Chapter 14 : Vaccine: Progress and Challenges

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Vaccine: Progress and Challenges, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap14-2.gif


The accumulated body of evidence has provided important guiding principles for vaccine development. They are: (i) whole-organism vaccine preparations may be efficacious, as animal studies and the trachoma trials have suggested; (ii) a multisub-unit component vaccine should likely include combinations of serovar/biovar-specific protective antigens; and (iii) the prevention of pathological sequelae and the reduction of the incidence of infection should be the driving forces in vaccine development. Live chlamydial infections induce the best protective immunity in both humans and mice when compared to immunization with either dead organisms or component antigens. In a gel electrophoresis and immunoblotting approach, chlamydial antigens derived from purified organisms or -infected cells are subjected to two-dimensional gel electrophoresis (2D-GE) and then probed with sera from -seropositive humans. Chlamydial proteins are labeled during growth with radioactive amino acids, and individual antigens from lysed chlamydial organisms or -infected cells that are recognized by patient sera are first immunoprecipitated and then resolved using 2D-GE. A genome expression library screen for immunogenicity followed by DNA immunization has been used to identify four housekeeping genes that induced robust protective immunity against lung infection in mice. Collectively, contemporary technologies have enabled considerable progress in vaccine development in the recent past, but several issues remain to be addressed before advancing the identified antigens into human clinical trials.

Citation: Murthy A, Arulanandam B, Zhong G. 2012. Vaccine: Progress and Challenges, p 311-333. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Scheme for vaccine candidate identification and evaluation. doi:10.1128/9781555817329.ch14.f1

Citation: Murthy A, Arulanandam B, Zhong G. 2012. Vaccine: Progress and Challenges, p 311-333. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Classification scheme showing a -infected cell and four classes of chlamydial antigens that are potential vaccine candidates. doi:10.1128/9781555817329.ch14.f2

Citation: Murthy A, Arulanandam B, Zhong G. 2012. Vaccine: Progress and Challenges, p 311-333. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bannantine, J. P.,, and D. D. Rockey. 1999. Use of primate model system to identify Chlamydia trachomatis protein antigens recognized uniquely in the context of infection. Microbiology 145: 2077 2085. PubMed CrossRef
2. Batteiger, B. E. 1996. The major outer membrane protein of a single Chlamydia trachomatis serovar can possess more than one serovar-specific epitope. Infect. Immun. 64: 542 547. PubMed
3. Berry, L. J.,, D. K. Hickey,, K. A. Skelding,, S. Bao,, A. M. Rendina,, P. M. Hansbro,, C. M. Gockel,, and K. W. Beagley. 2004. Transcutaneous immunization with combined cholera toxin and CpG adjuvant protects against Chlamydia muridarum genital tract infection. Infect. Immun. 72: 1019 1028. PubMed CrossRef
4. Bietti, G.,, and G. H. Werner. 1967. Trachoma: Prevention and Treatment. Charles C Thomas, Springfield, IL.
5. Brade, L.,, S. Schramek,, U. Schade,, and H. Brade. 1986. Chemical, biological, and immunochemical properties of the Chlamydia psittaci lipopolysaccharide. Infect. Immun. 54: 568 574. PubMed
6. Brunham, R. C.,, C. C. Kuo,, L. Cles,, and K. K. Holmes. 1983. Correlation of host immune response with quantitative recovery of Chlamydia trachomatis from the human endocervix. Infect. Immun. 39: 1491 1494. PubMed
7. Brunham, R. C.,, R. Peeling,, I. Maclean,, M. L. Kosseim,, and M. Paraskevas. 1992. Chlamydia trachomatis-associated ectopic pregnancy: serologic and histologic correlates. J. Infect. Dis. 165: 1076 1081. PubMed
8. Brunham, R. C.,, and R. W. Peeling. 1994. Chlamydia trachomatis antigens: role in immunity and pathogenesis. Infect. Agents Dis. 3: 218 233. PubMed
9. Brunham, R. C.,, and M. L. Rekart. 2008. The arrested immunity hypothesis and the epidemiology of chlamydia control. Sex. Transm. Dis. 35: 53 54. PubMed CrossRef
10. Brunham, R. C.,, and J. Rey-Ladino. 2005. Immunology of Chlamydia infection: implications for a Chlamydia trachomatis vaccine. Nat. Rev. Immunol. 5: 149 161. PubMed CrossRef
11. Bunk, S.,, I. Susnea,, J. Rupp,, J. T. Summersgill,, M. Maass,, W. Stegmann,, A. Schrattenholz,, A. Wendel,, M. Przybylski,, and C. Hermann. 2008. Immunoproteomic identification and serological responses to novel Chlamydia pneumoniae antigens that are associated with persistent C. pneumoniae infections. J. Immunol. 180: 5490 5498. PubMed
12. Byrne, G. I.,, R. S. Stephens,, G. Ada,, H. D. Caldwell,, H. Su,, R. P. Morrison,, B. Van der Pol,, P. Bavoil,, L. Bobo,, and S. Everson. 1993. Workshop on in vitro neutralization of Chlamydia trachomatis: summary of proceedings. J. Infect. Dis. 168: 415 420. PubMed CrossRef
13. Caldwell, H. D.,, C. C. Kuo,, and G. E. Kenny. 1975a. Antigenic analysis of chlamydiae by two-dimensional immunoelectrophoresis. I. Antigenic heterogeneity between C. trachomatis and C. psittaci. J. Immunol. 115: 963 968. PubMed
14. Caldwell, H. D.,, C. C. Kuo,, and G. E. Kenny. 1975b. Antigenic analysis of chlamydiae by two-dimensional immunoelectrophoresis. II. A trachoma-LGV-specific antigen. J. Immunol. 115: 969 975. PubMed
15. Caldwell, H. D.,, and L. J. Perry. 1982. Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. Infect. Immun. 38: 745 754. PubMed
