRs) that enable cells to recognize conserved bacterial, viral, and fungal structural elements. The cellular paradigm makes no distinction between damage induced by professional innate immune cells (neutrophils and monocytes) and adaptive lymphocyte populations but assumes that both cell populations contribute to pathogenesis. Since the host cell response to bacteria is the inciting inflammatory event, increased and prolonged bacterial burden correlates directly with disease development. Pathogen-specific and environmental factors that promote infection and bacterial survival lead to enhanced disease. Plasmid-encoded factors and type III secretion effectors appear to be key bacterial virulence factors.

Citation: Darville T, O'Connell C. 2012. Immunopathogenesis, p 240-264. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Agrawal, T.,, R. Gupta,, R. Dutta,, P. Srivastava,, A. R. Bhengraj,, S. Salhan,, and A. Mittal. 2009. Protective or pathogenic immune response to genital chlamydial infection in women—a possible role of cytokine secretion profile of cervical mucosal cells. Clin. Immunol. 130: 347 354. PubMed CrossRef
2. Akira, S.,, and S. Sato. 2003. Toll-like receptors and their signaling mechanisms. Scand. J. Infect. Dis. 35: 555 562. PubMed
3. Ault, K. A.,, K. A. Kelly,, P. E. Ruther,, A. A. Izzo,, L. S. Izzo,, I. M. Sigar,, and K. H. Ramsey. 2002. Chlamydia trachomatis enhances the expression of matrix metalloproteinases in an in vitro model of the human fallopian tube infection. Am. J. Obstet. Gynecol. 187: 1377 1383. PubMed CrossRef
4. Ault, K. A.,, O. W. Tawfik,, M. M. Smith-King,, J. Gunter,, and P. F. Terranova. 1996. Tumor necrosis factor-alpha response to infection with Chlamydia trachomatis in human fallopian tube organ culture. Am. J. Obstet. Gynecol. 175: 1242 1245. PubMed
5. Bachmann, L. H.,, C. M. Richey,, K. Waites,, J. R. Schwebke,, and E. W. Hook III. 1999. Patterns of Chlamydia trachomatis testing and follow-up at a University Hospital Medical Center. Sex. Transm. Dis. 26: 496 499. PubMed
6. Baeten, J. M.,, P. M. Nyange,, B. A. Richardson,, L. Lavreys,, B. Chohan,, H. L. Martin, Jr.,, K. Mandaliya,, J. O. Ndinya-Achola,, J. J. Bwayo,, and J. K. Kreiss. 2001. Hormonal contraception and risk of sexually transmitted disease acquisition: results from a prospective study. Am. J. Obstet. Gynecol. 185: 380 385. PubMed CrossRef
7. Bai, H.,, J. Cheng,, X. Gao,, A. G. Joyee,, Y. Fan,, S. Wang,, L. Jiao,, Z. Yao,, and X. Yang. 2009. IL-17/Th17 promotes type 1 T cell immunity against pulmonary intracellular bacterial infection through modulating dendritic cell function. J. Immunol. 183: 5886 5895. PubMed CrossRef
8. Bailey, R.,, T. Duong,, R. Carpenter,, H. Whittle,, and D. Mabey. 1999. The duration of human ocular Chlamydia trachomatis infection is age dependent. Epidemiol. Infect. 123: 479 486. PubMed
9. Bakken, I. J.,, F. E. Skjeldestad,, and S. A. Nordbo. 2007. Chlamydia trachomatis infections increase the risk for ectopic pregnancy: a population-based, nested case-control study. Sex. Transm. Dis. 34: 166 169. PubMed CrossRef
10. Barr, E. L.,, S. Ouburg,, J. U. Igietseme,, S. A. Morre,, E. Okwandu,, F. O. Eko,, G. Ifere,, T. Belay,, Q. He,, D. Lyn,, G. Nwankwo,, J. Lillard,, C. M. Black,, and G. A. Ananaba. 2005. Host inflammatory response and development of complications of Chlamydia trachomatis genital infection in CCR5-deficient mice and subfertile women with the CCR5delta32 gene deletion. J. Microbiol. Immunol. Infect. 38: 244 254. PubMed
11. Bas, S.,, L. Neff,, M. Vuillet,, U. Spenato,, T. Seya,, M. Matsumoto,, and C. Gabay. 2008. The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J. Immunol. 180: 1158 1168. PubMed
12. Beagley, K. W.,, and C. M. Gockel. 2003. Regulation of innate and adaptive immunity by the female sex hormones oestradiol and progesterone. FEMS Immunol. Med. Microbiol. 38: 13 22. PubMed CrossRef
13. Beatty, W. L.,, T. A. Belanger,, A. A. Desai,, R. P. Morrison,, and G. I. Byrne. 1994. Tryptophan depletion as a mechanism of gamma interferon-mediated chlamydial persistence. Infect. Immun. 62: 3705 3711. PubMed
14. Beatty, W. L.,, G. I. Byrne,, and R. P. Morrison. 1993. Morphologic and antigenic characterization of interferon gamma-mediated persistent Chlamydia trachomatis infection in vitro. Proc. Natl. Acad. Sci. USA 90: 3998 4002. PubMed
15. Belay, T.,, F. O. Eko,, G. A. Ananaba,, S. Bowers,, T. Moore,, D. Lyn,, and J. U. Igietseme. 2002. Chemokine and chemokine receptor dynamics during genital chlamydial infection. Infect. Immun. 70: 844 850. PubMed
16. Brade, L.,, S. Schramek,, U. Schade,, and H. Brade. 1986. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect. Immun. 54: 568 574. PubMed
