Chapter 3 : Lessons from Environmental Chlamydiae

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Lessons from Environmental Chlamydiae, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap03-2.gif


This chapter summarizes work on environmental chlamydiae performed primarily between 2008 and early 2011. The first studies on environmental chlamydiae reported the discoveries of , which was isolated from an aborted bovine fetus. Traditionally, chlamydial elementary bodies (EBs) are regarded as spore-like forms which are metabolically inert. The extracellular activity of chlamydial EBs was dependent on the incubation medium used, which may explain why EBs have not been previously shown to be metabolically active. A key feature of the natural host of many environmental chlamydiae, spp., is its ability to form cysts under adverse environmental conditions. For obligate intracellular bacteria like the chlamydiae, the term “host cell interactions” can be subdivided into the following temporally and spatially separated stages: microbe-host recognition, internalization, replicative phase with host cell exploitation, and finally persistence within or release from the host cell to start another infectious cycle. Environmental chlamydiae have been detected in a wide variety of vertebrate and invertebrate hosts, and some members of this group of bacteria have been proposed to cause disease in animals. Genomic comparison of environmental chlamydiae has revealed that and may be the most suitable chlamydial candidates for host-free cultivation, since these organisms have the most versatile biosynthetic capabilities among the chlamydiae.

Citation: Siegl A, Horn M. 2012. Lessons from Environmental Chlamydiae, p 51-73. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Phylogenetic relationships in the class . The neighbor-joining tree shows known members of families within the . Bar, 10% estimated evolutionary distance.doi:10.1128/9781555817329.ch3.f1

Citation: Siegl A, Horn M. 2012. Lessons from Environmental Chlamydiae, p 51-73. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Morphological diversity of chlamydial developmental stages. Drawings show an RB (A), an IB (B), and an EB (C) as they are typically observed for members of both the and environmental chlamydiae; unusual EBs of the (D), the (E), and the (F); putative host-dependent morphology of a EB in species and worms (G); a aberrant body (H); and a crescent body (I). See the text for further explanations. Drawings represent simplified illustrations based on published electron micrographs and are not to scale. doi:10.1128/9781555817329.ch3.f2

Citation: Siegl A, Horn M. 2012. Lessons from Environmental Chlamydiae, p 51-73. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Presence/absence of selected proteins of the in environmental chlamydiae. Proteins restricted to the (upper panel) or shared between the and different environmental chlamydiae (lower panels) are indicated. Findings are taken from the work of Collingro et al. (2011) and are based on the analysis of clusters of orthologous groups of proteins, which were determined using SIMAP (similarity matrix of proteins database) and bidirectional best BLAST hits with a cutoff value of 1E-10 ( ). Locus tags are given as for D/UW-3/CX. Abbreviations: Ch, ; Si, Z; Wa, 2032/99; Pa, UV-7; Pr, UWE25; CE, cell envelope-associated genes; VA, virulence-associated genes; T3S, T3S system components and effectors. doi:10.1128/9781555817329.ch3.f3

Citation: Siegl A, Horn M. 2012. Lessons from Environmental Chlamydiae, p 51-73. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abdelrahman, Y. M.,, and R. J. Belland. 2005. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29: 949 959. PubMed CrossRef
2. Amann, R.,, N. Springer,, W. Schonhuber,, W. Ludwig,, E. N. Schmid,, K. D. Muller,, and R. Michel. 1997. Obligate intracellular bacterial parasites of acanthamoebae related to Chlamydia spp. Appl. Environ. Microbiol. 63: 115 121. PubMed
3. Barker, J.,, and M. R. W. Brown. 1994. Trojan horses of the microbial world: protozoa and the survival of bacterial pathogens in the environment. Microbiology 140: 1253 1259. PubMed
