Chapter 4 : The Chlamydial Cell Envelope

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Chlamydial Cell Envelope, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap04-2.gif


Chlamydial development is punctuated by changes in protein-protein interactions on elementary body (EB) and reticulate body (RB) surfaces. Reduction of disulfide cross-links in the chlamydial outer membrane complex (COMC) concomitant with attachment and entry of the EB is rapidly followed by transition to the fragile RB, which is specialized for acquisition of nutrients during chlamydial growth and differentiation. This chapter reviews knowledge about the progression starting with the structure of the EB envelope in the extracellular environment and the way in which this surface interacts with, and is altered during, the process of chlamydial attachment, entry, development, and exit from host cells. The presence of gram-negative double membranes was confirmed by early transmission electron microscopy (TEM) studies of RBs and EBs, but challenges in purification and fractionation of RB membranes shifted emphasis toward EB membranes in subsequent studies. Regularly spaced hexagonal lattices were observed in negatively stained EB envelope preparations. Hexagonal lattices, located between the outer and cytoplasmic EB membranes, and similar structures were present in multiple species. Varying degrees of evidence suggest that additional EB OMPs may exist. The envelopes of the extracellular EB and intracellular RB differ markedly and reflect requirements for survival of chlamydiae in two unique environments. Outside the cell, the oxidized COMC provides osmotic protection, restricts loss of metabolites across the OM, and may mask immunogenic determinants that could alert host cells to the presence of these pathogens.

Citation: Nelson D. 2012. The Chlamydial Cell Envelope, p 74-96. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Model of the EB surface. OmcB (dumbbells) and OmcA (triangles) are located primarily in the periplasm. LPS (small gray hexagons) is primarily located in the outer leaflet of the outer membrane, while phospholipids are in the inner leaflet (small open circles). OmcA is associated with the inner leaflet of the OM by its lipid moiety (not shown). An N-terminal portion of some OmcB molecules may traverse the OM and bind HS on the EB surface (chains of open hexagons). HS may also bind unknown residues on MOMP. OmcA and OmcB are cysteine cross-linked to one another in the periplasm, and, speculatively, to other OMPs such as CdsC, PorB, and some Pmps (PmpH and hypothetical PmpX). The figure shows a range of scenarios that may occur for specific Pmps. For example, the passenger domain (shown as ovals for each of the Pmps) of PmpH has been exported to the EB surface, whereas export of the passenger domain of PmpX has not been completed. Export of the hypothetical PmpZ passenger domain has been completed, but its transporter domain is not bound to other COMC proteins. Oligomers of PmpD, which have been processed from their passenger domains, are loosely associated with the surface of the EB. Polymers of the putative T3S needle protein CdsF extend from CdsC. doi:10.1128/9781555817329.ch4.f1

Citation: Nelson D. 2012. The Chlamydial Cell Envelope, p 74-96. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abromaitis, S.,, and R. S. Stephens. 2009. Attachment and entry of Chlamydia have distinct requirements for host protein disulfide isomerase. PLoS Pathog. 5: e1000357. PubMed CrossRef
2. Allan, I.,, T. P. Hatch,, and J. H. Pearce. 1985. Influence of cysteine deprivation on chlamydial differentiation from reproductive to infective life-cycle forms. J. Gen. Microbiol. 131: 3171 3177. PubMed CrossRef
3. Allen, J. E.,, M. C. Cerrone,, P. R. Beatty,, and R. S. Stephens. 1990. Cysteine-rich outer membrane proteins of Chlamydia trachomatis display compensatory sequence changes between biovariants. Mol. Microbiol. 4: 1543 1550. PubMed
4. Barbour, A. G.,, K. Amano,, T. Hackstadt,, L. Perry,, and H. D. Caldwell. 1982. Chlamydia trachomatis has penicillin-binding proteins but not detectable muramic acid. J. Bacteriol. 151: 420 428. PubMed
5. Barry, C. E., III,, S. F. Hayes,, and T. Hackstadt. 1992. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256: 377 379. PubMed CrossRef
6. Bavoil, P.,, A. Ohlin,, and J. Schachter. 1984. Role of disulfide bonding in outer membrane structure and permeability in Chlamydia trachomatis. Infect. Immun. 44: 479 485. PubMed
7. Bavoil, P. M.,, and R. C. Hsia. 1998. Type III secretion in Chlamydia: a case of déjà vu? Mol. Microbiol. 28: 860 862. PubMed CrossRef