17. Broadbent, A.,, P. Horner,, G. Wills,, A. Ling,, R. Carzaniga,, and M. McClure. 2011. HIV-1 does not significantly influence Chlamydia trachomatis serovar L2 replication in vitro. Microbes Infect. 13: 575 584. PubMed CrossRef
18. Buchholz, K. R.,, and R. S. Stephens. 2006. Activation of the host cell proinflammatory interleukin-8 response by Chlamydia trachomatis. Cell. Microbiol. 8: 1768 1779. PubMed CrossRef
19. Buchholz, K. R.,, and R. S. Stephens. 2007. The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect. Immun. 75: 5924 5929. PubMed CrossRef
20. Bulut, Y.,, E. Faure,, L. Thomas,, H. Karahashi,, K. S. Michelsen,, O. Equils,, S. G. Morrison,, R. P. Morrison,, and M. Arditi. 2002. Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J. Immunol. 168: 1435 1440. PubMed
21. Burton, M. J.,, R. L. Bailey,, D. Jeffries,, D. C. Mabey,, and M. J. Holland. 2004. Cytokine and fibrogenic gene expression in the conjunctivas of subjects from a Gambian community where trachoma is endemic. Infect. Immun. 72: 7352 7356. PubMed CrossRef
22. Burton, M. J.,, S. N. Rajak,, J. Bauer,, H. A. Weiss,, S. B. Tolbert,, A. Shoo,, E. Habtamu,, A. Manjurano,, P. M. Emerson,, D. C. Mabey,, M. J. Holland,, and R. L. Bailey. 2011. Conjunctival transcriptome in scarring trachoma. Infect. Immun. 79: 499 511. PubMed CrossRef
23. Cain, T. K.,, and R. G. Rank. 1995. Local Th1-like responses are induced by intravaginal infection of mice with the mouse pneumonitis biovar of Chlamydia trachomatis. Infect. Immun. 63: 1784 1789. PubMed
24. Caldwell, H. D.,, H. Wood,, D. Crane,, R. Bailey,, R. B. Jones,, D. Mabey,, I. Maclean,, Z. Mohammed,, R. Peeling,, C. Roshick,, J. Schachter,, A. W. Solomon,, W. E. Stamm,, R. J. Suchland,, L. Taylor,, S. K. West,, T. C. Quinn,, R. J. Belland,, and G. McClarty. 2003. Polymorphisms in Chlamydia trachomatis tryptophan synthase genes differentiate between genital and ocular isolates. J. Clin. Investig. 111: 1757 1769. PubMed CrossRef
25. Carlson, J. H.,, W. M. Whitmire,, D. D. Crane,, L. Wicke,, K. Virtaneva,, D. E. Sturdevant,, J. J. Kupko III,, S. F. Porcella,, N. Martinez-Orengo,, R. A. Heinzen,, L. Kari,, and H. D. Caldwell. 2008. The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect. Immun. 76: 2273 2283. PubMed CrossRef
26. Chen, D.,, L. Lei,, C. Lu,, R. Flores,, M. P. DeLisa,, T. C. Roberts,, F. E. Romesberg,, and G. Zhong. 2010a. Secretion of the chlamydial virulence factor CPAF requires the Sec-dependent pathway. Microbiology 156: 3031 3040. PubMed CrossRef
27. Chen, L.,, L. Lei,, X. Chang,, Z. Li,, C. Lu,, X. Zhang,, Y. Wu,, I. T. Yeh,, and G. Zhong. 2010b. Mice deficient in MyD88 Develop a Th2-dominant response and severe pathology in the upper genital tract following Chlamydia muridarum infection. J. Immunol. 184: 2602 2610. PubMed CrossRef
28. Cheng, W.,, P. Shivshankar,, Z. Li,, L. Chen,, I. T. Yeh,, and G. Zhong. 2008. Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect. Immun. 76: 515 522. PubMed CrossRef
29. Christian, J.,, J. Vier,, S. A. Paschen,, and G. Hacker. 2010. Cleavage of the NF-κB family protein p65/RelA by the chlamydial protease-like activity factor (CPAF) impairs proinflammatory signaling in cells infected with chlamydiae. J. Biol. Chem. 285: 41320 41327. PubMed CrossRef
30. Cotter, T. W.,, K. H. Ramsey,, G. S. Miranpuri,, C. E. Poulsen,, and G. I. Byrne. 1997. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 65: 2145 2152. PubMed
31. Cruz, A.,, S. A. Khader,, E. Torrado,, A. Fraga,, J. E. Pearl,, J. Pedrosa,, A. M. Cooper,, and A. G. Castro. 2006. Cutting edge: IFN-gamma regulates the induction and expansion of IL-17-producing CD4 T cells during mycobacterial infection. J. Immunol. 177: 1416 1420. PubMed
32. Darville, T.,, C. W. Andrews, Jr.,, K. K. Laffoon,, W. Shymasani,, L. R. Kishen,, and R. G. Rank. 1997. Mouse strain-dependent variation in the course and outcome of chlamydial genital tract infection is associated with differences in host response. Infect. Immun. 65: 3065 3073. PubMed
33. Darville, T.,, C. W. Andrews, Jr.,, J. D. Sikes,, P. L. Fraley,, and R. G. Rank. 2001. Early local cytokine profiles in strains of mice with different outcomes from chlamydial genital tract infection. Infect. Immun. 69: 3556 3561. PubMed CrossRef
34. Darville, T.,, K. K. Lafoon,, L. R. Kishen,, and R. G. Rank. 1995. Tumor necrosis factor-alpha activity in genital tract secretions of guinea pigs infected with chlamydiae. Infect. Immun. 63: 4675 4681. PubMed
35. Darville, T.,, J. M. O’Neill,, C. W. Andrews, Jr.,, U. M. Nagarajan,, L. Stahl,, and D. M. Ojcius. 2003. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171: 6187 6197. PubMed
36. Dawson, C. R.,, R. Marx,, T. Daghfous,, R. Juster,, and J. Schachter,. 1990. What clinical signs are critical in evaluating the intervention in trachoma?, p. 271 278. In W. R. Bowie (ed.), Chlamydial Infections. Cambridge University Press, Cambridge, United Kingdom.