4. Baud, D.,, G. Goy,, M. C. Osterheld,, N. Borel,, Y. Vial,, A. Pospischil,, and G. Greub. 2011. Waddlia chondrophila: from bovine abortion to human miscarriage. Clin. Infect. Dis. 52: 1469 1471. PubMed CrossRef
5. Baud, D.,, V. Thomas,, A. Arafa,, L. Regan,, and G. Greub. 2007. Waddlia chondrophila, a potential agent of human fetal death. Emerg. Infect. Dis. 13: 1239 1243. PubMed CrossRef
6. Beatty, W. L.,, R. P. Morrison,, and G. I. Byrne. 1994. Persistent chlamydiae: from cell culture to a paradigm for chlamydial pathogenesis. Microbiol. Rev. 58: 686 699. PubMed
7. Becker, B.,, K. Hoef-Emden,, and M. Melkonian. 2008. Chlamydial genes shed light on the evolution of photoautotrophic eukaryotes. BMC Evol. Biol. 8: 203. PubMed CrossRef
8. Bertelli, C.,, F. Collyn,, A. Croxatto,, C. Ruckert,, A. Polkinghorne,, C. Kebbi-Beghdadi,, A. Goesmann,, L. Vaughan,, and G. Greub. 2010. The Waddlia genome: a window into chlamydial biology. PLoS One 5: e10890. PubMed CrossRef
9. Binga, E. K.,, R. S. Lasken,, and J. D. Neufeld. 2008. Something from (almost) nothing: the impact of multiple displacement amplification on microbial ecology. ISME J. 2: 233 241. PubMed CrossRef
10. Birtles, R. J.,, T. J. Rowbotham,, C. Storey,, T. J. Marrie, and D. Raoult. 1997. Chlamydia-like obligate parasite of free-living amoebae. Lancet 349: 925 926. PubMed
11. Bodetti, T. J.,, K. Viggers,, K. Warren,, R. Swan,, S. Conaghty,, C. Sims,, and P. Timms. 2003. Wide range of Chlamydiales types detected in native Australian mammals. Vet. Microbiol. 96: 177 187. PubMed
12. Bomar, L.,, M. Maltz,, S. Colston,, and J. Graf. 2011. Directed culturing of microorganisms using metatranscriptomics. mBio 2: e00012 11. PubMed CrossRef
13. Borel, N.,, S. Ruhl,, N. Casson,, C. Kaiser,, A. Pospischil,, and G. Greub. 2007. Parachlamydia spp. and related Chlamydia-like organisms and bovine abortion. Emerg. Infect. Dis. 13: 1904 1907. PubMed CrossRef
14. Bradley, T. M.,, C. E. Newcomer,, and K. O. Maxwell. 1988. Epitheliocystis associated with massive mortalities of cultured lake trout Salvelinus namaycush. Dis. Aquat. Organ. 4: 9 17.
15. Carlson, J. H.,, W. M. Whitmire,, D. D. Crane,, L. Wicke,, K. Virtaneva,, D. E. Sturdevant,, J. J. Kupko III,, S. F. Porcella,, N. Martinez-Orengo,, R. A. Heinzen,, L. Kari,, and H. D. Caldwell. 2008. The Chlamydia trachomatis plasmid is a transcriptional regulator of chromosomal genes and a virulence factor. Infect. Immun. 76: 2273 2283. PubMed CrossRef
16. Casson, N.,, J. M. Entenza,, N. Borel,, A. Pospischil,, and G. Greub. 2008a. Murine model of pneumonia caused by Parachlamydia acanthamoebae. Microb. Pathog. 45: 92 97. PubMed CrossRef
17. Casson, N.,, N. Medico,, J. Bille,, and G. Greub. 2006. Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. Microbes Infect. 8: 1294 1300. PubMed CrossRef
18. Casson, N.,, R. Michel,, K.-D. Müller,, J. D. Aubert,, and G. Greub. 2008b. Protochlamydia naegleriophila as etiologic agent of pneumonia. Emerg. Infect. Dis. 14: 168 172. PubMed CrossRef
19. Chi, E. Y.,, C. C. Kuo,, and J. T. Grayston. 1987. Unique ultrastructure in the elementary body of Chlamydia sp. strain TWAR. J. Bacteriol. 169: 3757 3763. PubMed
20. Christerson, L.,, M. Blomqvist,, K. Grannas,, M. Thollesson,, K. Laroucau,, J. Waldenstrom,, I. Eliasson,, B. Olsen,, and B. Herrmann. 2010. A novel Chlamydiaceae-like bacterium found in faecal specimens from sea birds from the Bering Sea. Environ. Microbiol. Rep. 2: 605 610.
21. Chu, D.,, C. S. Gao,, P. De Barro,, Y. J. Zhang,, F. H. Wan,, and I. A. Khan. 2011. Further insights into the strange role of bacterial endosymbionts in whitefly, Bemisia tabaci: comparison of secondary symbionts from biotypes B and Q in China. Bull. Entomol. Res. 18: 1 10. PubMed CrossRef
22. Chua, P. K.,, J. E. Corkill,, P. S. Hooi,, S. C. Cheng,, C. Winstanley,, and C. A. Hart. 2005. Isolation of Waddlia malaysiensis, a novel intracellular bacterium, from fruit bat ( Eonycteris spelaea). Emerg. Infect. Dis. 11: 271 277. PubMed CrossRef
23. Clark, M. A.,, L. Baumann,, M. A. Munson,, P. Baumann,, B. C. Campbell,, J. E. Duffus,, L. S. Osborne, and N. A. Moran. 1992. The eubacterial endosymbionts of whiteflies (Homoptera, Aleyrodoidea) constitute a lineage distinct from the endosymbionts of aphids and mealybugs. Curr. Microbiol. 25: 119 123.