16. Chaganty, B. K.,, A. K. Murthy,, S. J. Evani,, W. Li,, M. N. Guentzel,, J. P. Chambers,, G. Zhong,, and B. P. Arulanandam. 2010. Heat denatured enzymatically inactive recombinant chlamydial protease-like activity factor induces robust protective immunity against genital chlamydial challenge. Vaccine 28: 2323 2329. PubMed CrossRef
17. Champion, C. I.,, V. A. Kickhoefer,, G. Liu,, R. J. Moniz,, A. S. Freed,, L. L. Bergmann,, D. Vaccari,, S. Raval-Fernandes,, A. M. Chan,, L. H. Rome,, and K. A. Kelly. 2009. A vault nanoparticle vaccine induces protective mucosal immunity. PLoS One 4: e5409. PubMed CrossRef
18. Chen, D.,, L. Lei,, C. Lu,, A. Galaleldeen,, P. J. Hart,, and G. Zhong. 2010. Characterization of Pgp3, a Chlamydia trachomatis plasmid-encoded immunodominant antigen. J. Bacteriol. 192: 6017 6024. PubMed CrossRef
19. Cheng, C.,, M. I. Cruz-Fisher,, D. Tifrea,, S. Pal,, B. Wizel,, and L. M. de la Maza. 2011. Induction of protection in mice against a respiratory challenge by a vaccine formulated with the Chlamydia major outer membrane protein adjuvanted with IC31®. Vaccine 29: 2437 2443. PubMed CrossRef
20. Cheng, W.,, P. Shivshankar,, Z. Li,, L. Chen,, I. T. Yeh,, and G. Zhong. 2008. Caspase-1 contributes to Chlamydia trachomatis-induced upper urogenital tract inflammatory pathologies without affecting the course of infection. Infect. Immun. 76: 515 522. PubMed CrossRef
21. Coler, R. N.,, A. Bhatia,, J. F. Maisonneuve,, P. Probst,, B. Barth,, P. Ovendale,, H. Fang,, M. Alderson,, Y. Lobet,, J. Cohen,, P. Mettens,, and S. G. Reed. 2009. Identification and characterization of novel recombinant vaccine antigens for immunization against genital Chlamydia trachomatis. FEMS Immunol. Med. Microbiol. 55: 258 270. PubMed CrossRef
22. Collier, L. H.,, W. A. Blyth,, N. M. Larin,, and J. Treharne. 1967. Immunogenicity of experimental trachoma vaccines in baboons. III. Experiments with inactivated vaccines. J. Hyg. (London) 65: 97 107. PubMed
23. Cong, Y.,, M. Jupelli,, M. N. Guentzel,, G. Zhong,, A. K. Murthy,, and B. P. Arulanandam. 2007. Intranasal immunization with chlamydial protease-like activity factor and CpG deoxynucleotides enhances protective immunity against genital Chlamydia muridarum infection. Vaccine 25: 3773 3780. PubMed CrossRef
24. Cotter, T. W.,, Q. Meng,, Z. L. Shen,, Y. X. Zhang,, H. Su,, and H. D. Caldwell. 1995. Protective efficacy of major outer membrane protein-specific immunoglobulin A (IgA) and IgG monoclonal antibodies in a murine model of Chlamydia trachomatis genital tract infection. Infect. Immun. 63: 4704 4714. PubMed
25. Cotter, T. W.,, K. H. Ramsey,, G. S. Miranpuri,, C. E. Poulsen,, and G. I. Byrne. 1997. Dissemination of Chlamydia trachomatis chronic genital tract infection in gamma interferon gene knockout mice. Infect. Immun. 65: 2145 2152. PubMed
26. Crane, D. D.,, J. H. Carlson,, E. R. Fischer,, P. Bavoil,, R. C. Hsia,, C. Tan,, C. C. Kuo,, and H. D. Caldwell. 2006. Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc. Natl. Acad. Sci. USA 103: 1894 1899. PubMed CrossRef
27. Cruz-Fisher, M. I.,, C. Cheng,, G. Sun,, S. Pal,, A. Teng,, D. M. Molina,, M. A. Kayala,, A. Vigil,, P. Baldi,, P. L. Felgner,, X. Liang,, and L. M. de la Maza. 2011. Identification of immunodominant antigens by probing a whole Chlamydia trachomatis open reading frame proteome microarray using sera from immunized mice. Infect. Immun. 79: 246 257. PubMed CrossRef
28. Cunningham, K. A.,, A. J. Carey,, L. Hafner,, P. Timms,, and K. W. Beagley. 2011. Chlamydia muridarum major outer membrane protein-specific antibodies inhibit in vitro infection but enhance pathology in vivo. Am. J. Reprod. Immunol. 65: 118 126. PubMed CrossRef
29. Darville, T.,, J. M. O’Neill,, C. W. Andrews, Jr.,, U. M. Nagarajan,, L. Stahl,, and D. M. Ojcius. 2003. Toll-like receptor-2, but not Toll-like receptor-4, is essential for development of oviduct pathology in chlamydial genital tract infection. J. Immunol. 171: 6187 6197. PubMed
30. Deane, K. H.,, R. M. Jecock,, J. H. Pearce,, and J. S. Gaston. 1997. Identification and characterization of a DR4-restricted T cell epitope within chlamydia heat shock protein 60. Clin. Exp. Immunol. 109: 439 445. PubMed CrossRef
31. Dong, F.,, H. Su,, Y. Huang,, Y. Zhong,, and G. Zhong. 2004. Cleavage of host keratin 8 by a Chlamydia-secreted protease. Infect. Immun. 72: 3863 3868. PubMed CrossRef
32. Dong, F.,, Y. Zhong,, B. Arulanandam,, and G. Zhong. 2005. Production of a proteolytically active protein, chlamydial protease/proteasome-like activity factor, by five different Chlamydia species. Infect. Immun. 73: 1868 1872. PubMed CrossRef
33. Eko, F. O.,, Q. He,, T. Brown,, L. McMillan,, G. O. Ifere,, G. A. Ananaba,, D. Lyn,, W. Lubitz,, K. L. Kellar,, C. M. Black,, and J. U. Igietseme. 2004. A novel recombinant multisubunit vaccine against Chlamydia. J. Immunol. 173: 3375 3382. PubMed
34. Eko, F. O.,, W. Lubitz,, L. McMillan,, K. Ramey,, T. T. Moore,, G. A. Ananaba,, D. Lyn,, C. M. Black,, and J. U. Igietseme. 2003. Recombinant Vibrio cholerae ghosts as a delivery vehicle for vaccinating against Chlamydia trachomatis. Vaccine 21: 1694 1703. PubMed
35. Fadel, S.,, and A. Eley. 2007. Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. J. Med. Microbiol. 56: 15 22. PubMed CrossRef
36. Farris, C. M.,, S. G. Morrison,, and R. P. Morrison. 2010. CD4 + T cells and antibody are required for optimal major outer membrane protein vaccine-induced immunity to Chlamydia muridarum genital infection. Infect. Immun. 78: 4374 4383. PubMed CrossRef
37. Fields, K. A.,, and T. Hackstadt. 2000. Evidence for the secretion of Chlamydia trachomatis CopN by a type III secretion mechanism. Mol. Microbiol. 38: 1048 1060. PubMed CrossRef