37. Debattista, J.,, P. Timms,, and J. Allan. 2002. Reduced levels of gamma-interferon secretion in response to chlamydial 60 kDa heat shock protein amongst women with pelvic inflammatory disease and a history of repeated Chlamydia trachomatis infections. Immunol. Lett. 81: 205 210. PubMed
38. Deka, S.,, J. Vanover,, S. Dessus-Babus,, J. Whittimore,, M. K. Howett,, P. B. Wyrick,, and R. V. Schoborg. 2006. Chlamydia trachomatis enters a viable but non-cultivable (persistent) state within herpes simplex virus type 2 (HSV-2) co-infected host cells. Cell. Microbiol. 8: 149 162. PubMed CrossRef
39. Dhir, S. P.,, L. P. Agarwal,, R. Detels,, S. P. Wang,, and J. T. Grayston. 1967. Field trial of two bivalent trachoma vaccines in children of Punjab Indian villages. Am. J. Ophthalmol. 63( Suppl.): 1639 1644. PubMed
40. Dubin, P. J.,, and J. K. Kolls. 2007. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am. J. Physiol. Lung Cell Mol. Physiol. 292: L519 L528. PubMed CrossRef
41. Eckmann, L.,, M. F. Kagnoff,, and J. Fierer. 1993. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect. Immun. 61: 4569 4574. PubMed
42. El-Asrar, A. M.,, K. Geboes,, S. A. Al-Kharashi,, A. A. Al-Mosallam,, L. Missotten,, L. Paemen,, and G. Opdenakker. 2000. Expression of gelatinase B in trachomatous conjunctivitis. Br. J. Ophthalmol. 84: 85 91. PubMed CrossRef
43. Eyerich, S.,, K. Eyerich,, A. Cavani,, and C. Schmidt-Weber. 2010. IL-17 and IL-22: siblings, not twins. Trends Immunol. 31: 354 361. PubMed CrossRef
44. Fichorova, R. N.,, A. O. Cronin,, E. Lien,, D. J. Anderson,, and R. R. Ingalls. 2002. Response to Neisseria gonorrhoeae by cervicovaginal epithelial cells occurs in the absence of toll-like receptor 4-mediated signaling. J. Immunol. 168: 2424 2432. PubMed
45. Fields, K. A.,, and T. Hackstadt. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38: 1048 1060. PubMed CrossRef
46. Fukuda, E. Y.,, S. P. Lad,, D. P. Mikolon,, M. Iacobelli-Martinez,, and E. Li. 2005. Activation of lipid metabolism contributes to interleukin-8 production during Chlamydia trachomatis infection of cervical epithelial cells. Infect. Immun. 73: 4017 4024. PubMed CrossRef
47. Gambhir, M.,, M. G. Basanez,, F. Turner,, J. Kumaresan,, and N. C. Grassly. 2007. Trachoma: transmission, infection, and control. Lancet Infect. Dis. 7: 420 427. PubMed CrossRef
48. Geisler, W. M.,, R. J. Suchland,, W. L. Whittington,, and W. E. Stamm. 2001. Quantitative culture of Chlamydia trachomatis: relationship of inclusion-forming units produced in culture to clinical manifestations and acute inflammation in urogenital disease. J. Infect. Dis. 184: 1350 1354. PubMed CrossRef
49. Geisler, W. M.,, C. Wang,, S. G. Morrison,, C. M. Black,, C. I. Bandea,, and E. W. Hook III. 2008. The natural history of untreated Chlamydia trachomatis infection in the interval between screening and returning for treatment. Sex. Transm. Dis. 35: 119 123. PubMed CrossRef
50. Gervassi, A. L.,, P. Probst,, W. E. Stamm,, J. Marrazzo,, K. H. Grabstein,, and M. R. Alderson. 2003. Functional characterization of class Ia- and non-class Ia-restricted Chlamydia-reactive CD8 + T cell responses in humans. J. Immunol. 171: 4278 4286. PubMed
51. Grassly, N. C.,, M. E. Ward,, S. Ferris,, D. C. Mabey,, and R. L. Bailey. 2008. The natural history of trachoma infection and disease in a Gambian cohort with frequent follow-up. PLoS Negl. Trop. Dis. 2: e341. PubMed CrossRef
52. Grayston, J. T.,, S. P. Wang,, L. J. Yeh,, and C. C. Kuo. 1985. Importance of reinfection in the pathogenesis of trachoma. Rev. Infect. Dis. 7: 717 725. PubMed
53. Guan, Y.,, D. R. Ranoa,, S. Jiang,, S. K. Mutha,, X. Li,, J. Baudry,, and R. I. Tapping. 2010. Human TLRs 10 and 1 share common mechanisms of innate immune sensing but not signaling. J. Immunol. 184: 5094 5103. PubMed CrossRef
54. Guseva, N. V.,, S. T. Knight,, J. D. Whittimore,, and P. B. Wyrick. 2003. Primary cultures of female swine genital epithelial cells in vitro: a new approach for the study of hormonal modulation of Chlamydia infection. Infect. Immun. 71: 4700 4710. PubMed
55. Haggerty, C. L.,, S. L. Gottlieb,, B. D. Taylor,, N. Low,, F. Xu,, and R. B. Ness. 2010. Risk of sequelae after Chlamydia trachomatis genital infection in women. J. Infect. Dis. 201( Suppl. 2): S134 S155. PubMed CrossRef
56. Haggerty, C. L.,, R. B. Ness,, A. Amortegui,, S. L. Hendrix,, S. L. Hillier,, R. L. Holley,, J. Peipert,, H. Randall,, S. J. Sondheimer,, D. E. Soper,, R. L. Sweet,, and G. Trucco. 2003. Endometritis does not predict reproductive morbidity after pelvic inflammatory disease. Am. J. Obstet. Gynecol. 188: 141 148. PubMed CrossRef
57. Hart, K. M.,, A. J. Murphy,, K. T. Barrett,, C. R. Wira,, P. M. Guyre,, and P. A. Pioli. 2009. Functional expression of pattern recognition receptors in tissues of the human female reproductive tract. J. Reprod. Immunol. 80: 33 40. PubMed CrossRef
58. Hasan, U.,, C. Chaffois,, C. Gaillard,, V. Saulnier,, E. Merck,, S. Tancredi,, C. Guiet,, F. Briere,, J. Vlach,, S. Lebecque,, G. Trinchieri,, and E. E. Bates. 2005. Human TLR10 is a functional receptor, expressed by B cells and plasmacytoid dendritic cells, which activates gene transcription through MyD88. J. Immunol. 174: 2942 2950. PubMed
59. Heine, H.,, S. Muller-Loennies,, L. Brade,, B. Lindner,, and H. Brade. 2003. Endotoxic activity and chemical structure of lipopolysaccharides from Chlamydia trachomatis serotypes E and L2 and Chlamydophila psittaci 6BC. Eur. J. Biochem. 270: 440 450. PubMed
60. Heinonen, P. K.,, and A. Miettinen. 1994. Laparoscopic study on the microbiology and severity of acute pelvic inflammatory disease. Eur. J. Obstet. Gynecol. Reprod. Biol. 57: 85 89. PubMed
61. Higgins, S. C.,, A. G. Jarnicki,, E. C. Lavelle,, and K. H. Mills. 2006. TLR4 mediates vaccine-induced protective cellular immunity to Bordetella pertussis: role of IL-17-producing T cells. J. Immunol. 177: 7980 7989. PubMed
62. Hillis, S. D.,, R. Joesoef,, P. A. Marchbanks,, J. N. Wasserheit,, W. Cates, Jr.,, and L. Westrom. 1993. Delayed care of pelvic inflammatory disease as a risk factor for impaired fertility. Am. J. Obstet. Gynecol. 168: 1503 1509. PubMed
63. Hillis, S. D.,, L. M. Owens,, P. A. Marchbanks,, L. E. Amsterdam,, and W. R. MacKenzie. 1997. Recurrent chlamydial infections increase the risks of hospitalization for ectopic pregnancy and pelvic inflammatory disease. Am. J. Obstet. Gynecol. 176: 103 107. PubMed
64. Hook, E. W.,, and H. H. Handsfield,. 1999. Gonococcal infection in the adult, p. 451 466. In K. Holmes,, P. F. Sparling,, P. A. Mardh,, S. M. Lemon,, W. E. Stamm,, and J. N. Wasserheit (ed.), Sexually Transmitted Diseases. McGraw-Hill Book Co., New York, NY.