24. Collingro, A.,, S. Poppert,, E. Heinz,, S. Schmitz-Esser,, A. Essig,, M. Schweikert,, M. Wagner,, and M. Horn. 2005a. Recovery of an environmental chlamydia strain from activated sludge by co-cultivation with Acanthamoeba sp. Microbiology 151: 301 309. PubMed
25. Collingro, A.,, P. Tischler,, T. Weinmaier,, T. Penz,, E. Heinz,, R. C. Brunham,, T. D. Read,, P. M. Bavoil,, K. Sachse,, S. Kahane,, M. G. Friedman,, T. Rattei,, G. S. A. Myers,, and M. Horn. 2011. Unity in variety—the pangenome of the Chlamydiae. Mol. Biol. Evol. Epub ahead of print. PubMed CrossRef
26. Collingro, A.,, E. R. Toenshoff,, M. W. Taylor,, T. R. Fritsche,, M. Wagner,, and M. Horn. 2005b. Candidatus Protochlamydia amoebophila,’ an endosymbiont of Acanthamoeba spp. Int. J. Syst. Evol. Microbiol. 55: 1863 1866. PubMed CrossRef
27. Corsaro, D.,, V. Feroldi,, G. Saucedo,, F. Ribas,, J. F. Loret,, and G. Greub. 2009. Novel Chlamydiales strains isolated from a water treatment plant. Environ. Microbiol. 11: 188 200. PubMed CrossRef
28. Corsaro, D.,, R. Michel,, J. Walochnik,, K. D. Muller,, and G. Greub. 2010. Saccamoeba lacustris, sp. nov. (Amoebozoa: Lobosea: Hartmannellidae), a new lobose amoeba, parasitized by the novel chlamydia ‘ Candidatus Metachlamydia lacustris’ (Chlamydiae: Parachlamydiaceae). Eur. J. Protistol. 46: 86 95. PubMed CrossRef
29. Corsaro, D.,, V. Thomas,, G. Goy,, D. Venditti,, R. Radek,, and G. Greub. 2007. Candidatus Rhabdochlamydia crassificans,’ an intracellular bacterial pathogen of the cockroach Blatta orientalis (Insecta: Blattodea). Syst. Appl. Microbiol. 30: 221 228. PubMed CrossRef
30. Corsaro, D.,, M. Valassina,, and D. Venditti. 2003. Increasing diversity within Chlamydiae. Crit. Rev. Microbiol. 29: 37 78. PubMed CrossRef
31. Corsaro, D.,, and D. Venditti. 2009. Detection of Chlamydiae from freshwater environments by PCR, amoeba coculture and mixed coculture. Res. Microbiol. 160: 547 552. PubMed CrossRef
32. Costa, H. S.,, D. M. Westcot,, D. E. Ullman,, R. Rosell,, J. K. Brown,, and M. W. Johnson. 1995. Morphological variation in Bemisia endosymbionts. Protoplasma 189: 194 202.
33. Croxatto, A.,, and G. Greub. 2010. Early intracellular trafficking of Waddlia chondrophila in human macrophages. Microbiology 156: 340 355. PubMed CrossRef
34. De Bary, A. 1879. Die Erscheinung der Symbiose. Verlag von Karl J. Trubner, Strassburg, Austria.
35. Dilbeck, P. M.,, J. F. Evermann,, T. B. Crawford,, A. C. Ward,, C. W. Leathers,, C. J. Holland,, C. A. Mebus,, L. L. Logan,, F. R. Rurangirwa,, and T. C. McGuire. 1990. Isolation of a previously undescribed rickettsia from an aborted bovine fetus. J. Clin. Microbiol. 28: 814 816. PubMed
36. Dilbeck-Robertson, P.,, M. M. McAllister,, D. Bradway,, and J. F. Evermann. 2003. Results of a new serologic test suggest an association of Waddlia chondrophila with bovine abortion. J. Vet. Diagn. Investig. 15: 568 569. PubMed CrossRef
37. Draghi, A., II,, J. Bebak,, S. Daniels,, E. R. Tulman,, S. J. Geary,, A. B. West,, V. L. Popov,, and S. Frasca, Jr. 2010. Identification of ‘Candidatus Piscichlamydia salmonis’ in Arctic charr Salvelinus alpinus during a survey of charr production facilities in North America. Dis. Aquat. Organ. 89: 39 49. PubMed CrossRef
38. Draghi, A., 2nd,, V. L. Popov,, M. M. Kahl,, J. B. Stanton,, C. C. Brown,, G. J. Tsongalis,, A. B. West,, and S. Frasca, Jr. 2004. Characterization of “ Candidatus piscichlamydia salmonis” (order Chlamydiales), a chlamydia-like bacterium associated with epitheliocystis in farmed Atlantic salmon ( Salmo salar). J. Clin. Microbiol. 42: 5286 5297. PubMed CrossRef
39. Everett, K. D.,, M. Thao,, M. Horn,, G. E. Dyszynski,, and P. Baumann. 2005. Novel chlamydiae in whiteflies and scale insects: endosymbionts ‘Candidatus Fritschea bemisiae’ strain Falk and ‘Candidatus Fritschea eriococci’ strain Elm. Int. J. Syst. Evol. Microbiol. 55: 1581 1587. PubMed CrossRef
40. Fredricks, D. N.,, and D. A. Relman. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch's postulates. Clin. Microbiol. Rev. 9: 18 33. PubMed
41. Friedman, M. G.,, B. Dvoskin,, and S. Kahane. 2003. Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect. 5: 1013 1021. PubMed