38. Fling, S. P.,, R. A. Sutherland,, L. N. Steele,, B. Hess,, S. E. D’Orazio,, J. Maisonneuve,, M. F. Lampe,, P. Probst,, and M. N. Starnbach. 2001. CD8 + T cells recognize an inclusion membrane-associated protein from the vacuolar pathogen Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 98: 1160 1165. PubMed CrossRef
39. Frikha-Gargouri, O.,, R. Gdoura,, A. Znazen,, B. Gargouri,, J. Gargouri,, A. Rebai,, and A. Hammami. 2008. Evaluation of an in silico predicted specific and immunogenic antigen from the OmcB protein for the serodiagnosis of Chlamydia trachomatis infections. BMC Microbiol. 8: 217. PubMed CrossRef
40. Geisler, W. M.,, C. Wang,, S. G. Morrison,, C. M. Black,, C. I. Bandea,, and E. W. Hook III. 2008. The natural history of untreated Chlamydia trachomatis infection in the interval between screening and returning for treatment. Sex. Transm. Dis. 35: 119 123. PubMed CrossRef
41. Gervassi, A. L.,, K. H. Grabstein,, P. Probst,, B. Hess,, M. R. Alderson,, and S. P. Fling. 2004. Human CD8 + T cells recognize the 60-kDa cysteine-rich outer membrane protein from Chlamydia trachomatis. J. Immunol. 173: 6905 6913. PubMed
42. Gong, S.,, L. Lei,, X. Chang,, R. Belland,, and G. Zhong. 2011. Chlamydia trachomatis secretion of hypothetical protein CT622 into host cell cytoplasm via a secretion pathway that can be inhibited by the type III secretion system inhibitor compound 1. Microbiology 157: 1134 1144. PubMed CrossRef
43. Goodall, J. C.,, G. Yeo,, M. Huang,, R. Raggiaschi,, and J. S. Gaston. 2001. Identification of Chlamydia trachomatis antigens recognized by human CD4 + T lymphocytes by screening an expression library. Eur. J. Immunol. 31: 1513 1522. PubMed CrossRef
44. Grayston, J. T.,, R. L. Woolridge,, C. W. Chen,, F. A. Assaad,, S. Maffei,, C. H. Yen,, and C. Y. Yang. 1961. Bacterial conjunctivitis caused by an eye ointment base used as a placebo in therapeutic trials. Am. J. Ophthalmol. 52: 251 256. PubMed
45. Grotenbreg, G. M.,, N. R. Roan,, E. Guillen,, R. Meijers,, J. H. Wang,, G. W. Bell,, M. N. Starnbach,, and H. L. Ploegh. 2008. Discovery of CD8 + T cell epitopes in Chlamydia trachomatis infection through use of caged class I MHC tetramers. Proc. Natl. Acad. Sci. USA 105: 3831 3836. PubMed CrossRef
46. Hackstadt, T.,, M. A. Scidmore-Carlson,, E. I. Shaw,, and E. R. Fischer. 1999. The Chlamydia trachomatis IncA protein is required for homotypic vesicle fusion. Cell. Microbiol. 1: 119 130. PubMed CrossRef
47. Hafner, L.,, K. Beagley,, and P. Timms. 2008. Chlamydia trachomatis infection: host immune responses and potential vaccines. Mucosal Immunol. 1: 116 130. PubMed CrossRef
48. Hansen, J.,, K. T. Jensen,, F. Follmann,, E. M. Agger,, M. Theisen,, and P. Andersen. 2008. Liposome delivery of Chlamydia muridarum major outer membrane protein primes a Th1 response that protects against genital chlamydial infection in a mouse model. J. Infect. Dis. 198: 758 767. PubMed CrossRef
49. Herbert, J.,, and J. Coffin. 2008. Reducing patient risk for human papillomavirus infection and cervical cancer. J. Am. Osteopathol. Assoc. 108: 65 70. PubMed
50. Hobolt-Pedersen, A. S.,, G. Christiansen,, E. Timmerman,, K. Gevaert,, and S. Birkelund. 2009. Identification of Chlamydia trachomatis CT621, a protein delivered through the type III secretion system to the host cell cytoplasm and nucleus. FEMS Immunol. Med. Microbiol. 57: 46 58. PubMed CrossRef
51. Holland, M. J.,, R. L. Bailey,, D. J. Conway,, F. Culley,, G. Miranpuri,, G. I. Byrne,, H. C. Whittle,, and D. C. Mabey. 1996. T helper type-1 (Th1)/Th2 profiles of peripheral blood mononuclear cells (PBMC); responses to antigens of Chlamydia trachomatis in subjects with severe trachomatous scarring. Clin. Exp. Immunol. 105: 429 435. PubMed
52. Holland, M. J.,, D. J. Conway,, T. J. Blanchard,, O. M. Mahdi,, R. L. Bailey,, H. C. Whittle,, and D. C. Mabey. 1997. Synthetic peptides based on Chlamydia trachomatis antigens identify cytotoxic T lymphocyte responses in subjects from a trachoma-endemic population. Clin. Exp. Immunol. 107: 44 49. PubMed
53. Huang, Z.,, Y. Feng,, D. Chen,, X. Wu,, S. Huang,, X. Wang,, X. Xiao,, W. Li,, N. Huang,, L. Gu,, G. Zhong,, and J. Chai. 2008. Structural basis for activation and inhibition of the secreted chlamydia protease CPAF. Cell Host Microbe 4: 529 542. PubMed CrossRef
54. Huh, W. K. 2009. Human papillomavirus infection: a concise review of natural history. Obstet. Gynecol. 114: 139 143. PubMed CrossRef
55. Ifere, G. O.,, Q. He,, J. U. Igietseme,, G. A. Ananaba,, D. Lyn,, W. Lubitz,, K. L. Kellar,, C. M. Black,, and F. O. Eko. 2007. Immunogenicity and protection against genital Chlamydia infection and its complications by a multisubunit candidate vaccine. J. Microbiol. Immunol. Infect. 40: 188 200. PubMed
56. Igietseme, J. U.,, G. A. Ananaba,, J. Bolier,, S. Bowers,, T. Moore,, T. Belay,, F. O. Eko,, D. Lyn,, and C. M. Black. 2000. Suppression of endogenous IL-10 gene expression in dendritic cells enhances antigen presentation for specific Th1 induction: potential for cellular vaccine development. J. Immunol. 164: 4212 4219. PubMed
57. Igietseme, J. U.,, Q. He,, K. Joseph,, F. O. Eko,, D. Lyn,, G. Ananaba,, A. Campbell,, C. Bandea,, and C. M. Black. 2009. Role of T lymphocytes in the pathogenesis of Chlamydia disease. J. Infect. Dis. 200: 926 934. PubMed CrossRef
58. Igietseme, J. U.,, D. M. Magee,, D. M. Williams,, and R. G. Rank. 1994. Role for CD8 + T cells in antichlamydial immunity defined by Chlamydia-specific T-lymphocyte clones. Infect. Immun. 62: 5195 5197. PubMed