8. Beatty, W. L. 2006. Trafficking from CD63-positive late endocytic multivesicular bodies is essential for intracellular development of Chlamydia trachomatis. J. Cell Sci. 119: 350 359. PubMed CrossRef
9. Beatty, W. L. 2008. Late endocytic multivesicular bodies intersect the chlamydial inclusion in the absence of CD63. Infect. Immun. 76: 2872 2881. PubMed CrossRef
10. Becker, Y.,, E. Hochberg,, and Z. Zakay-Rones. 1969. Interaction of trachoma elementary bodies with host cells. Isr. J. Med. Sci. 5: 121 124. PubMed
11. Belland, R. J.,, D. E. Nelson,, D. Virok,, D. D. Crane,, D. Hogan,, D. Sturdevant,, W. L. Beatty,, and H. D. Caldwell. 2003a. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc. Natl. Acad. Sci. USA 100: 15971 15976. PubMed CrossRef
12. Belland, R. J.,, G. Zhong,, D. D. Crane,, D. Hogan,, D. Sturdevant,, J. Sharma,, W. L. Beatty,, and H. D. Caldwell. 2003b. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 100: 8478 8483. PubMed CrossRef
13. Belunis, C. J.,, K. E. Mdluli,, C. R. Raetz,, and F. E. Nano. 1992. A novel 3-deoxy-D-manno-octulosonic acid transferase from Chlamydia trachomatis required for expression of the genus-specific epitope. J. Biol. Chem. 267: 18702 18707. PubMed
14. Betts, H. J.,, L. E. Twiggs,, M. S. Sal,, P. B. Wyrick,, and K. A. Fields. 2008. Bioinformatic and biochemical evidence for the identification of the type III secretion system needle protein of Chlamydia trachomatis. J. Bacteriol. 190: 1680 1690. PubMed CrossRef
15. Birkelund, S.,, A. G. Lundemose,, and G. Christiansen. 1988. Chemical cross-linking of Chlamydia trachomatis. Infect. Immun. 56: 654 659. PubMed
16. Birkelund, S.,, A. G. Lundemose,, and G. Christiansen. 1989. Immunoelectron microscopy of lipopolysaccharide in Chlamydia trachomatis. Infect. Immun. 57: 3250 3253. PubMed
17. Birkelund, S.,, M. Morgan-Fisher,, E. Timmerman,, K. Gevaert,, A. C. Shaw,, and G. Christiansen. 2009. Analysis of proteins in Chlamydia trachomatis L2 outer membrane complex, COMC. FEMS Immunol. Med. Microbiol. 55: 187 195. PubMed CrossRef
18. Brade, H.,, L. Brade,, and F. E. Nano. 1987. Chemical and serological investigations on the genus-specific lipopolysaccharide epitope of Chlamydia. Proc. Natl. Acad. Sci. USA 84: 2508 2512. PubMed
19. Brade, L.,, O. Holst,, P. Kosma,, Y. X. Zhang,, H. Paulsen,, R. Krausse,, and H. Brade. 1990. Characterization of murine monoclonal and murine, rabbit, and human polyclonal antibodies against chlamydial lipopolysaccharide. Infect. Immun. 58: 205 213. PubMed
20. Brade, L.,, M. Nurminen,, P. H. Makela,, and H. Brade. 1985. Antigenic properties of Chlamydia trachomatis lipopolysaccharide. Infect. Immun. 48: 569 572. PubMed
21. Brown, W. J.,, and D. D. Rockey. 2000. Identification of an antigen localized to an apparent septum within dividing chlamydiae. Infect. Immun. 68: 708 715. PubMed CrossRef
22. Buendia, A. J.,, J. Salinas,, J. Sanchez,, M. C. Gallego,, A. Rodolakis,, and F. Cuello. 1997. Localization by immunoelectron microscopy of antigens of Chlamydia psittaci suitable for diagnosis or vaccine development. FEMS Microbiol. Lett. 150: 113 119. PubMed
23. Caldwell, H. D.,, and P. J. Hitchcock. 1984. Monoclonal antibody against a genus-specific antigen of Chlamydia species: location of the epitope on chlamydial lipopolysaccharide. Infect. Immun. 44: 306 314. PubMed
24. Caldwell, H. D.,, and R. C. Judd. 1982. Structural analysis of chlamydial major outer membrane proteins. Infect. Immun. 38: 960 968. PubMed
25. Caldwell, H. D.,, J. Kromhout,, and J. Schachter. 1981. Purification and partial characterization of the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 31: 1161 1176. PubMed
26. Caldwell, H. D.,, and C. C. Kuo. 1977a. Purification of a Chlamydia trachomatis-specific antigen by immunoadsorption with monospecific antibody. J. Immunol. 118: 437 441. PubMed
27. Caldwell, H. D.,, and C. C. Kuo. 1977b. Serologic diagnosis of lymphogranuloma venereum by counterimmunoelectrophoresis with a Chlamydia trachomatis protein antigen. J. Immunol. 118: 442 445. PubMed
28. Caldwell, H. D.,, C. C. Kuo,, and G. E. Kenny. 1975a. Antigenic analysis of Chlamydiae by two-dimensional immunoelectrophoresis. I. Antigenic heterogeneity between C. trachomatis and C. psittaci. J. Immunol. 115: 963 968. PubMed
29. Caldwell, H. D.,, C. C. Kuo,, and G. E. Kenny. 1975b. Antigenic analysis of chlamydiae by two-dimensional immunoelectrophoresis. II. A trachoma-LGV-specific antigen. J. Immunol. 115: 969 975. PubMed
30. Caldwell, H. D.,, and L. J. Perry. 1982. Neutralization of Chlamydia trachomatis infectivity with antibodies to the major outer membrane protein. Infect. Immun. 38: 745 754. PubMed
31. Campbell, L. A.,, C. C. Kuo,, and J. T. Grayston. 1990. Structural and antigenic analysis of Chlamydia pneumoniae. Infect. Immun. 58: 93 97. PubMed