42. Friedman, M. G.,, A. Galil,, S. Greenberg,, and S. Kahane. 1999. Seroprevalence of IgG antibodies to the chlamydia-like microorganism ‘Simkania Z’ by ELISA. Epidemiol. Infect. 122: 117 123. PubMed
43. Friedman, M. G.,, S. Kahane,, B. Dvoskin,, and J. W. Hartley. 2006. Detection of Simkania negevensis by culture, PCR, and serology in respiratory tract infection in Cornwall, UK. J. Clin. Pathol. 59: 331 333. PubMed CrossRef
44. Fritsche, T. R.,, R. K. Gautom,, S. Seyedirashti,, D. L. Bergeron,, and T. D. Lindquist. 1993. Occurrence of bacteria endosymbionts in Acanthamoeba spp. isolated from corneal and environmental specimens and contact lenses. J. Clin. Microbiol. 31: 1122 1126. PubMed
45. Fritsche, T. R.,, M. Horn,, M. Wagner,, R. P. Herwig,, K. H. Schleifer,, and R. K. Gautom. 2000. Phylogenetic diversity among geographically dispersed Chlamydiales endosymbionts recovered from clinical and environmental isolates of Acanthamoeba spp. Appl. Environ. Microbiol. 66: 2613 2619. PubMed CrossRef
46. Goy, G.,, A. Croxatto,, and G. Greub. 2008. Waddlia chondrophila enters and multiplies within human macrophages. Microbes Infect. 10: 556 562. PubMed CrossRef
47. Goy, G.,, A. Croxatto,, K. M. Posfay-Barbe,, A. Gervaix,, and G. Greub. 2009. Development of a real-time PCR for the specific detection of Waddlia chondrophila in clinical samples. Eur. J. Clin. Microbiol. Infect. Dis. 28: 1483 1486. PubMed CrossRef
48. Greenberg, D.,, A. Banerji,, M. G. Friedman,, C. H. Chiu, and S. Kahane. 2003. High rate of Simkania negevensis among Canadian Inuit infants hospitalized with lower respiratory tract infections. Scand. J. Infect. Dis. 35: 506 508. PubMed
49. Greub, G. 2009. Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin. Microbiol. Infect. 15: 18 28. PubMed CrossRef
50. Greub, G.,, F. Collyn,, L. Guy,, and C. A. Roten. 2004. A genomic island present along the bacterial chromosome of the Parachlamydiaceae UWE25, an obligate amoebal endosymbiont, encodes a potentially functional F-like conjugative DNA transfer system. BMC Microbiol. 4: 48. PubMed CrossRef
51. Greub, G.,, B. Desnues,, D. Raoult,, and J. L. Mege. 2005a. Lack of microbicidal response in human macrophages infected with Parachlamydia acanthamoebae. Microbes Infect. 7: 714 719. PubMed CrossRef
52. Greub, G.,, C. Kebbi-Beghdadi,, C. Bertelli,, F. Collyn,, B. M. Riederer,, C. Yersin,, A. Croxatto,, and D. Raoult. 2009. High throughput sequencing and proteomics to identify immunogenic proteins of a new pathogen: the dirty genome approach. PLoS One 4: e8423. PubMed CrossRef
53. Greub, G.,, J.-L. Mege,, and D. Raoult. 2003. Parachlamydia acanthamoebae enters and multiplies within human macrophages and induces their apoptosis. Infect. Immun. 71: 5979 5985. PubMed CrossRef
54. Greub, G.,, J. L. Mege,, J. P. Gorvel,, D. Raoult,, and S. Meresse. 2005b. Intracellular trafficking of Parachlamydia acanthamoebae. Cell. Microbiol. 7: 581 589. PubMed CrossRef
55. Greub, G.,, and D. Raoult. 2002. Crescent bodies of Parachlamydia acanthamoebae and its life cycle within Acanthamoeba polyphaga: an electron micrograph study. Appl. Environ. Microbiol. 68: 3076 3084. PubMed CrossRef
56. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92: 4877 4881. PubMed
57. Haferkamp, I.,, S. Schmitz-Esser,, N. Linka,, C. Urbany,, A. Collingro,, M. Wagner,, M. Horn,, and H. E. Neuhaus. 2004. A candidate NAD + transporter in an intracellular bacterial symbiont related to Chlamydiae. Nature 432: 622 625. PubMed CrossRef
58. Haider, S.,, A. Collingro,, J. Walochnik,, M. Wagner,, and M. Horn. 2008. Chlamydia-like bacteria in respiratory samples of community-acquired pneumonia patients. FEMS Microbiol. Lett. 281: 198 202. PubMed CrossRef
59. Haider, S.,, M. Wagner,, M. C. Schmid,, B. S. Sixt,, J. G. Christian,, G. Hacker,, P. Pichler,, K. Mechtler,, A. Muller,, C. Baranyi,, E. R. Toenshoff,, J. Montanaro,, and M. Horn. 2010. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol. Microbiol. 77: 687 700. PubMed CrossRef
60. Halberstädter, L., 1912. Trachom und Chlamydozoenerkrankung der Schleimhäute, p. 172 195. In S. von Prowazek (ed.), Handbuch der Pathogenen Protozoen. Verlag von Johann Ambrosius Barth, Leipzig, Germany.