65. Hook, E. W., III,, C. Spitters,, C. A. Reichart,, T. M. Neumann,, and T. C. Quinn. 1994. Use of cell culture and a rapid diagnostic assay for Chlamydia trachomatis screening. JAMA 272: 867 870. PubMed
66. Hvid, M.,, A. Baczynska,, B. Deleuran,, J. Fedder,, H. J. Knudsen,, G. Christiansen,, and S. Birkelund. 2007. Interleukin-1 is the initiator of fallopian tube destruction during Chlamydia trachomatis infection. Cell. Microbiol. 9: 2795 2803. PubMed CrossRef
67. Igietseme, J. U.,, G. A. Ananaba,, J. Bolier,, S. Bowers,, T. Moore,, T. Belay,, F. O. Eko,, D. Lyn,, and C. M. Black. 2000. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J. Immunol. 164: 4212 4219. PubMed
68. Ingalls, R. R.,, P. A. Rice,, N. Qureshi,, K. Takayama,, J. S. Lin,, and D. T. Golenbock. 1995. The inflammatory cytokine response to Chlamydia trachomatis infection is endotoxin mediated. Infect. Immun. 63: 3125 3130. PubMed
69. Jayarapu, K.,, M. Kerr,, S. Ofner,, and R. M. Johnson. 2010. Chlamydia-specific CD4 T cell clones control Chlamydia muridarum replication in epithelial cells by nitric oxide-dependent and -independent mechanisms. J. Immunol. 185: 6911 6920. PubMed CrossRef
70. Jha, R.,, P. Srivastava,, S. Salhan,, A. Finckh,, C. Gabay,, A. Mittal,, and S. Bas. 2011. Spontaneous secretion of interleukin-17 and -22 by human cervical cells in Chlamydia trachomatis infection. Microbes Infect. 13: 167 178. PubMed CrossRef
71. Jones, R. B.,, B. R. Ardery,, S. L. Hui,, and R. E. Cleary. 1982. Correlation between serum antichlamydial antibodies and tubal factor as a cause of infertility. Fertil. Steril. 38: 553 558. PubMed
72. Kari, L.,, W. M. Whitmire,, J. H. Carlson,, D. D. Crane,, N. Reveneau,, D. E. Nelson,, D. C. Mabey,, R. L. Bailey,, M. J. Holland,, G. McClarty,, and H. D. Caldwell. 2008. Pathogenic diversity among Chlamydia trachomatis ocular strains in nonhuman primates is affected by subtle genomic variations. J. Infect. Dis. 197: 449 456. PubMed CrossRef
73. Karimi, O.,, S. Ouburg,, H. J. de Vries,, A. S. Pena,, J. Pleijster,, J. A. Land,, and S. A. Morré. 2009. TLR2 haplotypes in the susceptibility to and severity of Chlamydia trachomatis infections in Dutch women. Drugs Today 45( Suppl. B): 67 74. PubMed
74. Kelly, K. A.,, S. Natarajan,, P. Ruther,, A. Wisse,, M. H. Chang,, and K. A. Ault. 2001. Chlamydia trachomatis infection induces mucosal addressin cell adhesion molecule-1 and vascular cell adhesion molecule-1, providing an immunologic link between the fallopian tube and other mucosal tissues. J. Infect. Dis. 184: 885 891. PubMed CrossRef
75. Khader, S. A.,, G. K. Bell,, J. E. Pearl,, J. J. Fountain,, J. Rangel-Moreno,, G. E. Cilley,, F. Shen,, S. M. Eaton,, S. L. Gaffen,, S. L. Swain,, R. M. Locksley,, L. Haynes,, T. D. Randall,, and A. M. Cooper. 2007. IL-23 and IL-17 in the establishment of protective pulmonary CD4 + T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat. Immunol. 8: 369 377. PubMed CrossRef
76. Kimani, J.,, I. W. Maclean,, J. J. Bwayo,, K. MacDonald,, J. Oyugi,, G. M. Maitha,, R. W. Peeling,, M. Cheang,, N. J. Nagelkerke,, F. A. Plummer,, and R. C. Brunham. 1996. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J. Infect. Dis. 173: 1437 1444. PubMed CrossRef
77. Kinnunen, A. H.,, H. M. Surcel,, M. Lehtinen,, J. Karhukorpi,, A. Tiitinen,, M. Halttunen,, A. Bloigu,, R. P. Morrison,, R. Karttunen,, and J. Paavonen. 2002. HLA DQ alleles and interleukin-10 polymorphism associated with Chlamydia trachomatis-related tubal factor infertility: a case-control study. Hum. Reprod. 17: 2073 2078. PubMed CrossRef
78. Kiviat, N. B.,, M. Peterson,, E. Kinney-Thomas,, M. Tam,, W. E. Stamm,, and K. K. Holmes. 1985. Cytologic manifestations of cervical and vaginal infections. II. Confirmation of Chlamydia trachomatis infection by direct immunofluorescence using monoclonal antibodies. JAMA 253: 997 1000. PubMed
79. Koenders, M. I.,, J. K. Kolls,, B. Oppers-Walgreen,, B. L. van den,, L. A. Joosten,, J. R. Schurr,, P. Schwarzenberger,, W. B. Van Den Berg,, and E. Lubberts. 2005. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis Rheum. 52: 3239 3247. PubMed CrossRef
80. Kolls, J. K.,, and A. Linden. 2004. Interleukin-17 family members and inflammation. Immunity 21: 467 476. PubMed CrossRef
81. Lad, S. P.,, J. Li,, J. da Silva Correia,, Q. Pan,, S. Gadwal,, R. J. Ulevitch,, and E. Li. 2007a. Cleavage of p65/RelA of the NF-kappaB pathway by Chlamydia. Proc. Natl. Acad. Sci. USA 104: 2933 2938. PubMed CrossRef
82. Lad, S. P.,, G. Yang,, D. A. Scott,, G. Wang,, P. Nair,, J. Mathison,, V. S. Reddy,, and E. Li. 2007b. Chlamydial CT441 is a PDZ domain-containing tail-specific protease that interferes with the NF-kappaB pathway of immune response. J. Bacteriol. 189: 6619 6625. PubMed CrossRef
83. Lapointe, T. K.,, P. M. O’Connor,, N. L. Jones,, D. Menard,, and A. G. Buret. 2010. Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell. Microbiol. 12: 692 703. PubMed CrossRef