59. Igietseme, J. U.,, and A. Murdin. 2000. Induction of protective immunity against Chlamydia trachomatis genital infection by a vaccine based on major outer membrane protein-lipophilic immune response-stimulating complexes. Infect. Immun. 68: 6798 6806. PubMed CrossRef
60. Igietseme, J. U.,, K. H. Ramsey,, D. M. Magee,, D. M. Williams,, T. J. Kincy,, and R. G. Rank. 1993. Resolution of murine chlamydial genital infection by the adoptive transfer of a biovar-specific, Th1 lymphocyte clone. Reg. Immunol. 5: 317 324. PubMed
61. Imtiaz, M. T.,, J. T. Distelhorst,, J. H. Schripsema,, I. M. Sigar,, J. N. Kasimos,, S. R. Lacy,, and K. H. Ramsey. 2007. A role for matrix metalloproteinase-9 in pathogenesis of urogenital Chlamydia muridarum infection in mice. Microbes Infect. 9: 1561 1566. PubMed CrossRef
62. Ito, J. I.,, and J. M. Lyons. 1999. Role of gamma interferon in controlling murine chlamydial genital tract infection. Infect. Immun. 67: 5518 5521. PubMed
63. Johansson, M.,, K. Schon,, M. Ward,, and N. Lycke. 1997. Genital tract infection with Chlamydia trachomatis fails to induce protective immunity in gamma interferon receptor-deficient mice despite a strong local immunoglobulin A response. Infect. Immun. 65: 1032 1044. PubMed
64. Johnson, R. M. 2004. Murine oviduct epithelial cell cytokine responses to Chlamydia muridarum infection include interleukin-12-p70 secretion. Infect. Immun. 72: 3951 3960. PubMed CrossRef
65. Karunakaran, K. P.,, J. Rey-Ladino,, N. Stoynov,, K. Berg,, C. Shen,, X. Jiang,, B. R. Gabel,, H. Yu,, L. J. Foster,, and R. C. Brunham. 2008. Immunoproteomic discovery of novel T cell antigens from the obligate intracellular pathogen Chlamydia. J. Immunol. 180: 2459 2465. PubMed
66. Kawa, D. E.,, J. Schachter,, and R. S. Stephens. 2004. Immune response to the Chlamydia trachomatis outer membrane protein PorB. Vaccine 22: 4282 4286. PubMed CrossRef
67. Kawa, D. E.,, and R. S. Stephens. 2002. Antigenic topology of chlamydial PorB protein and identification of targets for immune neutralization of infectivity. J. Immunol. 168: 5184 5191. PubMed
68. Kim, S. K.,, M. Angevine,, K. Demick,, L. Ortiz,, R. Rudersdorf,, D. Watkins,, and R. DeMars. 1999. Induction of HLA class I-restricted CD8 + CTLs specific for the major outer membrane protein of Chlamydia trachomatis in human genital tract infections. J. Immunol. 162: 6855 6866. PubMed
69. Kim, S. K.,, and R. DeMars. 2001. Epitope clusters in the major outer membrane protein of Chlamydia trachomatis. Curr. Opin. Immunol. 13: 429 436. PubMed
70. Kimani, J.,, I. W. Maclean,, J. J. Bwayo,, K. MacDonald,, J. Oyugi,, G. M. Maitha,, R. W. Peeling,, M. Cheang,, N. J. Nagelkerke,, F. A. Plummer,, and R. C. Brunham. 1996. Risk factors for Chlamydia trachomatis pelvic inflammatory disease among sex workers in Nairobi, Kenya. J. Infect. Dis. 173: 1437 1444. PubMed CrossRef
71. Kinnunen, A.,, P. Molander,, R. Morrison,, M. Lehtinen,, R. Karttunen,, A. Tiitinen,, J. Paavonen,, and H. M. Surcel. 2002. Chlamydial heat shock protein 60-specific T cells in inflamed salpingeal tissue. Fertil. Steril. 77: 162 166. PubMed
72. Kiselev, A. O.,, W. E. Stamm,, J. R. Yates,, and M. F. Lampe. 2007. Expression, processing, and localization of PmpD of Chlamydia trachomatis serovar L2 during the chlamydial developmental cycle. PLoS One 2: e568. PubMed CrossRef
73. LaVerda, D.,, L. N. Albanese,, P. E. Ruther,, S. G. Morrison,, R. P. Morrison,, K. A. Ault,, and G. I. Byrne. 2000. Seroreactivity to Chlamydia trachomatis Hsp10 correlates with severity of human genital tract disease. Infect. Immun. 68: 303 309. PubMed CrossRef
74. Lee, H. Y.,, J. H. Schripsema,, I. M. Sigar,, S. R. Lacy,, J. N. Kasimos,, C. M. Murray,, and K. H. Ramsey. 2010a. A role for CXC chemokine receptor-2 in the pathogenesis of urogenital Chlamydia muridarum infection in mice. FEMS Immunol. Med. Microbiol. 60: 49 56. PubMed CrossRef
75. Lee, H. Y.,, J. H. Schripsema,, I. M. Sigar,, C. M. Murray,, S. R. Lacy,, and K. H. Ramsey. 2010b. A link between neutrophils and chronic disease manifestations of Chlamydia muridarum urogenital infection of mice. FEMS Immunol. Med. Microbiol. 59: 108 116. PubMed CrossRef
76. Li, W.,, M. N. Guentzel,, J. Seshu,, G. Zhong,, A. K. Murthy,, and B. P. Arulanandam. 2007. Induction of cross-serovar protection against genital chlamydial infection by a targeted multisubunit vaccination approach. Clin. Vaccine Immunol. 14: 1537 1544. PubMed CrossRef
77. Li, W.,, A. K. Murthy,, M. N. Guentzel,, J. P. Chambers,, T. G. Forsthuber,, J. Seshu,, G. Zhong,, and B. P. Arulanandam. 2010. Immunization with a combination of integral chlamydial antigens and a defined secreted protein induces robust immunity against genital chlamydial challenge. Infect. Immun. 78: 3942 3949. PubMed CrossRef
78. Li, W.,, A. K. Murthy,, M. N. Guentzel,, J. Seshu,, T. G. Forsthuber,, G. Zhong,, and B. P. Arulanandam. 2008a. Antigen-specific CD4 + T cells produce sufficient IFN-gamma to mediate robust protective immunity against genital Chlamydia muridarum infection. J. Immunol. 180: 3375 3382. PubMed
79. Li, Z.,, C. Chen,, D. Chen,, Y. Wu,, Y. Zhong,, and G. Zhong. 2008b. Characterization of fifty putative inclusion membrane proteins encoded in the Chlamydia trachomatis genome. Infect. Immun. 76: 2746 2757. PubMed CrossRef
80. Li, Z.,, D. Chen,, Y. Zhong,, S. Wang,, and G. Zhong. 2008c. The chlamydial plasmid-encoded protein pgp3 is secreted into the cytosol of Chlamydia-infected cells. Infect. Immun. 76: 3415 3428. PubMed CrossRef
81. Li, Z.,, S. Wang,, Y. Wu,, G. Zhong,, and D. Chen. 2008d. Immunization with chlamydial plasmid protein pORF5 DNA vaccine induces protective immunity against genital chlamydial infection in mice. Sci. China C 51: 973 980. PubMed CrossRef