32. Campbell, L. A.,, C. C. Kuo,, R. W. Thissen,, and J. T. Grayston. 1989. Isolation of a gene encoding a Chlamydia sp. strain TWAR protein that is recognized during infection of humans. Infect. Immun. 57: 71 75. PubMed
33. Carabeo, R. A.,, and T. Hackstadt. 2001. Isolation and characterization of a mutant Chinese hamster ovary cell line that is resistant to Chlamydia trachomatis infection at a novel step in the attachment process. Infect. Immun. 69: 5899 5904. PubMed
34. Carabeo, R. A.,, D. J. Mead,, and T. Hackstadt. 2003. Golgi-dependent transport of cholesterol to the Chlamydia trachomatis inclusion. Proc. Natl. Acad. Sci. USA 100: 6771 6776. PubMed CrossRef
35. Carlson, J. H.,, S. F. Porcella,, G. McClarty,, and H. D. Caldwell. 2005. Comparative genomic analysis of Chlamydia trachomatis oculotropic and genitotropic strains. Infect. Immun. 73: 6407 6418. PubMed CrossRef
36. Carrasco, J. A.,, C. Tan,, R. G. Rank,, R. C. Hsia,, and P. M. Bavoil. 2011. Altered developmental expression of polymorphic membrane proteins in penicillin-stressed Chlamydia trachomatis. Cell. Microbiol. 13: 1014 1025. PubMed CrossRef
37. Cevenini, R.,, M. Donati,, E. Brocchi,, F. De Simone,, and M. La Placa. 1991. Partial characterization of an 89-kDa highly immunoreactive protein from Chlamydia psittaci A/22 causing ovine abortion. FEMS Microbiol. Lett. 65: 111 115. PubMed
38. Cevenini, R.,, A. Moroni,, V. Sambri,, S. Perini,, and M. La Placa. 1989. Serological response to chlamydial infection in sheep, studied by enzyme-linked immunosorbent assay and immunoblotting. FEMS Microbiol. Immunol. 1: 459 464. PubMed
39. Chen, J. C.,, and R. S. Stephens. 1994. Trachoma and LGV biovars of Chlamydia trachomatis share the same glycosaminoglycan-dependent mechanism for infection of eukaryotic cells. Mol. Microbiol. 11: 501 507. PubMed CrossRef
40. Chen, J. C.,, J. P. Zhang,, and R. S. Stephens. 1996. Structural requirements of heparin binding to Chlamydia trachomatis. J. Biol. Chem. 271: 11134 11140. PubMed CrossRef
41. Clarke, I. N.,, M. E. Ward,, and P. R. Lambden. 1988. Molecular cloning and sequence analysis of a developmentally regulated cysteine-rich outer membrane protein from Chlamydia trachomatis. Gene 71: 307 314. PubMed
42. Clifton, D. R.,, K. A. Fields,, S. S. Grieshaber,, C. A. Dooley,, E. R. Fischer,, D. J. Mead,, R. A. Carabeo,, and T. Hackstadt. 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc. Natl. Acad. Sci. USA 101: 10166 10171. PubMed CrossRef
43. Cocchiaro, J. L.,, Y. Kumar,, E. R. Fischer,, T. Hackstadt,, and R. H. Valdivia. 2008. Cytoplasmic lipid droplets are translocated into the lumen of the Chlamydia trachomatis parasitophorous vacuole. Proc. Natl. Acad. Sci. USA 105: 9379 9384. PubMed CrossRef
44. Collett, B. A.,, W. J. Newhall,, R. A. Jersild, Jr.,, and R. B. Jones. 1989. Detection of surface-exposed epitopes on Chlamydia trachomatis by immune electron microscopy. J. Gen. Microbiol. 135: 85 94. PubMed CrossRef
45. Conant, C. G.,, and R. S. Stephens. 2007. Chlamydia attachment to mammalian cells requires protein disulfide isomerase. Cell. Microbiol. 9: 222 232. PubMed CrossRef
46. Crane, D. D.,, J. H. Carlson,, E. R. Fischer,, P. Bavoil,, R. C. Hsia,, C. Tan,, C. C. Kuo,, and H. D. Caldwell. 2006. Chlamydia trachomatis polymorphic membrane protein D is a species-common pan-neutralizing antigen. Proc. Natl. Acad. Sci. USA 103: 1894 1899. PubMed CrossRef
47. Davis, C. H.,, J. E. Raulston,, and P. B. Wyrick. 2002. Protein disulfide isomerase, a component of the estrogen receptor complex, is associated with Chlamydia trachomatis serovar E attached to human endometrial epithelial cells. Infect. Immun. 70: 3413 3418. PubMed CrossRef
48. Davis, C. H.,, and P. B. Wyrick. 1997. Differences in the association of Chlamydia trachomatis serovar E and serovar L2 with epithelial cells in vitro may reflect biological differences in vivo. Infect. Immun. 65: 2914 2924. PubMed
49. DeMars, R.,, and J. Weinfurter. 2008. Interstrain gene transfer in Chlamydia trachomatis in vitro: mechanism and significance. J. Bacteriol. 190: 1605 1614. PubMed CrossRef
50. Demars, R.,, J. Weinfurter,, E. Guex,, J. Lin,, and Y. Potucek. 2007. Lateral gene transfer in vitro in the intracellular pathogen Chlamydia trachomatis. J. Bacteriol. 189: 991 1003. PubMed CrossRef
51. Doughri, A. M.,, J. Storz,, and K. P. Altera. 1972. Mode of entry and release of chlamydiae in infections of intestinal epithelial cells. J. Infect. Dis. 126: 652 657. PubMed CrossRef
52. Eissenberg, L. G.,, P. B. Wyrick,, C. H. Davis,, and J. W. Rumpp. 1983. Chlamydia psittaci elementary body envelopes: ingestion and inhibition of phagolysosome fusion. Infect. Immun. 40: 741 751. PubMed