84. Leese, H. J.,, J. I. Tay,, J. Reischl,, and S. J. Downing. 2001. Formation of fallopian tubal fluid: role of a neglected epithelium. Reproduction 121: 339 346. PubMed CrossRef
85. Li, Z.,, D. Chen,, Y. Zhong,, S. Wang,, and G. Zhong. 2008. The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect. Immun. 76: 3415 3428. PubMed CrossRef
86. Liang, S. C.,, X. Y. Tan,, D. P. Luxenberg,, R. Karim,, K. Dunussi-Joannopoulos,, M. Collins,, and L. A. Fouser. 2006. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides. J. Exp. Med. 203: 2271 2279. PubMed CrossRef
87. Lichtenwalner, A. B.,, D. L. Patton,, W. C. Van Voorhis,, Y. T. Sweeney,, and C. C. Kuo. 2004. Heat shock protein 60 is the major antigen which stimulates delayed-type hypersensitivity reaction in the macaque model of Chlamydia trachomatis salpingitis. Infect. Immun 72: 1159 1161. PubMed CrossRef
88. Manor, E.,, and I. Sarov. 1988. Inhibition of Chlamydia trachomatis replication in HEp-2 cells by human monocyte-derived macrophages. Infect. Immun. 56: 3280 3284. PubMed
89. Matsumoto, A.,, H. Izutsu,, N. Miyashita,, and M. Ohuchi. 1998. Plaque formation by and plaque cloning of Chlamydia trachomatis biovar trachoma. J. Clin. Microbiol. 36: 3013 3019. PubMed
90. McClarty, G.,, and R. S. Stephens,. 1999. Chlamydial metabolism as inferred from the complete genome sequence, p. 69 100. In R. S. Stephens (ed.), Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. American Society for Microbiology, Washington, DC.
91. Miller, W. C.,, C. A. Ford,, M. Morris,, M. S. Handcock,, J. L. Schmitz,, M. M. Hobbs,, M. S. Cohen,, K. M. Harris,, and J. R. Udry. 2004. Prevalence of chlamydial and gonococcal infections among young adults in the United States. JAMA 291: 2229 2236. PubMed CrossRef
92. Mitchell, C.,, J. Hitti,, K. Paul,, K. Agnew,, S. E. Cohn,, A. E. Luque,, and R. Coombs. 2011. Cervicovaginal shedding of HIV type 1 is related to genital tract inflammation independent of changes in vaginal microbiota. AIDS Res. Hum. Retrovir. 27: 35 39. PubMed CrossRef
93. Molano, M.,, C. J. Meijer,, E. Weiderpass,, A. Arslan,, H. Posso,, S. Franceschi,, M. Ronderos,, N. Munoz,, and A. J. van den Brule. 2005. The natural course of Chlamydia trachomatis infection in asymptomatic Colombian women: a 5-year follow-up study. J. Infect. Dis. 191: 907 916. PubMed CrossRef
94. Morré, S. A.,, L. S. Murillo,, C. A. Bruggeman,, and A. S. Pena. 2003. The role that the functional Asp299Gly polymorphism in the toll-like receptor-4 gene plays in susceptibility to Chlamydia trachomatis-associated tubal infertility. J. Infect. Dis. 187: 341 342. PubMed CrossRef
95. Morrison, C. S.,, A. N. Turner,, and L. B. Jones. 2009. Highly effective contraception and acquisition of HIV and other sexually transmitted infections. Best Pract. Res. Clin. Obstet. Gynaecol. 23: 263 284. PubMed CrossRef
96. Morrison, R. P.,, K. Feilzer,, and D. B. Tumas. 1995. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect. Immun. 63: 4661 4668. PubMed
97. Morrison, R. P.,, K. Lyng,, and H. D. Caldwell. 1989. Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J. Exp. Med. 169: 663 675. PubMed
98. Morrison, S. G.,, and R. P. Morrison. 2005. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J. Immunol. 175: 7536 7542. PubMed
99. Morrison, S. G.,, H. Su,, H. D. Caldwell,, and R. P. Morrison. 2000. Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. Infect. Immun. 68: 6979 6987. PubMed CrossRef
100. Murillo, L. S.,, J. A. Land,, J. Pleijster,, C. A. Bruggeman,, A. S. Pena,, and S. A. Morré. 2003. Interleukin-1B (IL-1B) and interleukin-1 receptor antagonist (IL-1RN) gene polymorphisms are not associated with tubal pathology and Chlamydia trachomatis-related tubal factor subfertility. Hum. Reprod. 18: 2309 2314. PubMed CrossRef
101. Murthy, A. K.,, J. P. Chambers,, P. A. Meier,, G. Zhong,, and B. P. Arulanandam. 2007. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect. Immun. 75: 666 676. PubMed CrossRef
102. Murthy, A. K.,, W. Li,, B. K. Chaganty,, S. Kamalakaran,, M. N. Guentzel,, J. Seshu,, T. G. Forsthuber,, G. Zhong,, and B. P. Arulanandam. 2011. TNF-α production from CD8 + T cells mediates oviduct pathological sequelae following primary genital Chlamydia muridarum infection. Infect. Immun. 79: 2928 2935. PubMed CrossRef
103. Nagarajan, U. M.,, J. Sikes,, D. Prantner,, C. W. Andrews, Jr.,, L. Frazer,, A. Goodwin,, J. N. Snowden,, and T. Darville. 2011. MyD88 deficiency leads to decreased NK cell gamma interferon production and T cell recruitment during Chlamydia muridarum genital tract infection, but a predominant Th1 response and enhanced monocytic inflammation are associated with infection resolution. Infect. Immun. 79: 486 498. PubMed CrossRef
104. Natividad, A.,, G. Cooke,, M. J. Holland,, M. J. Burton,, H. M. Joof,, K. Rockett,, D. P. Kwiatkowski,, D. C. Mabey,, and R. L. Bailey. 2006. A coding polymorphism in matrix metalloproteinase 9 reduces risk of scarring sequelae of ocular Chlamydia trachomatis infection. BMC Med. Genet. 7: 40. PubMed CrossRef