61. Halberstädter, L.,, and S. von Prowazek. 1907. Über Zelleinschlüsse parasitärer Natur beim Trachom. Arbeiten aus dem Kaiserlichen Gesundheitsamte, Berlin 26: 44 47.
62. Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68: 669 685. PubMed CrossRef
63. Hayashi, Y.,, S. Nakamura,, J. Matsuo,, T. Fukumoto,, M. Yoshida,, K. Takahashi,, Y. Mizutani,, T. Yao,, and H. Yamaguchi. 2010. Host range of obligate intracellular bacterium Parachlamydia acanthamoebae. Microbiol. Immunol. 54: 707 713. PubMed CrossRef
64. Heinz, E.,, D. D. Rockey,, J. Montanaro,, K. Aistleitner,, M. Wagner,, and M. Horn. 2010. Inclusion membrane proteins of Protochlamydia amoebophila UWE25 reveal a conserved mechanism for host cell interaction among the Chlamydiae. J. Bacteriol. 192: 5093 5102. PubMed CrossRef
65. Henning, K.,, G. Schares,, H. Granzow,, U. Polster,, M. Hartmann,, H. Hotzel,, K. Sachse,, M. Peters,, and M. Rauser. 2002. Neospora caninum and Waddlia chondrophila strain 2032/99 in a septic stillborn calf. Vet. Microbiol. 85: 285 292. PubMed
66. Henning, K.,, L. Zöller,, B. Hauröder,, H. Hotzel,, and R. Michel. 2007. Hartmannella vermiformis (Hartmannellidae) harboured a hidden chlamydia-like endosymbiont. Endocytobiosis Cell Res. 18: 1 10.
67. Horn, M. 2008. Chlamydiae as symbionts in eukaryotes. Annu. Rev. Microbiol. 62: 113 131. PubMed CrossRef
68. Horn, M.,, A. Collingro,, S. Schmitz-Esser,, C. L. Beier,, U. Purkhold,, B. Fartmann,, P. Brandt,, G. J. Nyakatura,, M. Droege,, D. Frishman,, T. Rattei,, H. W. Mewes,, and M. Wagner. 2004. Illuminating the evolutionary history of chlamydiae. Science 304: 728 730. PubMed CrossRef
69. Horn, M.,, A. Collingro,, S. Schmitz-Esser,, and M. Wagner,. 2006. Environmental chlamydia genomics, p. 25 44. In P. M. Bavoil, and P. B. Wyrick (ed.), Chlamydia : Genomics and Pathogenesis. Horizon Bioscience, Norfolk, United Kingdom.
70. Horn, M.,, M. Wagner,, K. D. Muller,, E. N. Schmid,, T. R. Fritsche,, K. H. Schleifer,, and R. Michel. 2000. Neochlamydia hartmannellae gen. nov., sp. nov. ( Parachlamydiaceae), an endoparasite of the amoeba Hartmannella vermiformis. Microbiology 146: 1231 1239. PubMed
71. Huang, J.,, and J. Gogarten. 2007. Did an ancient chlamydial endosymbiosis facilitate the establishment of primary plastids? Genome Biol. 8: R99. PubMed CrossRef
72. Husain, S.,, S. Kahane,, M. G. Friedman,, D. L. Paterson,, S. Studer,, K. R. McCurry,, D. G. Wolf,, A. Zeevi,, J. Pilewski,, and D. Greenberg. 2007. Simkania negevensis in bronchoalveolar lavage of lung transplant recipients: a possible association with acute rejection. Transplantation 83: 138 143. PubMed CrossRef
73. Israelsson, O. 2007. Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). J. Invertebr. Pathol. 96: 213 220. PubMed CrossRef
74. Kahane, S.,, B. Dvoskin,, and M. G. Friedman. 2008. The role of monocyte/macrophages as vehicles of dissemination of Simkania negevensis: an in vitro simulation model. FEMS Immunol. Med. Microbiol. 52: 219 227. PubMed CrossRef
75. Kahane, S.,, B. Dvoskin,, M. Mathias,, and M. G. Friedman. 2001. Infection of Acanthamoeba polyphaga with Simkania negevensis and S. negevensis survival within amoebal cysts. Appl. Environ. Microbiol. 67: 4789 4795. PubMed
76. Kahane, S.,, D. Fruchter,, B. Dvoskin,, and M. G. Friedman. 2007a. Versatility of Simkania negevensis infection in vitro and induction of host cell inflammatory cytokine response. J. Infect. 55: e13 e21. PubMed CrossRef
77. Kahane, S.,, R. Gonen,, C. Sayada,, J. Elion,, and M. G. Friedman. 1993. Description and partial characterization of a new chlamydia-like microorganism. FEMS Microbiol. Lett. 109: 329 334. PubMed