53. Everett, K. D.,, and T. P. Hatch. 1991. Sequence analysis and lipid modification of the cysteine-rich envelope proteins of Chlamydia psittaci 6BC. J. Bacteriol. 173: 3821 3830. PubMed
54. Everett, K. D.,, and T. P. Hatch. 1995. Architecture of the cell envelope of Chlamydia psittaci 6BC. J. Bacteriol. 177: 877 882. PubMed
55. Fadel, S.,, and A. Eley. 2007. Chlamydia trachomatis OmcB protein is a surface-exposed glycosaminoglycan-dependent adhesin. J. Med. Microbiol. 56: 15 22. PubMed CrossRef
56. Fields, K. A.,, D. J. Mead,, C. A. Dooley,, and T. Hackstadt. 2003. Chlamydia trachomatis type III secretion: evidence for a functional apparatus during early-cycle development. Mol. Microbiol. 48: 671 683. PubMed CrossRef
57. Fudyk, T.,, L. Olinger,, and R. S. Stephens. 2002. Selection of mutant cell lines resistant to infection by Chlamydia spp. Infect. Immun. 70: 6444 6447. PubMed CrossRef
58. Garrett, A. J.,, M. J. Harrison,, and G. P. Manire. 1974. A search for the bacterial mucopeptide component, muramic acid, in Chlamydia. J. Gen. Microbiol. 80: 315 318. PubMed CrossRef
59. Giannikopoulou, P.,, L. Bini,, P. D. Simitsek,, V. Pallini,, and E. Vretou. 1997. Two-dimensional electrophoretic analysis of the protein family at 90 kDa of abortifacient Chlamydia psittaci. Electrophoresis 18: 2104 2108. PubMed CrossRef
60. Gregory, W. W.,, M. Gardner,, G. I. Byrne,, and J. W. Moulder. 1979. Arrays of hemispheric surface projections on Chlamydia psittaci and Chlamydia trachomatis observed by scanning electron microscopy. J. Bacteriol. 138: 241 244. PubMed
61. Grieshaber, N. A.,, E. R. Fischer,, D. J. Mead,, C. A. Dooley, and T. Hackstadt. 2004. Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc. Natl. Acad. Sci. USA 101: 7451 7456. PubMed CrossRef
62. Griffiths, P. C.,, H. L. Philips,, M. Dawson,, and M. J. Clarkson. 1992. Antigenic and morphological differentiation of placental and intestinal isolates of Chlamydia psittaci of ovine origin. Vet. Microbiol. 30: 165 177. PubMed
63. Grimwood, J.,, and R. S. Stephens. 1999. Computational analysis of the polymorphic membrane protein superfamily of Chlamydia trachomatis and Chlamydia pneumoniae. Microb. Comp. Genomics 4: 187 201. PubMed
64. Hackstadt, T. 1986. Identification and properties of chlamydial polypeptides that bind eucaryotic cell surface components. J. Bacteriol. 165: 13 20. PubMed
65. Hackstadt, T. 1991. Purification and N-terminal amino acid sequences of Chlamydia trachomatis histone analogs. J. Bacteriol. 173: 7046 7049. PubMed
66. Hackstadt, T.,, W. Baehr,, and Y. Ying. 1991. Chlamydia trachomatis developmentally regulated protein is homologous to eukaryotic histone H1. Proc. Natl. Acad. Sci. USA 88: 3937 3941. PubMed
67. Hackstadt, T.,, and H. D. Caldwell. 1985. Effect of proteolytic cleavage of surface-exposed proteins on infectivity of Chlamydia trachomatis. Infect. Immun. 48: 546 551. PubMed
68. Hackstadt, T.,, M. A. Scidmore,, and D. D. Rockey. 1995. Lipid metabolism in Chlamydia trachomatis-infected cells: directed trafficking of Golgi-derived sphingolipids to the chlamydial inclusion. Proc. Natl. Acad. Sci. USA 92: 4877 4881. PubMed
69. Hackstadt, T.,, W. J. Todd,, and H. D. Caldwell. 1985. Disulfide-mediated interactions of the chlamydial major outer membrane protein: role in the differentiation of chlamydiae? J. Bacteriol. 161: 25 31. PubMed
70. Hatch, G. M.,, and G. McClarty. 1998. Phospholipid composition of purified Chlamydia trachomatis mimics that of the eucaryotic host cell. Infect. Immun. 66: 3727 3735. PubMed
71. Hatch, T. P. 1996. Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J. Bacteriol. 178: 1 5. PubMed
72. Hatch, T. P.,, I. Allan,, and J. H. Pearce. 1984. Structural and polypeptide differences between envelopes of infective and reproductive life cycle forms of Chlamydia spp. J. Bacteriol. 157: 13 20. PubMed
73. Hatch, T. P.,, M. Miceli,, and J. E. Sublett. 1986. Synthesis of disulfide-bonded outer membrane proteins during the developmental cycle of Chlamydia psittaci and Chlamydia trachomatis. J. Bacteriol. 165: 379 385. PubMed
74. Hatch, T. P.,, D. W. Vance, Jr.,, and E. Al-Hossainy. 1981. Identification of a major envelope protein in Chlamydia spp. J. Bacteriol. 146: 426 429. PubMed
75. Henderson, I. R.,, and A. C. Lam. 2001. Polymorphic proteins of Chlamydia spp.—autotransporters beyond the Proteobacteria. Trends Microbiol. 9: 573 578. PubMed
76. Heuer, D.,, A. Rejman Lipinski,, N. Machuy,, A. Karlas,, A. Wehrens,, F. Siedler,, V. Brinkmann,, and T. F. Meyer. 2009. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457: 731 735. PubMed CrossRef
77. Higashi, N. 1965. Electron microscopic studies on the mode of reproduction of trachoma virus and psittacosis virus in cell cultures. Exp. Mol. Pathol. 76: 24 39. PubMed