105. Natividad, A.,, T. C. Freeman,, D. Jeffries,, M. J. Burton,, D. C. Mabey,, R. L. Bailey,, and M. J. Holland. 2010. Human conjunctival transcriptome analysis reveals the prominence of innate defense in Chlamydia trachomatis infection. Infect. Immun. 78: 4895 4911. PubMed CrossRef
106. Natividad, A.,, N. Hanchard,, M. J. Holland,, O. S. Mahdi,, M. Diakite,, K. Rockett,, O. Jallow,, H. M. Joof,, D. P. Kwiatkowski,, D. C. Mabey,, and R. L. Bailey. 2007. Genetic variation at the TNF locus and the risk of severe sequelae of ocular Chlamydia trachomatis infection in Gambians. Genes Immun. 8: 288 295. PubMed CrossRef
107. Natividad, A.,, J. Wilson,, O. Koch,, M. J. Holland,, K. Rockett,, N. Faal,, O. Jallow,, H. M. Joof,, M. J. Burton,, N. D. Alexander,, D. P. Kwiatkowski,, D. C. Mabey,, and R. L. Bailey. 2005. Risk of trachomatous scarring and trichiasis in Gambians varies with SNP haplotypes at the interferon-gamma and interleukin-10 loci. Genes Immun. 6: 332 340 PubMed CrossRef
108. Neff, L.,, S. Daher,, P. Muzzin,, U. Spenato,, F. Gulacar,, C. Gabay,, and S. Bas. 2007. Molecular characterization and subcellular localization of macrophage infectivity potentiator, a Chlamydia trachomatis lipoprotein. J. Bacteriol. 189: 4739 4748. PubMed CrossRef
109. Ness, R. B.,, D. E. Soper,, R. L. Holley,, J. Peipert,, H. Randall,, R. L. Sweet,, S. J. Sondheimer,, S. L. Hendrix,, A. Amortegui,, G. Trucco,, D. C. Bass,, and S. F. Kelsey. 2001. Hormonal and barrier contraception and risk of upper genital tract disease in the PID Evaluation and Clinical Health (PEACH) study. Am. J. Obstet. Gynecol. 185: 121 127. PubMed CrossRef
110. Ness, R. B.,, D. E. Soper,, H. E. Richter,, H. Randall,, J. F. Peipert,, D. B. Nelson,, D. Schubeck,, S. G. McNeeley,, W. Trout,, D. C. Bass,, K. Hutchison,, K. Kip,, and R. C. Brunham. 2008. Chlamydia antibodies, chlamydia heat shock protein, and adverse sequelae after pelvic inflammatory disease: the PID Evaluation and Clinical Health (PEACH) Study. Sex. Transm. Dis. 35: 129 135. PubMed CrossRef
111. O'Connell, C. M.,, Y. M. Abdelrahman,, E. Green,, H. K. Darville,, K. Saira,, B. Smith,, T. Darville,, A. M. Scurlock,, C. R. Meyer,, and R. J. Belland. 2011. TLR2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect. Immun. 79: 1044 1056. PubMed CrossRef
112. O’Connell, C. M.,, R. R. Ingalls,, C. W. Andrews, Jr.,, A. M. Skurlock,, and T. Darville. 2007. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J. Immunol. 179: 4027 4034. PubMed
113. O’Connell, C. M.,, I. A. Ionova,, A. J. Quayle,, A. Visintin,, and R. R. Ingalls. 2006. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen. J. Biol. Chem. 281: 1652 1659. PubMed CrossRef
114. O’Connell, C. M.,, and K. M. Nicks. 2006. A plasmid-cured Chlamydia muridarum strain displays altered plaque morphology and reduced infectivity in cell culture. Microbiology 152: 1601 1607. PubMed CrossRef
115. Ohashi, K.,, V. Burkart,, S. Flohe,, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164: 558 561. PubMed
116. Ouburg, S.,, J. Spaargaren,, J. E. den Hartog,, J. A. Land,, J. S. Fennema,, J. Pleijster,, A. S. Pena,, and S. A. Morre. 2005. The CD14 functional gene polymorphism -260 C > T is not involved in either the susceptibility to Chlamydia trachomatis infection or the development of tubal pathology. BMC Infect. Dis. 5: 114. PubMed CrossRef
117. Patton, D. L.,, D. E. Moore,, L. R. Spadoni,, M. R. Soules,, S. A. Halbert,, and S. P. Wang. 1989. A comparison of the fallopian tube's response to overt and silent salpingitis. Obstet. Gynecol. 73: 622 630. PubMed
118. Peeling, R. W.,, J. Kimani,, F. Plummer,, I. Maclean,, M. Cheang,, J. Bwayo,, and R. C. Brunham. 1997. Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J. Infect. Dis. 175: 1153 1158. PubMed CrossRef
119. Perry, L. L.,, K. Feilzer,, and H. D. Caldwell. 1997. Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J. Immunol. 158: 3344 3352. PubMed
120. Perry, L. L.,, H. Su,, K. Feilzer,, R. Messer,, S. Hughes,, W. Whitmire,, and H. D. Caldwell. 1999. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-γ -mediated inhibition. J. Immunol. 162: 3541 3548. PubMed
121. Pioli, P. A.,, E. Amiel,, T. M. Schaefer,, J. E. Connolly,, C. R. Wira,, and P. M. Guyre. 2004. Differential expression of Toll-like receptors 2 and 4 in tissues of the human female reproductive tract. Infect. Immun. 72: 5799 5806. PubMed CrossRef
122. Prantner, D.,, T. Darville,, J. D. Sikes,, C. W. Andrews, Jr.,, H. Brade,, R. G. Rank,, and U. M. Nagarajan. 2009. Critical role for interleukin-1beta (IL-1beta) during Chlamydia muridarum genital infection and bacterial replication-independent secretion of IL-1beta in mouse macrophages. Infect. Immun. 77: 5334 5346. PubMed CrossRef
123. Punnonen, R.,, P. Terho,, V. Nikkanen,, and O. Meurman. 1979. Chlamydial serology in infertile women by immunofluorescence. Fertil. Steril. 31: 656 659. PubMed