82. Longbottom, D.,, and M. Livingstone. 2006. Vaccination against chlamydial infections of man and animals. Vet. J. 171: 263 275. PubMed CrossRef
83. Mabey, D. C.,, M. J. Holland,, N. D. Viswalingam,, B. T. Goh,, S. Estreich,, A. Macfarlane,, H. M. Dockrell,, and J. D. Treharne. 1991. Lymphocyte proliferative responses to chlamydial antigens in human chlamydial eye infections. Clin. Exp. Immunol. 86: 37 42. PubMed
84. MacMillan, L.,, G. O. Ifere,, Q. He,, J. U. Igietseme,, K. L. Kellar,, D. M. Okenu,, and F. O. Eko. 2007. A recombinant multivalent combination vaccine protects against Chlamydia and genital herpes. FEMS Immunol. Med. Microbiol. 49: 46 55. PubMed CrossRef
85. Masson, P. L.,, J. F. Heremans,, and J. Ferin. 1969. Clinical importance of the biochemical changes in the female genital tract. I. Studies on the proteins of cervical mucus. Int. J. Fertil. 14: 1 7. PubMed
86. Maxion, H. K.,, and K. A. Kelly. 2002. Chemokine expression patterns differ within anatomically distinct regions of the genital tract during Chlamydia trachomatis infection. Infect. Immun. 70: 1538 1546. PubMed CrossRef
87. McClarty, G.,, H. D. Caldwell,, and D. E. Nelson. 2007. Chlamydial interferon gamma immune evasion influences infection tropism. Curr. Opin. Microbiol. 10: 47 51. PubMed CrossRef
88. McNeilly, C. L.,, K. W. Beagley,, R. J. Moore,, V. Haring,, P. Timms,, and L. M. Hafner. 2007. Expression library immunization confers partial protection against Chlamydia muridarum genital infection. Vaccine 25: 2643 2655. PubMed CrossRef
89. Moelleken, K.,, and J. H. Hegemann. 2008. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Mol. Microbiol. 67: 403 419. PubMed CrossRef
90. Molina, D. M.,, S. Pal,, M. A. Kayala,, A. Teng,, P. J. Kim,, P. Baldi,, P. L. Felgner,, X. Liang,, and L. M. de la Maza. 2010. Identification of immunodominant antigens of Chlamydia trachomatis using proteome microarrays. Vaccine 28: 3014 3024. PubMed CrossRef
91. Moore, T.,, G. A. Ananaba,, J. Bolier,, S. Bowers,, T. Belay,, F. O. Eko,, and J. U. Igietseme. 2002. Fc receptor regulation of protective immunity against Chlamydia trachomatis. Immunology 105: 213 221. PubMed CrossRef
92. Moore, T.,, C. O. Ekworomadu,, F. O. Eko,, L. MacMillan,, K. Ramey,, G. A. Ananaba,, J. W. Patrickson,, P. R. Nagappan,, D. Lyn,, C. M. Black,, and J. U. Igietseme. 2003. Fc receptor-mediated antibody regulation of T cell immunity against intracellular pathogens. J. Infect. Dis. 188: 617 624. PubMed CrossRef
93. Morrison, R. P.,, R. J. Belland,, K. Lyng,, and H. D. Caldwell. 1989a. Chlamydial disease pathogenesis. The 57-kD chlamydial hypersensitivity antigen is a stress response protein. J. Exp. Med. 170: 1271 1283. PubMed
94. Morrison, R. P.,, and H. D. Caldwell. 2002. Immunity to murine chlamydial genital infection. Infect. Immun. 70: 2741 2751. PubMed CrossRef
95. Morrison, R. P.,, K. Feilzer,, and D. B. Tumas. 1995. Gene knockout mice establish a primary protective role for major histocompatibility complex class II-restricted responses in Chlamydia trachomatis genital tract infection. Infect. Immun. 63: 4661 4668. PubMed
96. Morrison, R. P.,, K. Lyng,, and H. D. Caldwell. 1989b. Chlamydial disease pathogenesis. Ocular hypersensitivity elicited by a genus-specific 57-kD protein. J. Exp. Med. 169: 663 675. PubMed
97. Morrison, S. G.,, and R. P. Morrison. 2001. Resolution of secondary Chlamydia trachomatis genital tract infection in immune mice with depletion of both CD4 + and CD8 + T cells. Infect. Immun. 69: 2643 2649. PubMed CrossRef
98. Morrison, S. G.,, and R. P. Morrison. 2005. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J. Immunol. 175: 7536 7542. PubMed
99. Morrison, S. G.,, H. Su,, H. D. Caldwell,, and R. P. Morrison. 2000. Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4( +) T cells but not CD8( +) T cells. Infect. Immun. 68: 6979 6987. PubMed CrossRef
100. Murdin, A. D.,, P. Dunn,, R. Sodoyer,, J. Wang,, J. Caterini,, R. C. Brunham,, L. Aujame,, and R. Oomen. 2000. Use of a mouse lung challenge model to identify antigens protective against Chlamydia pneumoniae lung infection. J. Infect. Dis. 181( Suppl. 3): S544 S551. PubMed CrossRef
101. Murphey, C.,, A. K. Murthy,, P. A. Meier,, G. M. Neal,, G. Zhong,, and B. P. Arulanandam. 2006. The protective efficacy of chlamydial protease-like activity factor vaccination is dependent upon CD4 + T cells. Cell. Immunol. 242: 110 117. PubMed CrossRef
102. Murthy, A. K.,, B. K. Chaganty,, W. Li,, M. N. Guentzel,, J. P. Chambers,, J. Seshu,, G. Zhong,, and B. P. Arulanandam. 2009a. A limited role for antibody in protective immunity induced by rCPAF and CpG vaccination against primary genital Chlamydia muridarum challenge. FEMS Immunol. Med. Microbiol. 55: 271 279. PubMed CrossRef
103. Murthy, A. K.,, J. P. Chambers,, P. A. Meier,, G. Zhong,, and B. P. Arulanandam. 2007. Intranasal vaccination with a secreted chlamydial protein enhances resolution of genital Chlamydia muridarum infection, protects against oviduct pathology, and is highly dependent upon endogenous gamma interferon production. Infect. Immun. 75: 666 676. PubMed CrossRef
104. Murthy, A. K.,, Y. Cong,, C. Murphey,, M. N. Guentzel,, T. G. Forsthuber,, G. Zhong,, and B. P. Arulanandam. 2006. Chlamydial protease-like activity factor induces protective immunity against genital chlamydial infection in transgenic mice that express the human HLA-DR4 allele. Infect. Immun. 74: 6722 6729. PubMed CrossRef
105. Murthy, A. K.,, M. N. Guentzel,, G. Zhong,, and B. P. Arulanandam. 2009b. Chlamydial protease-like activity factor—insights into immunity and vaccine development. J. Reprod. Immunol. 83: 179 184. PubMed CrossRef