78. Hybiske, K.,, and R. S. Stephens. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 104: 11430 11435. PubMed CrossRef
79. Iliffe-Lee, E. R.,, and G. McClarty. 2000. Regulation of carbon metabolism in Chlamydia trachomatis. Mol. Microbiol. 38: 20 30. PubMed
80. Kari, L.,, M. M. Goheen,, L. B. Randall,, L. D. Taylor,, J. H. Carlson,, W. M. Whitmire,, D. Virok,, K. Rajaram,, V. Endresz,, G. McClarty,, D. E. Nelson,, and H. D. Caldwell. 2011. Generation of targeted Chlamydia trachomatis null mutants. Proc. Natl. Acad. Sci. USA 108: 7189 7193. PubMed CrossRef
81. Kiselev, A. O.,, M. C. Skinner,, and M. F. Lampe. 2009. Analysis of pmpD expression and PmpD post-translational processing during the life cycle of Chlamydia trachomatis serovars A, D, and L2. PLoS One 4: e5191. PubMed CrossRef
82. Kiselev, A. O.,, W. E. Stamm,, J. R. Yates,, and M. F. Lampe. 2007. Expression, processing, and localization of PmpD of Chlamydia trachomatis serovar L2 during the chlamydial developmental cycle. PLoS One 2: e568. PubMed CrossRef
83. Kubo, A.,, and R. S. Stephens. 2000. Characterization and functional analysis of PorB, a Chlamydia porin and neutralizing target. Mol. Microbiol. 38: 772 780. PubMed
84. Kubo, A.,, and R. S. Stephens. 2001. Substrate-specific diffusion of select dicarboxylates through Chlamydia trachomatis PorB. Microbiology 147: 3135 3140. PubMed
85. Kuo, C.,, N. Takahashi,, A. F. Swanson,, Y. Ozeki,, and S. Hakomori. 1996. An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells. J. Clin. Investig. 98: 2813 2818. PubMed CrossRef
86. Kuo, C. C.,, and T. Grayston. 1976. Interaction of Chlamydia trachomatis organisms and HeLa 229 cells. Infect. Immun. 13: 1103 1109. PubMed
87. Kuo, C. C.,, A. Lee,, and L. A. Campbell. 2004. Cleavage of the N-linked oligosaccharide from the surfaces of Chlamydia species affects attachment and infectivity of the organisms in human epithelial and endothelial cells. Infect. Immun. 72: 6699 6701. PubMed CrossRef
88. Lambden, P. R.,, J. S. Everson,, M. E. Ward,, and I. N. Clarke. 1990. Sulfur-rich proteins of Chlamydia trachomatis: developmentally regulated transcription of polycistronic mRNA from tandem promoters. Gene 87: 105 112. PubMed
89. Lazarev, V. N.,, G. G. Borisenko,, M. M. Shkarupeta,, I. A. Demina,, M. V. Serebryakova,, M. A. Galyamina,, S. A. Levitskiy,, and V. M. Govorun. 2010. The role of intracellular glutathione in the progression of Chlamydia trachomatis infection. Free Radic. Biol. Med. 49: 1947 1955. PubMed CrossRef
90. Levy, N. J.,, and J. W. Moulder. 1982. Attachment of cell walls of Chlamydia psittaci to mouse fibroblasts (L cells). Infect. Immun. 37: 1059 1065. PubMed
91. Lim, J. B.,, and J. B. Klauda. 2011. Lipid chain branching at the iso- and anteiso-positions in complex Chlamydia membranes: a molecular dynamics study. Biochim. Biophys. Acta 1808: 323 331. PubMed CrossRef
92. Liu, X.,, M. Afrane,, D. E. Clemmer,, G. Zhong,, and D. E. Nelson. 2010. Identification of Chlamydia trachomatis outer membrane complex proteins by differential proteomics. J. Bacteriol. 192: 2852 2860. PubMed CrossRef
93. Longbottom, D.,, J. Findlay,, E. Vretou,, and S. M.Dunbar . 1998a. Immunoelectron microscopic localisation of the OMP90 family on the outer membrane surface of Chlamydia psittaci. FEMS Microbiol. Lett. 164: 111 117. PubMed
94. Longbottom, D.,, M. Russell,, S. M. Dunbar,, G. E. Jones,, and A. J. Herring. 1998b. Molecular cloning and characterization of the genes coding for the highly immunogenic cluster of 90-kilodalton envelope proteins from the Chlamydia psittaci subtype that causes abortion in sheep. Infect. Immun. 66: 1317 1324. PubMed
95. Longbottom, D.,, M. Russell,, G. E. Jones,, F. A. Lainson,, and A. J. Herring. 1996. Identification of a multigene family coding for the 90 kDa proteins of the ovine abortion subtype of Chlamydia psittaci. FEMS Microbiol. Lett. 142: 277 281. PubMed
96. Lukacova, M.,, M. Baumann,, L. Brade,, U. Mamat,, and H. Brade. 1994. Lipopolysaccharide smooth-rough phase variation in bacteria of the genus Chlamydia. Infect. Immun. 62: 2270 2276. PubMed
97. Manire, G. P. 1966. Structure of purified cell walls of dense forms of meningopneumonitis organisms. J. Bacteriol. 91: 409 413. PubMed
98. Manire, G. P.,, and A. Tamura. 1967. Preparation and chemical composition of the cell walls of mature infectious dense forms of meningopneumonitis organisms. J. Bacteriol. 94: 1178 1183. PubMed
99. Matsumoto, A. 1973. Fine structures of cell envelopes of Chlamydia organisms as revealed by freeze-etching and negative staining techniques. J. Bacteriol. 116: 1355 1363. PubMed
100. Matsumoto, A. 1981. Electron microscopic observations of surface projections and related intracellular structures of Chlamydia organisms. J. Electron Microsc. (Tokyo) 30: 315 320.