124. Ramsey, K. H.,, I. M. Sigar,, S. V. Rana,, J. Gupta,, S. M. Holland,, and G. I. Byrne. 2001. Role for inducible nitric oxide synthase in protection from chronic Chlamydia trachomatis urogenital disease in mice and its regulation by oxygen free radicals. Infect. Immun. 69: 7374 7379. PubMed CrossRef
125. Ramsey, K. H.,, I. M. Sigar,, J. H. Schripsema,, N. Shaba,, and K. P. Cohoon. 2005. Expression of matrix metalloproteinases subsequent to urogenital Chlamydia muridarum infection of mice. Infect. Immun. 73: 6962 6973. PubMed CrossRef
126. Rank, R. G.,, A. K. Bowlin,, R. L. Reed,, and T. Darville. 2003. Characterization of chlamydial genital infection resulting from sexual transmission from male to female guinea pigs and determination of infectious dose. Infect. Immun. 71: 6148 6154. PubMed CrossRef
127. Rank, R. G.,, C. Dascher,, A. K. Bowlin,, and P. M. Bavoil. 1995a. Systemic immunization with Hsp60 alters the development of chlamydial ocular disease. Investig. Ophthalmol. Vis. Sci. 36: 1344 1351. PubMed
128. Rank, R. G.,, H. M. Lacy,, A. Goodwin,, J. Sikes,, J. Whittimore,, P. B. Wyrick,, and U. M. Nagarajan. 2010. Host chemokine and cytokine response in the endocervix within the first developmental cycle of Chlamydia muridarum. Infect. Immun. 78: 536 544. PubMed CrossRef
129. Rank, R. G.,, M. M. Sanders,, and D. L. Patton. 1995b. Increased incidence of oviduct pathology in the guinea pig after repeat vaginal inoculation with the chlamydial agent of guinea pig inclusion conjunctivitis. J. Sex. Transm. Dis. 22: 48 54. PubMed
130. Rasmussen, S. J.,, L. Eckmann,, A. J. Quayle,, L. Shen,, Y. X. Zhang,, D. J. Anderson,, J. Fierer,, R. S. Stephens,, and M. F. Kagnoff. 1997. Secretion of proinflammatory cytokines byepithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Investig. 99: 77 87. PubMed CrossRef
131. Ravel, J.,, P. Gajer,, Z. Abdo,, G. M. Schneider,, S. S. Koenig,, S. L. McCulle,, S. Karlebach,, R. Gorle,, J. Russell,, C. O. Tacket,, R. M. Brotman,, C. C. Davis,, K. Ault,, L. Peralta,, and L. J. Forney. 2011. Vaginal microbiome of reproductive-age women. Proc. Natl. Acad. Sci. USA 108( Suppl. 1): 4680 4687. PubMed CrossRef
132. Roth, A.,, P. Konig,, G. van Zandbergen,, M. Klinger,, T. Hellwig-Burgel,, W. Daubener,, M. K. Bohlmann,, and J. Rupp. 2010. Hypoxia abrogates antichlamydial properties of IFN-γ in human fallopian tube cells in vitro and ex vivo. Proc. Natl. Acad. Sci. USA 107: 19502 19507. PubMed CrossRef
133. Russell, M.,, T. Darville,, K. Chandra-Kuntal,, B. Smith,, C. W. Andrews, Jr.,, and C. M. O’Connell. 2011. Infectivity acts as in vivo selection for maintenance of the chlamydial cryptic plasmid. Infect. Immun. 79: 98 107. PubMed CrossRef
134. Schaefer, T. M.,, J. V. Fahey,, J. A. Wright,, and C. R. Wira. 2005. Innate immunity in the human female reproductive tract: antiviral response of uterine epithelial cells to the TLR3 agonist poly(I:C). J. Immunol. 174: 992 1002. PubMed
135. Scriba, T. J.,, B. Kalsdorf,, D. A. Abrahams,, F. Isaacs,, J. Hofmeister,, G. Black,, H. Y. Hassan,, R. J. Wilkinson,, G. Walzl,, S. J. Gelderbloem,, H. Mahomed,, G. D. Hussey,, and W. A. Hanekom. 2008. Distinct, specific IL-17- and IL-22-producing CD4 + T cell subsets contribute to the human anti-mycobacterial immune response. J. Immunol. 180: 1962 1970. PubMed
136. Scurlock, A. M.,, L. C. Frazer,, C. W. Andrews, Jr.,, C. M. O’Connell,, I. P. Foote,, S. L. Bailey,, K. Chandra-Kuntal,, J. K. Kolls,, and T. Darville. 2010. IL-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect. Immun. 79: 1349 1362. PubMed CrossRef
137. Shah, A. A.,, J. H. Schripsema,, M. T. Imtiaz,, I. M. Sigar,, J. Kasimos,, P. G. Matos,, S. Inouye,, and K. H. Ramsey. 2005. Histopathologic changes related to fibrotic oviduct occlusion after genital tract infection of mice with Chlamydia muridarum. Sex. Transm. Dis. 32: 49 56. PubMed
138. Shao, R.,, S. X. Zhang,, B. Weijdegard,, S. Zou,, E. Egecioglu,, A. Norstrom,, M. Brannstrom,, and H. Billig. 2010. Nitric oxide synthases and tubal ectopic pregnancies induced by Chlamydia infection: basic and clinical insights. Mol. Hum. Reprod. 16: 907 915. PubMed CrossRef
139. Shemer-Avni, Y.,, D. Wallach,, and I. Sarov. 1988. Inhibition of Chlamydia trachomatis growth by recombinant tumor necrosis factor. Infect. Immun. 56: 2503 2506. PubMed
140. Skwor, T. A.,, B. Atik,, R. P. Kandel,, H. K. Adhikari,, B. Sharma,, and D. Dean. 2008. R ole of secreted conjunctival mucosal cytokine and chemokine proteins in different stages of trachomatous disease. PLoS Negl. Trop. Dis. 2: e264. PubMed CrossRef
141. Stephens, R. S. 2003. The cellular paradigm of chlamydial pathogenesis. Trends Microbiol. 11: 44 51. PubMed
142. Su, H.,, K. Feilzer,, H. D. Caldwell,, and R. P. Morrison. 1997. Chlamydia trachomatis genital tract infection of antibody-deficient gene knockout mice. Infect. Immun. 65: 1993 1999. PubMed
143. Su, H.,, G. McClarty,, F. Dong,, G. M. Hatch,, Z. K. Pan,, and G. Zhong. 2004. Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J. Biol. Chem. 279: 9409 9416. PubMed CrossRef