78. Kahane, S.,, D. Greenberg,, M. G. Friedman,, H. Haikin,, and R. Dagan. 1998. High prevalence of “ Simkania Z,” a novel Chlamydia-like bacterium, in infants with acute bronchiolitis. J. Infect. Dis. 177: 1425 1429. PubMed CrossRef
79. Kahane, S.,, D. Greenberg,, N. Newman,, B. Dvoskin,, and M. G. Friedman. 2007b. Domestic water supplies as a possible source of infection with Simkania. J. Infect. 54: 75 81. PubMed CrossRef
80. Kahane, S. E. M.,, and M. G. Friedman. 1995. Evidence that the novel microorganism ‘Z’ may belong to a new genus in the family Chlamydiaceae. FEMS Microbiol. Lett. 126: 203 208. PubMed
81. Karlsen, M.,, A. Nylund,, K. Watanabe,, J. V. Helvik,, S. Nylund,, and H. Plarre. 2008. Characterization of ‘ Candidatus Clavochlamydia salmonicola’: an intracellular bacterium infecting salmonid fish. Environ. Microbiol. 10: 208 218. PubMed CrossRef
82. Kebbi-Beghdadi, C.,, O. Cisse,, and G. Greub. 2011. Permissivity of Vero cells, human pneumocytes and human endometrial cells to Waddlia chondrophila. Microbes Infect. 13: 566 574. PubMed CrossRef
83. Kjeldsen, K. U.,, M. Obst,, H. Nakano,, P. Funch,, and A. Schramm. 2010. Two types of endosymbiotic bacteria in the enigmatic marine worm Xenoturbella bocki. Appl. Environ. Microbiol. 76: 2657 2662. PubMed CrossRef
84. Kostanjsek, R.,, J. Strus,, D. Drobne,, and G. Avgustin. 2004. Candidatus Rhabdochlamydia porcellionis,’ an intracellular bacterium from the hepatopancreas of the terrestrial isopod Porcellio scaber (Crustacea: Isopoda). Int. J. Syst. Evol. Microbiol. 54: 543 549. PubMed CrossRef
85. Kumar, S.,, S. A. Kohlhoff,, M. Gelling,, P. M. Roblin,, A. Kutlin,, S. Kahane,, M. G. Friedman,, and M. R. Hammerschlag. 2005. Infection with Simkania negevensis in Brooklyn, New York. Pediatr. Infect. Dis. J. 24: 989 992. PubMed
86. Kuo, C.-C.,, M. Horn,, and R. S. Stephens,. 2011. The order Chlamydiales, p. 844 845. In B. Hedlund,, N. R. Krieg,, W. Ludwig,, B. J. Paster,, J. T. Staley,, N. Ward,, and W. B. Whitman (ed.), Bergey's Manual of Systematic Bacteriology—The Planctomycetes, Spriochaetes, Fibrobacteres, Bacteriodetes and Fusobacteria, 2nd ed., vol. 4. Springer, New York, NY.
87. Lamoth, F.,, and G. Greub. 2010. Amoebal pathogens as emerging causal agents of pneumonia. FEMS Microbiol. Rev. 34: 260 280. PubMed CrossRef
88. Leitsch, D.,, M. Kohsler,, M. Marchetti-Deschmann,, A. Deutsch,, G. Allmaier,, L. Konig,, B. S. Sixt,, M. Duchene,, and J. Walochnik. 2010. Proteomic aspects of Parachlamydia acanthamoebae infection in Acanthamoeba spp. ISME J. 4: 1366 1374. PubMed CrossRef
89. Lieberman, D.,, S. Kahane,, D. Lieberman,, and M. G. Friedman. 1997. Pneumonia with serological evidence of acute infection with the Chlamydia-like microorganism ‘Z.’ Am. J. Respir. Crit. Care Med. 156: 578 582. PubMed
90. Lindsay, M. R.,, R. I. Webb,, H. M. Hosmer,, and J. A. Fuerst. 1995. Effects of fixative and buffer on morphology and ultrastructure of a freshwater planctomycete, Gemmata obscuriglobus. J. Microbiol. Methods 21: 45 54.
91. Matsumoto, A.,, H. Bessho,, K. Uehira,, and T. Suda. 1991. Morphological studies of the association of mitochondria with chlamydial inclusions and the fusion of chlamydial inclusions. J. Electron. Microsc. (Tokyo) 40: 356 363. PubMed
92. Maurin, M.,, A. Bryskier,, and D. Raoult. 2002. Antibiotic susceptibilities of Parachlamydia acanthamoeba in amoebae. Antimicrob. Agents Chemother. 46: 3065 3067. PubMed CrossRef
93. Michel, R.,, B. Hauröder-Philippczyk,, K.-D. Müller,, and I. Weishaar. 1994. Acanthamoeba from human nasal mucosa infected with an obligate intracellular parasite. Eur. J. Protistol. 30: 104 110.