101. Matsumoto, A. 1982. Electron microscopic observations of surface projections on Chlamydia psittaci reticulate bodies. J. Bacteriol. 150: 358 364. PubMed
102. Matsumoto, A.,, N. Higashi,, and A. Tamura. 1973. Electron microscope observations on the effects of polymixin B sulfate on cell walls of Chlamydia psittaci. J. Bacteriol. 113: 357 364. PubMed
103. Matsumoto, A.,, and G. P. Manire. 1970a. Electron microscopic observations on the effects of penicillin on the morphology of Chlamydia psittaci. J. Bacteriol. 101: 278 285. PubMed
104. Matsumoto, A.,, and G. P. Manire. 1970b. Electron microscopic observations on the fine structure of cell walls of Chlamydia psittaci. J. Bacteriol. 104: 1332 1337. PubMed
105. McCoy, A. J.,, and A. T. Maurelli. 2006. Building the invisible wall: updating the chlamydial peptidoglycan anomaly. Trends Microbiol. 14: 70 77. PubMed CrossRef
106. Melgosa, M. P.,, C. C. Kuo,, and L. A. Campbell. 1993. Outer membrane complex proteins of Chlamydia pneumoniae. FEMS Microbiol. Lett. 112: 199 204. PubMed
107. Moelleken, K.,, and J. H. Hegemann. 2008. The Chlamydia outer membrane protein OmcB is required for adhesion and exhibits biovar-specific differences in glycosaminoglycan binding. Mol. Microbiol. 67: 403 419. PubMed CrossRef
108. Molleken, K.,, E. Schmidt,, and J. H. Hegemann. 2010. Members of the Pmp protein family of Chlamydia pneumoniae mediate adhesion to human cells via short repetitive peptide motifs. Mol. Microbiol. 78: 1004 1017. PubMed CrossRef
109. Morrison, S. G.,, and R. P. Morrison. 2005. A predominant role for antibody in acquired immunity to chlamydial genital tract reinfection. J. Immunol. 175: 7536 7542. PubMed
110. Moulder, J. W. 1962. Some basic properties of the psittacosis-lymphogranuloma venereum group of agents. Structure and chemical composition of isolated particles. Ann. N. Y. Acad. Sci. 98: 92 99. PubMed
111. Moulder, J. W. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143 190. PubMed
112. Moulder, J. W.,, D. L. Novosel,, and J. E. Officer. 1963. Inhibition of the growth of agents of the psittacosis group by D-cycloserine and its specific reversal by D-alanine. J. Bacteriol. 85: 707 711. PubMed
113. Muller-Loennies, S.,, S. Gronow,, L. Brade,, R. MacKenzie,, P. Kosma,, and H. Brade. 2006. A monoclonal antibody against a carbohydrate epitope in lipopolysaccharide differentiates Chlamydophila psittaci from Chlamydophila pecorum, Chlamydophila pneumoniae, and Chlamydia trachomatis. Glycobiology 16: 184 196. PubMed CrossRef
114. Muschiol, S.,, L. Bailey,, A. Gylfe,, C. Sundin,, K. Hultenby,, S. Bergstrom,, M. Elofsson,, H. Wolf-Watz,, S. Normark,, and B. Henriques-Normark. 2006. A small-molecule inhibitor of type III secretion inhibits different stages of the infectious cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 103: 14566 14571. PubMed CrossRef
115. Mygind, P.,, G. Christiansen,, and S. Birkelund. 1998. Topological analysis of Chlamydia trachomatis L2 outer membrane protein 2. J. Bacteriol. 180: 5784 5787. PubMed
116. Mygind, P. H.,, G. Christiansen,, P. Roepstorff,, and S. Birkelund. 2000. Membrane proteins PmpG and PmpH are major constituents of Chlamydia trachomatis L2 outer membrane complex. FEMS Microbiol. Lett. 186: 163 169. PubMed
117. Nano, F. E.,, P. A. Barstad,, L. W. Mayer,, J. E. Coligan, and H. D. Caldwell. 1985. Partial amino acid sequence and molecular cloning of the encoding gene for the major outer membrane protein of Chlamydia trachomatis. Infect. Immun. 48: 372 377. PubMed
118. Narita, T.,, P. B. Wyrick,, and G. P. Manire. 1976. Effect of alkali on the structure of cell envelopes of Chlamydia psittaci elementary bodies. J. Bacteriol. 125: 300 307. PubMed
119. Nelson, D. E.,, D. D. Crane,, L. D. Taylor,, D. W. Dorward,, M. M. Goheen,, and H. D. Caldwell. 2006. Inhibition of chlamydiae by primary alcohols correlates with the strain-specific complement of plasticity zone phospholipase D genes. Infect. Immun. 74: 73 80. PubMed CrossRef
120. Newhall, W. J. 1987. Biosynthesis and disulfide cross-linking of outer membrane components during the growth cycle of Chlamydia trachomatis. Infect. Immun. 55: 162 168. PubMed
121. Newhall, W. J., 1988. Macromolecular and antigenic composition of chlamydiae, p. 47-70. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, FL.
122. Newhall, W. J.,, B. Batteiger,, and R. B. Jones. 1982. Analysis of the human serological response to proteins of Chlamydia trachomatis. Infect. Immun. 38: 1181 1189. PubMed
123. Newhall, W. J.,, and R. B. Jones. 1983. Disulfide-linked oligomers of the major outer membrane protein of chlamydiae. J. Bacteriol. 154: 998 1001. PubMed
124. Nguyen, B. D.,, D. Cunningham,, X. Liang,, X. Chen,, E. J. Toone,, C. R. Raetz,, P. Zhou,, and R. H. Valdivia. 2011. Lipooligosaccharide is required for the generation of infectious elementary bodies in Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 108: 10284 10289. PubMed CrossRef
125. Nurminen, M.,, M. Leinonen,, P. Saikku,, and P. H. Makela. 1983. The genus-specific antigen of Chlamydia: resemblance to the lipopolysaccharide of enteric bacteria. Science 220: 1279 1281. PubMed