144. Swanson, A. F.,, R. A. Ezekowitz,, A. Lee,, and C. C. Kuo. 1998. Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis. Infect. Immun. 66: 1607 1612. PubMed
145. Sweet, R. L.,, M. Blankfort-Doyle,, M. O. Robbie,, and J. Schachter. 1986. The occurrence of chlamydial and gonococcal salpingitis during the menstrual cycle. JAMA 255: 2062 2065. PubMed
146. Sziller, I.,, O. Babula,, A. Ujhazy,, B. Nagy,, P. Hupuczi,, Z. Papp,, I. M. Linhares,, W. J. Ledger,, and S. S. Witkin. 2007. Chlamydia trachomatis infection, fallopian tube damage and a mannose-binding lectin codon 54 gene polymorphism. Hum. Reprod. 22: 1861 1865. PubMed CrossRef
147. Tjiam, K. H.,, G. H. Zeilmaker,, A. T. Alberda,, B. Y. van Heijst,, J. C. de Roo,, A. A. Polak-Vogelzang,, T. van Joost,, E. Stolz,, and F. Michel. 1985. Prevalence of antibodies to Chlamydia trachomatis, Neisseria gonorrhoeae, and Mycoplasma hominis in infertile women. Genitourin. Med. 61: 175 178. PubMed
148. Toye, B.,, C. Laferriäre,, P. Claman,, P. Jessamine,, and R. Peeling. 1993. Association between antibody to the chlamydial heat-shock protein and tubal infertility. J. Infect. Dis. 168: 1236 1240. PubMed
149. Tseng, C. T.,, and R. G. Rank. 1998. Role of NK cells in early host response to chlamydial genital infection. Infect. Immun. 66: 5867 5875. PubMed
150. Vanover, J.,, J. Kintner,, J. Whittimore,, and R. V. Schoborg. 2010. Interaction of herpes simplex virus type 2 (HSV-2) glycoprotein D with the host cell surface is sufficient to induce Chlamydia trachomatis persistence. Microbiology 156: 1294 1302. PubMed CrossRef
151. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1996. Analysis of lymphocyte phenotype and cytokine activity in the inflammatory infiltrates of the upper genital tract of female macaques infected with Chlamydia trachomatis. J. Infect. Dis. 174: 647 650. PubMed CrossRef
152. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1997. Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect. Immun. 65: 2175 2182. PubMed
153. Vender, J.,, and J. W. Moulder. 1967. Initial step in catabolism of glucose by the meningopneumonitis agent. J. Bacteriol. 94: 867 869. PubMed
154. Vonck, R. A.,, T. Darville,, C. M. O’Connell,, and A. E. Jerse. 2011. Chlamydial infection increases gonococcal colonization in a novel murine coinfection model. Infect. Immun. 79: 1566 1577. PubMed CrossRef
155. Wang, S. P.,, J. T. Grayston,, and E. R. Alexander. 1967. Trachoma vaccine studies in monkeys. Am. J. Ophthalmol. 63( Suppl.): 1615 1630. PubMed
156. Watkins, N. G.,, W. J. Hadlow,, A. B. Moos,, and H. D. Caldwell. 1986. Ocular delayed hypersensitivity: a pathogenetic mechanism of chlamydial- conjunctivitis in guinea pigs. Proc. Natl. Acad. Sci. USA 83: 7480 7484. PubMed
157. Werner, G. T.,, and D. K. Sareen. 1977. Trachoma in Punjab: a study of the prevalence and of mass treatment. Trop. Geogr. Med. 29: 135 140. PubMed
158. West, S. K.,, B. Munoz,, H. Mkocha,, Y. H. Hsieh,, and M. C. Lynch. 2001. Progression of active trachoma to scarring in a cohort of Tanzanian children. Ophthalmic Epidemiol. 8: 137 144. PubMed
159. Wiesenfeld, H. C.,, R. P. Heine,, M. A. Krohn,, S. L. Hillier,, A. A. Amortegui,, M. Nicolazzo,, and R. L. Sweet. 2002. Association between elevated neutrophil defensin levels and endometritis. J. Infect. Dis. 186: 792 797. PubMed CrossRef
160. Wiesenfeld, H. C.,, R. L. Sweet,, R. B. Ness,, M. A. Krohn,, A. J. Amortegui,, and S. L. Hillier. 2005. Comparison of acute and subclinical pelvic inflammatory disease. Sex. Transm. Dis. 32: 400 405. PubMed
161. Woolridge, R. L.,, J. T. Grayston,, I. H. Chang,, C. Y. Yang,, and K. H. Cheng. 1967. Long-term follow-up of the initial (1959-1960) trachoma vaccine field trial on Taiwan. Am. J. Ophthalmol. 63( Suppl.): 1650 1655. PubMed
162. Wyrick, P. B.,, S. T. Knight,, T. R. Paul,, R. G. Rank,, and C. S. Barbier. 1999. Persistent chlamydial envelope antigens in antibiotic-exposed infected cells trigger neutrophil chemotaxis. J. Infect. Dis. 179: 954 966. PubMed CrossRef
163. Zhang, B.,, S. Ye,, S. M. Herrmann,, P. Eriksson,, M. de Maat,, A. Evans,, D. Arveiler,, G. Luc,, F. Cambien,, A. Hamsten,, H. Watkins,, and A. M. Henney. 1999. Functional polymorphism in the regulatory region of gelatinase B gene in relation to severity of coronary atherosclerosis. Circulation 99: 1788 1794. PubMed CrossRef
164. Zheng, Y.,, P. A. Valdez,, D. M. Danilenko,, Y. Hu,, S. M. Sa,, Q. Gong,, A. R. Abbas,, Z. Modrusan,, N. Ghilardi,, F. J. de Sauvage,, and W. Ouyang. 2008. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. Nat. Med. 14: 282 289. PubMed CrossRef
165. Zhong, G. 2009. Killing me softly: chlamydial use of proteolysis for evading host defenses. Trends Microbiol. 17: 467 474. PubMed CrossRef
166. Zhong, G.,, P. Fan,, H. Ji,, F. Dong,, and Y. Huang. 2001. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193: 935 942. PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error