106. Murthy, A. K.,, W. Li,, M. N. Guentzel,, G. Zhong,, and B. P. Arulanandam. 2011. Vaccination with the defined chlamydial secreted protein CPAF induces robust protection against female infertility following repeated genital chlamydial challenge. Vaccine 29: 2519 2522. PubMed CrossRef
107. Nelson, D. E.,, D. P. Virok,, H. Wood,, C. Roshick,, R. M. Johnson,, W. M. Whitmire,, D. D. Crane,, O. Steele-Mortimer,, L. Kari,, G. McClarty,, and H. D. Caldwell. 2005. Chlamydial IFN-gamma immune evasion is linked to host infection tropism. Proc. Natl. Acad. Sci. USA 102: 10658 10663. PubMed CrossRef
108. Nichols, R. L.,, S. D. Bell, Jr.,, E. S. Murray,, N. A. Haddad,, and A. A. Bobb. 1966. Studies on trachoma. V. Clinical observations in a field trial of bivalent trachoma vaccine at three dosage levels in Saudi Arabia. Am. J. Trop. Med. Hyg. 15: 639 647. PubMed
109. O’Connell, C. M.,, Y. M. Abdelrahman,, E. Green,, H. K. Darville,, K. Saira,, B. Smith,, T. Darville,, A. M. Scurlock,, C. R. Meyer,, and R. J. Belland. 2011. Toll-like receptor 2 activation by Chlamydia trachomatis is plasmid dependent, and plasmid-responsive chromosomal loci are coordinately regulated in response to glucose limitation by C. trachomatis but not by C. muridarum. Infect. Immun. 79: 1044 1056. PubMed CrossRef
110. O’Connell, C. M.,, R. R. Ingalls,, C. W. Andrews, Jr.,, A. M. Scurlock,, and T. Darville. 2007. Plasmid-deficient Chlamydia muridarum fail to induce immune pathology and protect against oviduct disease. J. Immunol. 179: 4027 4034. PubMed
111. Olsen, A. W.,, M. Theisen,, D. Christensen,, F. Follmann,, and P. Andersen. 2010. Protection against Chlamydia promoted by a subunit vaccine (CTH1) compared with a primary intranasal infection in a mouse genital challenge model. PLoS One 5: e10768. PubMed CrossRef
112. Pal, S.,, J. Bravo,, E. M. Peterson,, and L. M. de la Maza. 2008. Protection of wild-type and severe combined immunodeficiency mice against an intranasal challenge by passive immunization with monoclonal antibodies to the Chlamydia trachomatis mouse pneumonitis major outer membrane protein. Infect. Immun. 76: 5581 5587. PubMed CrossRef
113. Pal, S.,, E. M. Peterson,, and L. M. de la Maza. 2005. Vaccination with the Chlamydia trachomatis major outer membrane protein can elicit an immune response as protective as that resulting from inoculation with live bacteria. Infect. Immun. 73: 8153 8160. PubMed CrossRef
114. Pal, S.,, I. Theodor,, E. M. Peterson,, and L. M. de la Maza. 1997a. Immunization with an acellular vaccine consisting of the outer membrane complex of Chlamydia trachomatis induces protection against a genital challenge. Infect. Immun. 65: 3361 3369. PubMed
115. Pal, S.,, I. Theodor,, E. M. Peterson,, and L. M. de la Maza. 1997b. Monoclonal immunoglobulin A antibody to the major outer membrane protein of the Chlamydia trachomatis mouse pneumonitis biovar protects mice against a chlamydial genital challenge. Vaccine 15: 575 582. PubMed
116. Patton, D. L.,, Y. T. Sweeney,, and C. C. Kuo. 1994. Demonstration of delayed hypersensitivity in Chlamydia trachomatis salpingitis in monkeys: a pathogenic mechanism of tubal damage. J. Infect. Dis. 169: 680 683. PubMed CrossRef
117. Peeling, R. W.,, J. Kimani,, F. Plummer,, I. Maclean,, M. Cheang,, J. Bwayo,, and R. C. Brunham. 1997. Antibody to chlamydial hsp60 predicts an increased risk for chlamydial pelvic inflammatory disease. J. Infect. Dis. 175: 1153 1158. PubMed CrossRef
118. Penttila, T.,, A. Tammiruusu,, P. Liljestrom,, M. Sarvas,, P. H. Makela,, J. M. Vuola,, and M. Puolakkainen. 2004. DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine 22: 3386 3394. PubMed CrossRef
119. Penttila, T.,, J. M. Vuola,, V. Puurula,, M. Anttila,, M. Sarvas,, N. Rautonen,, P. H. Makela,, and M. Puolakkainen. 2000. Immunity to Chlamydia pneumoniae induced by vaccination with DNA vectors expressing a cytoplasmic protein (Hsp60) or outer membrane proteins (MOMP and Omp2). Vaccine 19: 1256 1265. PubMed
120. Perry, L. L.,, K. Feilzer,, and H. D. Caldwell. 1997. Immunity to Chlamydia trachomatis is mediated by T helper 1 cells through IFN-gamma-dependent and -independent pathways. J. Immunol. 158: 3344 3352. PubMed
121. Perry, L. L.,, K. Feilzer,, S. Hughes,, and H. D. Caldwell. 1999a. Clearance of Chlamydia trachomatis from the murine genital mucosa does not require perforin-mediated cytolysis or Fas-mediated apoptosis. Infect. Immun. 67: 1379 1385. PubMed
122. Perry, L. L.,, H. Su,, K. Feilzer,, R. Messer,, S. Hughes,, W. Whitmire,, and H. D. Caldwell. 1999b. Differential sensitivity of distinct Chlamydia trachomatis isolates to IFN-gamma-mediated inhibition. J. Immunol. 162: 3541 3548. PubMed
123. Pinchuk, I.,, B. C. Starcher,, B. Livingston,, A. Tvninnereim,, S. Wu,, E. Appella,, J. Sidney,, A. Sette,, and B. Wizel. 2005. A CD8 + T cell heptaepitope minigene vaccine induces protective immunity against Chlamydia pneumoniae. J. Immunol. 174: 5729 5739. PubMed
124. Pirbhai, M.,, F. Dong,, Y. Zhong,, K. Z. Pan,, and G. Zhong. 2006. The secreted protease factor CPAF is responsible for degrading pro-apoptotic BH3-only proteins in Chlamydia trachomatis-infected cells. J. Biol. Chem. 281: 31495 31501. PubMed CrossRef
125. Punnonen, R.,, P. Terho,, V. Nikkanen,, and O. Meurman. 1979. Chlamydial serology in infertile women by immunofluorescence. Fertil. Steril. 31: 656 659. PubMed
126. Ramsey, K. H.,, and R. G. Rank. 1990. The role of T cell subpopulations in resolution of chlamydial genital infection in mice, p. 241 244. In Proceedings of the 7th International Symposium on Human Chlamydial Infection. Cambridge University Press, New York, NY.