126. Nurminen, M.,, E. T. Rietschel,, and H. Brade. 1985. Chemical characterization of Chlamydia trachomatis lipopolysaccharide. Infect. Immun. 48: 573 575. PubMed
127. Oomen, C. J.,, P. van Ulsen,, P. van Gelder,, M. Feijen,, J. Tommassen,, and P. Gros. 2004. Structure of the translocator domain of a bacterial autotransporter. EMBO J. 23: 1257 1266. PubMed CrossRef
128. Peterson, E. M.,, L. M. de la Maza,, L. Brade,, and H. Brade. 1998. Characterization of a neutralizing monoclonal antibody directed at the lipopolysaccharide of Chlamydia pneumoniae. Infect. Immun. 66: 3848 3855. PubMed
129. Rank, R. G.,, J. Whittimore,, A. K. Bowlin,, and P. B. Wyrick. 2011. In vivo ultrastructural analysis of the intimate relationship between polymorphonuclear leukocytes and the chlamydial developmental cycle. Infect. Immun. 79: 3291 3301. PubMed CrossRef
130. Rasmussen-Lathrop, S. J.,, K. Koshiyama,, N. Phillips,, and R. S. Stephens. 2000. Chlamydia-dependent biosynthesis of a heparan sulphate-like compound in eukaryotic cells. Cell. Microbiol. 2: 137 144. PubMed
131. Raulston, J. E. 1995. Chlamydial envelope components and pathogen-host cell interactions. Mol. Microbiol. 15: 607 616. PubMed
132. Raulston, J. E.,, C. H. Davis,, T. R. Paul,, J. D. Hobbs,, and P. B. Wyrick. 2002. Surface accessibility of the 70-kilodalton Chlamydia trachomatis heat shock protein following reduction of outer membrane protein disulfide bonds. Infect. Immun. 70: 535 543. PubMed
133. Read, T. D.,, R. C. Brunham,, C. Shen,, S. R. Gill,, J. F. Heidelberg,, O. White,, E. K. Hickey,, J. Peterson,, T. Utterback,, K. Berry,, S. Bass,, K. Linher,, J. Weidman,, H. Khouri,, B. Craven,, C. Bowman,, R. Dodson,, M. Gwinn,, W. Nelson,, R. DeBoy,, J. Kolonay,, G. McClarty,, S. L. Salzberg,, J. Eisen,, and C. M. Fraser. 2000a. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28: 1397 1406. PubMed
134. Read, T. D.,, C. M. Fraser,, R. C. Hsia,, and P. M. Bavoil. 2000b. Comparative analysis of Chlamydia bacteriophages reveals variation localized to a putative receptor binding domain. Microb. Comp. Genomics 5: 223 231. PubMed
135. Rund, S.,, B. Lindner,, H. Brade,, and O. Holst. 1999. Structural analysis of the lipopolysaccharide from Chlamydia trachomatis serotype L2. J. Biol. Chem. 274: 16819 16824. PubMed
136. Salari, S. H.,, and M. E. Ward. 1981. Polypeptide composition of Chlamydia trachomatis. J. Gen. Microbiol. 123: 197 207. PubMed
137. Schachter, J.,, and M. Grossman. 1981. Chlamydial infections. Annu. Rev. Med. 32: 45 61.
138. Scidmore, M. A.,, E. R. Fischer,, and T. Hackstadt. 1996a. Sphingolipids and glycoproteins are differentially trafficked to the Chlamydia trachomatis inclusion. J. Cell Biol. 134: 363 374. PubMed
139. Scidmore, M. A.,, D. D. Rockey,, E. R. Fischer,, R. A. Heinzen,, and T. Hackstadt. 1996b. Vesicular interactions of the Chlamydia trachomatis inclusion are determined by chlamydial early protein synthesis rather than route of entry. Infect. Immun. 64: 5366 5372. PubMed
140. Shaw, A. C.,, K. Gevaert,, H. Demol,, B. Hoorelbeke,, J. Vandekerckhove,, M. R. Larsen,, P. Roepstorff,, A. Holm,, G. Christiansen,, and S. Birkelund. 2002. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2: 164 186. PubMed
141. Shaw, E. I.,, C. A. Dooley,, E. R. Fischer,, M. A. Scidmore,, K. A. Fields,, and T. Hackstadt. 2000. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol. Microbiol. 37: 913 925. PubMed CrossRef
142. Skipp, P.,, J. Robinson,, C. D. O’Connor,, and I. N. Clarke. 2005. Shotgun proteomic analysis of Chlamydia trachomatis. Proteomics 5: 1558 1573. PubMed CrossRef
143. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759. PubMed CrossRef
144. Stephens, R. S.,, K. Koshiyama,, E. Lewis,, and A. Kubo. 2001. Heparin-binding outer membrane protein of chlamydiae. Mol. Microbiol. 40: 691 699. PubMed CrossRef
145. Stephens, R. S.,, and C. J. Lammel. 2001. Chlamydia outer membrane protein discovery using genomics. Curr. Opin. Microbiol. 4: 16 20. PubMed
146. Stephens, R. S.,, J. M. Poteralski,, and L. Olinger. 2006. Interaction of Chlamydia trachomatis with mammalian cells is independent of host cell surface heparan sulfate glycosaminoglycans. Infect. Immun. 74: 1795 1799. PubMed CrossRef
147. Stephens, R. S.,, M. R. Tam,, C. C. Kuo,, and R. C. Nowinski. 1982. Monoclonal antibodies to Chlamydia trachomatis: antibody specificities and antigen characterization. J. Immunol. 128: 1083 1089. PubMed
148. Stuart, E. S.,, and A. B. Macdonald. 1989. Some characteristics of a secreted chlamydial antigen recognized by IgG from C. trachomatis patient sera. Immunology 68: 469 473. PubMed
149. Stuart, E. S.,, P. B. Wyrick,, J. Choong,, S. B. Stoler,, and A. B. MacDonald. 1991. Examination of chlamydial glycolipid with monoclonal antibodies: cellular distribution and epitope binding. Immunology 74: 740 747. PubMed
150. Su, H.,, G. McClarty,, F. Dong,, G. M. Hatch,, Z. K. Pan,, and G. Zhong. 2004. Activation of Raf/MEK/ERK/cPLA2 signaling pathway is essential for chlamydial acquisition of host glycerophospholipids. J. Biol. Chem. 279: 9409 9416. PubMed CrossRef