94. Michel, R.,, K. D. Müller,, L. Zöller,, J. Walochnik,, M. Hartmann,, and E. N. Schmid. 2005. Free-living amoebae serve as a host for the Chlamydia-like bacterium Simkania negevensis. Acta Protozool. 44: 113 121.
95. Mitchell, S. O.,, and H. D. Rodger. 2011. A review of infectious gill disease in marine salmonid fish. J. Fish Dis. 34: 411 432. PubMed CrossRef
96. Mitchell, S. O.,, T. Steinum,, H. Rodger,, C. Holland,, K. Falk,, and D. J. Colquhoun. 2010. Epitheliocystis in Atlantic salmon, Salmo salar L., farmed in fresh water in Ireland is associated with ‘ Candidatus Clavochlamydia salmonicola’ infection. J. Fish Dis. 33: 665 673. PubMed CrossRef
97. Molnar, K.,, and G. Boros. 1981. A light and electron microscopic study of the agent of carp mucophilosis. J. Fish Dis. 4: 325 334.
98. Moulder, J. W. 1964. The Psittacosis Group as Bacteria. John Wiley, New York, NY.
99. Moustafa, A.,, A. Reyes-Prieto,, and D. Bhattacharya. 2008. Chlamydiae has contributed at least 55 genes to Plantae with predominantly plastid functions. PLoS One 3: e2205. PubMed CrossRef
100. Murray, R. G. E.,, and E. Stackebrandt. 1995. Taxonomic note: implementation of the provisional status Candidatus for incompletely described procaryotes. Int. J. Syst. Bacteriol. 45: 186 187. PubMed CrossRef
101. Nakamura, S.,, J. Matsuo,, Y. Hayashi,, K. Kawaguchi,, M. Yoshida,, K. Takahashi,, Y. Mizutani,, T. Yao,, and H. Yamaguchi. 2010. Endosymbiotic bacterium Protochlamydia can survive in acanthamoebae following encystation. Environ. Microbiol. Rep. 2: 611 618.
102. Nishio, K.,, K. Hashimoto,, and K. Watanabe. 2010. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor. Appl. Microbiol. Biotechnol. 86: 957 964. PubMed CrossRef
103. Nowak, B. F.,, and S. E. LaPatra. 2006. Epitheliocystis in fish. J. Fish Dis. 29: 573 588. PubMed CrossRef
104. Omsland, A.,, D. C. Cockrell,, D. Howe,, E. R. Fischer,, K. Virtaneva,, D. E. Sturdevant,, S. F. Porcella,, and R. A. Heinzen. 2009. Host cell-free growth of the Q fever bacterium Coxiella burnetii. Proc. Natl. Acad. Sci. USA 106: 4430 4434. PubMed CrossRef
105. Polkinghorne, A.,, H. Schmidt-Posthaus,, A. Meijer,, A. Lehner,, and L. Vaughan. 2010. Novel Chlamydiales associated with epitheliocystis in a leopard shark Triakis semifasciata. Dis. Aquat. Organ. 91: 75 81. PubMed CrossRef
106. Ramos-Padron, E.,, S. Bordenave,, S. Lin,, I. M. Bhaskar,, X. Dong,, C. W. Sensen,, J. Fournier,, G. Voordouw,, and L. M. Gieg. 2011. Carbon and sulfur cycling by microbial communities in a gypsum-treated oil sands tailings pond. Environ. Sci. Technol. 45: 439 446. PubMed CrossRef
107. Rattei, T.,, P. Tischler,, S. Gotz,, M. A. Jehl,, J. Hoser,, R. Arnold,, A. Conesa,, and H. W. Mewes. 2010. SIMAP—a comprehensive database of pre-calculated protein sequence similarities, domains, annotations and clusters. Nucleic Acids Res. 38: D223 D226. PubMed CrossRef
108. Richter, M.,, F. Matheis,, E. Gonczi,, S. Aeby,, B. Spiess,, and G. Greub. 2010. Parachlamydia acanthamoebae in domestic cats with and without corneal disease. Vet. Ophthalmol. 13: 235 237. PubMed CrossRef
109. Robertson, T.,, S. Bibby,, D. O’Rourke,, T. Belfiore,, R. Agnew-Crumpton,, and A. H. Noormohammadi. 2010. Identification of chlamydial species in crocodiles and chickens by PCR-HRM curve analysis. Vet. Microbiol. 145: 373 379. PubMed CrossRef
110. Rockey, D. D.,, M. A. Scidmore,, J. P. Bannantine,, and W. J. Brown. 2002. Proteins in the chlamydial inclusion membrane. Microbes Infect. 4: 333 340. PubMed
111. Roger, T.,, N. Casson,, A. Croxatto,, J. M. Entenza,, M. Pusztaszeri,, S. Akira,, M. K. Reymond,, D. Le Roy,, T. Calandra,, and G. Greub. 2010. Role of MyD88 and Toll-like receptors 2 and 4 in the sensing of Parachlamydia acanthamoebae. Infect. Immun. 78: 5195 5201. PubMed CrossRef
112. Rourke, A. W.,, R. W. Davis,, and T. M. Bradley. 1984. A light and electron microscope study of epitheliocystis in juvenile steelhead trout, Salmo gairdneri Richardson. J. Fish Dis. 7: 301 309.