127. Rank, R. G. 1994. Animal models for urogenital infections. Methods Enzymol. 235: 83 93. PubMed
128. Rank, R. G.,, and A. L. Barron. 1983. Humoral immune response in acquired immunity to chlamydial genital infection of female guinea pigs. Infect. Immun. 39: 463 465. PubMed
129. Rank, R. G.,, and B. E. Batteiger. 1989. Protective role of serum antibody in immunity to chlamydial genital infection. Infect. Immun. 57: 299 301. PubMed
130. Rank, R. G.,, A. K. Bowlin,, S. Cane,, H. Shou,, Z. Liu,, U. M. Nagarajan,, and P. M. Bavoil. 2009. Effect of Chlamydiaphage phiCPG1 on the course of conjunctival infection with “ Chlamydia caviae” in guinea pigs. Infect. Immun. 77: 1216 1221. PubMed CrossRef
131. Rank, R. G.,, K. H. Ramsey,, E. A. Pack,, and D. M. Williams. 1992. Effect of gamma interferon on resolution of murine chlamydial genital infection. Infect. Immun. 60: 4427 4429. PubMed
132. Rank, R. G.,, H. J. White,, and A. L. Barron. 1979. Humoral immunity in the resolution of genital infection in female guinea pigs infected with the agent of guinea pig inclusion conjunctivitis. Infect. Immun. 26: 573 579. PubMed
133. Rasmussen, S. J.,, L. Eckmann,, A. J. Quayle,, L. Shen,, Y. X. Zhang,, D. J. Anderson,, J. Fierer,, R. S. Stephens,, and M. F. Kagnoff. 1997. Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in chlamydial pathogenesis. J. Clin. Investig. 99: 77 87. PubMed CrossRef
134. Roan, N. R.,, and M. N. Starnbach. 2006. Antigen-specific CD8+ T cells respond to Chlamydia trachomatis in the genital mucosa. J. Immunol. 177: 7974 7979. PubMed
135. Rockey, D. D.,, D. Grosenbach,, D. E. Hruby,, M. G. Peacock,, R. A. Heinzen,, and T. Hackstadt. 1997. Chlamydia psittaci IncA is phosphorylated by the host cell and is exposed on the cytoplasmic face of the developing inclusion. Mol. Microbiol. 24: 217 228. PubMed CrossRef
136. Rockey, D. D.,, R. A. Heinzen,, and T. Hackstadt. 1995. Cloning and characterization of a Chlamydia psittaci gene coding for a protein localized in the inclusion membrane of infected cells. Mol. Microbiol. 15: 617 626. PubMed CrossRef
137. Rockey, D. D.,, J. Wang,, L. Lei,, and G. Zhong. 2009. Chlamydia vaccine candidates and tools for chlamydial antigen discovery. Expert Rev. Vaccines 8: 1365 1377. PubMed CrossRef
138. Rodriguez, A.,, M. Rottenberg,, A. Tjarnlund,, and C. Fernandez. 2006. Immunoglobulin A and CD8 T-cell mucosal immune defenses protect against intranasal infection with Chlamydia pneumoniae. Scand. J. Immunol. 63: 177 183. PubMed CrossRef
139. Sabet, S. F.,, J. Simmons,, and H. D. Caldwell. 1984. Enhancement of Chlamydia trachomatis infectious progeny by cultivation of HeLa 229 cells treated with DEAE-dextran and cycloheximide. J. Clin. Microbiol. 20: 217 222. PubMed
140. Sanchez-Campillo, M.,, L. Bini,, M. Comanducci,, R. Raggiaschi,, B. Marzocchi,, V. Pallini,, and G. Ratti. 1999. Identification of immunoreactive proteins of Chlamydia trachomatis by Western blot analysis of a two-dimensional electrophoresis map with patient sera. Electrophoresis 20: 2269 2279. PubMed CrossRef
141. Schachter, J.,, and C. R. Dawson. 1978. Human Chlamydial Infections. PSG Publishing Co. Inc., Littleton, MA.
142. Scurlock, A. M.,, L. C. Frazer,, C. W. Andrews, Jr.,, C. M. O’Connell,, I. P. Foote,, S. L. Bailey,, K. Chandra-Kuntal,, J. K. Kolls,, and T. Darville. 2011. Interleukin-17 contributes to generation of Th1 immunity and neutrophil recruitment during Chlamydia muridarum genital tract infection but is not required for macrophage influx or normal resolution of infection. Infect. Immun. 79: 1349 1362. PubMed CrossRef
143. Sharma, J.,, A. M. Bosnic,, J. M. Piper,, and G. Zhong. 2004. Human antibody responses to a Chlamydia-secreted protease factor. Infect. Immun. 72: 7164 7171. PubMed CrossRef
144. Sharma, J.,, F. Dong,, M. Pirbhai,, and G. Zhong. 2005. Inhibition of proteolytic activity of a chlamydial proteasome/protease-like activity factor by antibodies from humans infected with Chlamydia trachomatis. Infect. Immun. 73: 4414 4419. PubMed CrossRef
145. Sharma, J.,, Y. Zhong,, F. Dong,, J. M. Piper,, G. Wang,, and G. Zhong. 2006. Profiling of human antibody responses to Chlamydia trachomatis urogenital tract infection using microplates arrayed with 156 chlamydial fusion proteins. Infect. Immun. 74: 1490 1499. PubMed CrossRef
146. Shaw, A. C.,, K. Gevaert,, H. Demol,, B. Hoorelbeke,, J. Vandekerckhove,, M. R. Larsen,, P. Roepstorff,, A. Holm,, G. Christiansen,, and S. Birkelund. 2002. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2: 164 186. PubMed
147. Starnbach, M. N.,, W. P. Loomis,, P. Ovendale,, D. Regan,, B. Hess,, M. R. Alderson,, and S. P. Fling. 2003. An inclusion membrane protein from Chlamydia trachomatis enters the MHC class I pathway and stimulates a CD8 + T cell response. J. Immunol. 171: 4742 4749. PubMed
148. Stemke-Hale, K.,, B. Kaltenboeck,, F. J. DeGraves,, K. F. Sykes,, J. Huang,, C. H. Bu,, and S. A. Johnston. 2005. Screening the whole genome of a pathogen in vivo for individual protective antigens. Vaccine 23: 3016 3025. PubMed CrossRef
149. Stephens, R. S.,, K. Koshiyama,, E. Lewis,, and A. Kubo. 2001. Heparin-binding outer membrane protein of chlamydiae. Mol. Microbiol. 40: 691 699. PubMed CrossRef
150. Stuart, E. S.,, P. B. Wyrick,, J. Choong,, S. B. Stoler,, and A. B. MacDonald. 1991. Examination of chlamydial glycolipid with monoclonal antibodies: cellular distribution and epitope binding. Immunology 74: 740 747. PubMed
151. Su, H.,, and H. D. Caldwell. 1995. CD4+ T cells play a significant role in adoptive immunity to Chlamydia trachomatis infection of the mouse genital tract. Infect. Immun. 63: 3302 3308. PubMed
152. Swanson, K. A.,, L. D. Taylor,, S. D. Frank,, G. L. Sturdevant,, E. R. Fischer,, J. H. Carlson,, W. M. Whitmire,, and H. D. Caldwell. 2009. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect. Immun. 77: 508 516. PubMed CrossRef
153. Tammiruusu, A.,, T. Penttila,, R. Lahesmaa,, M. Sarvas,, M. Puolakkainen,, and J. M. Vuola. 2007. Intranasal administration of chlamydial outer protein N (CopN) induces protection against pulmonary Chlamydia pneumoniae infection in a mouse model. Vaccine 25: 283 290. PubMed CrossRef
154. Thomas, N. S.,, M. Lusher,, C. C. Storey,, and I. N. Clarke. 1997. Plasmid diversity in Chlamydia. Microbiology 143( Pt. 6): 1847 1854. PubMed CrossRef
155. Ting, L. M.,, R. C. Hsia,, C. G. Haidaris,, and P. M. Bavoil. 1995. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect. Immun. 63: 3600 3608. PubMed
156. Toye, B.,, C. Laferriere,, P. Claman,, P. Jessamine,, and R. Peeling. 1993. Association between antibody to the chlamydial heat-shock protein and tubal infertility. J. Infect. Dis. 168: 1236 1240. PubMed CrossRef
157. Tseng, C. T.,, and R. G. Rank. 1998. Role of NK cells in early host response to chlamydial genital infection. Infect. Immun. 66: 5867 5875. PubMed
158. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1996. Analysis of lymphocyte phenotype and cytokine activity in the inflammatory infiltrates of the upper genital tract of female macaques infected with Chlamydia trachomatis. J. Infect. Dis. 174: 647 650. PubMed CrossRef
159. Van Voorhis, W. C.,, L. K. Barrett,, Y. T. Sweeney,, C. C. Kuo,, and D. L. Patton. 1997. Repeated Chlamydia trachomatis infection of Macaca nemestrina fallopian tubes produces a Th1-like cytokine response associated with fibrosis and scarring. Infect. Immun. 65: 2175 2182. PubMed
160. Villeneuve, A.,, L. Brossay,, G. Paradis,, and J. Hebert. 1994. Determination of neutralizing epitopes in variable domains I and IV of the major outer-membrane protein from Chlamydia trachomatis serovar K. Microbiology 140( Pt. 9): 2481 2487. PubMed CrossRef
161. Wang, J.,, Y. Zhang,, C. Lu,, L. Lei,, P. Yu,, and G. Zhong. 2010. A genome-wide profiling of the humoral immune response to Chlamydia trachomatis infection reveals vaccine candidate antigens expressed in humans. J. Immunol. 185: 1670 1680. PubMed CrossRef
162. Wang, S.,, Y. Fan,, R. C. Brunham,, and X. Yang. 1999. IFN-gamma knockout mice show Th2-associated delayed-type hypersensitivity and the inflammatory cells fail to localize and control chlamydial infection. Eur. J. Immunol. 29: 3782 3792. PubMed
163. Wang, S. P.,, and J. T. Grayston. 1967. Pannus with experimental trachoma and inclusion conjunctivitis agent infection of Taiwan monkeys. Am. J. Ophthalmol. 63( Suppl.): 1133 1145. PubMed
164. Westrom, L.,, R. Joesoef,, G. Reynolds,, A. Hagdu,, and S. E. Thompson. 1992. Pelvic inflammatory disease and fertility. A cohort study of 1,844 women with laparoscopically verified disease and 657 control women with normal laparoscopic results. Sex. Transm. Dis. 19: 185 192. PubMed
165. Whittum-Hudson, J. A.,, L. L. An,, W. M. Saltzman,, R. A. Prendergast,, and A. B. MacDonald. 1996. Oral immunization with an anti-idiotypic antibody to the exoglycolipid antigen protects against experimental Chlamydia trachomatis infection. Nat. Med. 2: 1116 1121. PubMed
166. Whittum-Hudson, J. A.,, D. Rudy,, H. Gerard,, G. Vora,, E. Davis,, P. K. Haller,, S. M. Prattis,, A. P. Hudson,, W. M. Saltzman,, and E. S. Stuart. 2001. The anti-idiotypic antibody to chlamydial glycolipid exoantigen (GLXA) protects mice against genital infection with a human biovar of Chlamydia trachomatis. Vaccine 19: 4061 4071. PubMed
167. Williams, D. M.,, B. G. Grubbs,, K. Kelly,, E. Pack,, and R. G. Rank. 1996. Role of gamma-delta T cells in murine Chlamydia trachomatis infection. Infect. Immun. 64: 3916 3919. PubMed
168. Wizel, B.,, B. C. Starcher,, B. Samten,, Z. Chroneos,, P. F. Barnes,, J. Dzuris,, Y. Higashimoto,, E. Appella,, and A. Sette. 2002. Multiple Chlamydia pneumoniae antigens prime CD8 + Tc1 responses that inhibit intracellular growth of this vacuolar pathogen. J. Immunol. 169: 2524 2535. PubMed
169. Wolf, K.,, E. Fischer,, D. Mead,, G. Zhong,, R. Peeling,, B. Whitmire,, and H. D. Caldwell. 2001. Chlamydia pneumoniae major outer membrane protein is a surface-exposed antigen that elicits antibodies primarily directed against conformation-dependent determinants. Infect. Immun. 69: 3082 3091. PubMed CrossRef
170. Woolridge, R. L.,, J. T. Grayston,, I. H. Chang,, C. Y. Yang,, and K. H. Cheng. 1967. Long-term follow-up of the initial (1959-1960) trachoma vaccine field trial on Taiwan. Am. J. Ophthalmol. 63( Suppl.): 1650 1655. PubMed
171. Yang, X.,, J. Gartner,, L. Zhu,, S. Wang,, and R. C. Brunham. 1999. IL-10 gene knockout mice show enhanced Th1-like protective immunity and absent granuloma formation following Chlamydia trachomatis lung infection. J. Immunol. 162: 1010 1017. PubMed
172. Yu, H.,, K. P. Karunakaran,, I. Kelly,, C. Shen,, X. Jiang,, L. J. Foster,, and R. C. Brunham. 2011. Immunization with live and dead Chlamydia muridarum induces different levels of protective immunity in a murine genital tract model: correlation with MHC class II peptide presentation and multifunctional Th1 cells. J. Immunol. 186: 3615 3621. PubMed CrossRef
173. Yu, H. H.,, E. G. Di Russo,, M. A. Rounds,, and M. Tan. 2006. Mutational analysis of the promoter recognized by Chlamydia and Escherichia coli sigma(28) RNA polymerase. J. Bacteriol. 188: 5524 5531. PubMed CrossRef
174. Zhong, G.,, and R. C. Brunham. 1992. Antibody responses to the chlamydial heat shock proteins Hsp60 and Hsp70 are H-2 linked. Infect. Immun. 60: 3143 3149. PubMed
175. Zhong, G.,, P. Fan,, H. Ji,, F. Dong,, and Y. Huang. 2001. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193: 935 942. PubMed CrossRef
176. Zhong, G.,, T. Fan,, and L. Liu. 1999. Chlamydia inhibits interferon gamma-inducible major histocompatibility complex class II expression by degradation of upstream stimulatory factor 1. J. Exp. Med. 189: 1931 1938. PubMed CrossRef
177. Zhong, G.,, L. Liu,, T. Fan,, P. Fan,, and H. Ji. 2000. Degradation of transcription factor RFX5 during the inhibition of both constitutive and interferon gamma-inducible major histocompatibility complex class I expression in chlamydia-infected cells. J. Exp. Med. 191: 1525 1534. PubMed CrossRef
178. Zomorodipour, A.,, and S. G. Andersson. 1999. Obligate intracellular parasites: Rickettsia prowazekii and Chlamydia trachomatis. FEBS Lett. 452: 11 15. PubMed

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error