113. Rurangirwa, F. R.,, P. M. Dilbeck,, T. B. Crawford,, T. C. McGuire,, and T. F. McElwain. 1999. Analysis of the 16S rRNA gene of microorganism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov. Int. J. Syst. Bacteriol. 49: 577 581. PubMed CrossRef
114. Sagaram, U. S.,, K. M. DeAngelis,, P. Trivedi,, G. L. Andersen,, S. E. Lu,, and N. Wang. 2009. Bacterial diversity analysis of Huanglongbing pathogen-infected citrus, using PhyloChip arrays and 16S rRNA gene clone library sequencing. Appl. Environ. Microbiol. 75: 1566 1574. PubMed CrossRef
115. Salah, I. B.,, E. Ghigo,, and M. Drancourt. 2009. Free-living amoebae, a training field for macrophage resistance of mycobacteria. Clin. Microbiol. Infect. 15: 894 905. PubMed CrossRef
116. Schubert, C. J.,, E. Durisch-Kaiser,, B. Wehrli,, B. Thamdrup,, P. Lam,, and M. M. Kuypers. 2006. Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). Environ. Microbiol. 8: 1857 1863. PubMed CrossRef
117. Shaw, A. C.,, K. Gevaert,, H. Demol,, B. Hoorelbeke,, J. Vandekerckhove,, M. R. Larsen,, P. Roepstorff,, A. Holm,, G. Christiansen,, and S. Birkelund. 2002. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2: 164 186. PubMed
118. Silander, K.,, and J. Saarela. 2008. Whole genome amplification with Phi29 DNA polymerase to enable genetic or genomic analysis of samples of low DNA yield. Methods Mol. Biol. 439: 1 18. PubMed CrossRef
119. Silva, M. T.,, and J. C. F. Sousa. 1973. Ultrastructure of cell-wall and cytoplasmic membrane of gram-negative bacteria with different fixation techniques. J. Bacteriol. 113: 953 962. PubMed
120. Sixt, B. S.,, C. Heinz,, P. Pichler,, E. Heinz,, J. Montanaro,, H. J. Op den Camp,, G. Ammerer,, K. Mechtler,, M. Wagner,, and M. Horn. 2011. Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila. Proteomics 11: 1868 1892. PubMed CrossRef
121. Skaljac, M.,, K. Zanic,, S. G. Ban,, S. Kontsedalov,, and M. Ghanim. 2010. Co-infection and localization of secondary symbionts in two whitefly species. BMC Microbiol. 10: 142. PubMed CrossRef
122. Thao, M. L.,, L. Baumann,, J. M. Hess,, B. W. Falk,, J. C. Ng,, P. J. Gullan,, and P. Baumann. 2003. Phylogenetic evidence for two new insect-associated Chlamydia of the family Simkaniaceae. Curr. Microbiol. 47: 46 50. PubMed CrossRef
123. Thomas, V.,, N. Casson,, and G. Greub. 2006. Criblamydia sequanensis, a new intracellular Chlamydiales isolated from Seine river water using amoebal co-culture. Environ. Microbiol. 8: 2125 2135. PubMed CrossRef
124. Vandahl, B. B.,, S. Birkelund,, H. Demol,, B. Hoorelbeke,, G. Christiansen,, J. Vandekerckhove,, and K. Gevaert. 2001. Proteome analysis of the Chlamydia pneumoniae elementary body. Electrophoresis 22: 1204 1223. PubMed CrossRef
125. von Prowazek, S., 1912. C hlamydozoen (Allgemeines), p. 119 121. In S. von Prowazek (ed.), Handbuch der Pathogenen Protozoen. Verlag von Johann Ambrosius Barth, Leipzig, Germany.
126. Webster, N. S.,, M. W. Taylor,, F. Behnam,, S. Lucker,, T. Rattei,, S. Whalan,, M. Horn,, and M. Wagner. 2009. Deep sequencing reveals exceptional diversity and modes of transmission for bacterial sponge symbionts. Environ. Microbiol. 12: 2070 2082. PubMed CrossRef
127. Zhang, Y. Z.,, E. T. Wang,, M. Li,, Q. Q. Li,, Y. M. Zhang,, S. J. Zhao,, X. L. Jia,, L. H. Zhang,, W. F. Chen, and W. X. Chen. 2011. Effects of rhizobial inoculation, cropping systems and growth stages on endophytic bacterial community of soybean roots. Plant Soil 347: 147 161.
128. Zhong, G.,, P. Fan,, H. Ji,, F. Dong,, and Y. Huang. 2001. Identification of a chlamydial protease-like activity factor responsible for the degradation of host transcription factors. J. Exp. Med. 193: 935 942. PubMed CrossRef
129. Zhu, P.,, Q. Li,, and G. Wang. 2008. Unique microbial signatures of the alien Hawaiian marine sponge Suberites zeteki. Microb. Ecol. 55: 406 414. PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error