151. Su, H.,, L. Raymond,, D. D. Rockey,, E. Fischer,, T. Hackstadt,, and H. D. Caldwell. 1996. A recombinant Chlamydia trachomatis major outer membrane protein binds to heparan sulfate receptors on epithelial cells. Proc. Natl. Acad. Sci. USA 93: 11143 11148. PubMed
152. Suchland, R. J.,, K. M. Sandoz,, B. M. Jeffrey,, W. E. Stamm,, and D. D. Rockey. 2009. Horizontal transfer of tetracycline resistance among Chlamydia spp. in vitro. Antimicrob. Agents Chemother. 53: 4604 4611. PubMed CrossRef
153. Sun, G.,, S. Pal,, A. K. Sarcon,, S. Kim,, E. Sugawara,, H. Nikaido,, M. J. Cocco,, E. M. Peterson,, and L. M. de la Maza. 2007. Structural and functional analyses of the major outer membrane protein of Chlamydia trachomatis. J. Bacteriol. 189: 6222 6235. PubMed CrossRef
154. Swanson, A. F.,, and C. C. Kuo. 1991. Evidence that the major outer membrane protein of Chlamydia trachomatis is glycosylated. Infect. Immun. 59: 2120 2125. PubMed
155. Swanson, A. F.,, and C. C. Kuo. 1994. Binding of the glycan of the major outer membrane protein of Chlamydia trachomatis to HeLa cells. Infect. Immun. 62: 24 28. PubMed
156. Swanson, K. A.,, L. D. Taylor,, S. D. Frank,, G. L. Sturdevant,, E. R. Fischer,, J. H. Carlson,, W. M. Whitmire,, and H. D. Caldwell. 2009. Chlamydia trachomatis polymorphic membrane protein D is an oligomeric autotransporter with a higher-order structure. Infect. Immun. 77: 508 516. PubMed CrossRef
157. Tamura, A.,, and G. P. Manire. 1967. Preparation and chemical composition of the cell membranes of developmental reticulate forms of meningopneumonitis organisms. J. Bacteriol. 94: 1184 1188. PubMed
158. Tamura, A.,, and G. P. Manire. 1968. Effect of penicillin on the multiplication of meningopneumonitis organisms ( Chlamydia psittaci). J. Bacteriol. 96: 875 880. PubMed
159. Tamura, A.,, A. Matsumoto,, G. P. Manire,, and N. Higashi. 1971. Electron microscopic observations on the structure of the envelopes of mature elementary bodies and developmental reticulate forms of Chlamydia psittaci. J. Bacteriol. 105: 355 360. PubMed
160. Tan, C.,, R. C. Hsia,, H. Shou,, J. A. Carrasco,, R. G. Rank,, and P. M. Bavoil. 2010. Variable expression of surface-exposed polymorphic membrane proteins in in vitro-grown Chlamydia trachomatis. Cell. Microbiol. 12: 174 187. PubMed CrossRef
161. Tan, C.,, R. C. Hsia,, H. Shou,, C. L. Haggerty,, R. B. Ness,, C. A. Gaydos,, D. Dean,, A. M. Scurlock,, D. P. Wilson,, and P. M. Bavoil. 2009. Chlamydia trachomatis-infected patients display variable antibody profiles against the nine-member polymorphic membrane protein family. Infect. Immun. 77: 3218 3226. PubMed CrossRef
162. Tanzer, R. J.,, and T. P. Hatch. 2001. Characterization of outer membrane proteins in Chlamydia trachomatis LGV serovar L2. J. Bacteriol. 183: 2686 2690. PubMed CrossRef
163. Tanzer, R. J.,, D. Longbottom,, and T. P. Hatch. 2001. Identification of polymorphic outer membrane proteins of Chlamydia psittaci 6BC. Infect. Immun. 69: 2428 2434. PubMed CrossRef
164. Tao, S.,, R. Kaul,, and W. M. Wenman. 1991. Identification and nucleotide sequence of a developmentally regulated gene encoding a eukaryotic histone H1-like protein from Chlamydia trachomatis. J. Bacteriol. 173: 2818 2822. PubMed
165. Taylor, L. D.,, D. E. Nelson,, D. W. Dorward,, W. M. Whitmire,, and H. D. Caldwell. 2010. Biological characterization of Chlamydia trachomatis plasticity zone MACPF domain family protein CT153. Infect. Immun. 78: 2691 2699. PubMed CrossRef
166. Ting, L. M.,, R. C. Hsia,, C. G. Haidaris,, and P. M. Bavoil. 1995. Interaction of outer envelope proteins of Chlamydia psittaci GPIC with the HeLa cell surface. Infect. Immun. 63: 3600 3608. PubMed
167. Tjaden, J.,, H. H. Winkler,, C. Schwoppe,, M. Van Der Laan,, T. Mohlmann,, and H. E. Neuhaus. 1999. Two nucleotide transport proteins in Chlamydia trachomatis, one for net nucleoside triphosphate uptake and the other for transport of energy. J. Bacteriol. 181: 1196 1202. PubMed
168. Vandahl, B. B.,, S. Birkelund,, and G. Christiansen. 2004. Genome and proteome analysis of Chlamydia. Proteomics 4: 2831 2842. PubMed CrossRef
169. Vandahl, B. B.,, K. Gevaert,, H. Demol,, B. Hoorelbeke,, A. Holm,, J. Vandekerckhove,, G. Christiansen,, and S. Birkelund. 2001. Time-dependent expression and processing of a hypothetical protein of possible importance for regulation of the Chlamydia pneumoniae developmental cycle. Electrophoresis 22: 1697 1704. PubMed CrossRef
170. Vandahl, B. B.,, A. S. Pedersen,, K. Gevaert,, A. Holm,, J. Vandekerckhove,, G. Christiansen,, and S. Birkelund. 2002. The expression, processing and localization of polymorphic membrane proteins in Chlamydia pneumoniae strain CWL029. BMC Microbiol. 2: 36. PubMed CrossRef
171. Vora, G. J.,, and E. S. Stuart. 2003. A role for the glycolipid exoantigen (GLXA) in chlamydial infectivity. Curr. Microbiol. 46: 217 223. PubMed CrossRef
172. Vretou, E.,, P. Giannikopoulou,, D. Longbottom,, and E. Psarrou. 2003. Antigenic organization of the N-terminal part of the polymorphic outer membrane proteins 90, 91A, and 91B of Chlamydophila abortus. Infect. Immun. 71: 3240 3250. PubMed CrossRef
173. Watson, M. W.,, P. R. Lambden,, M. E. Ward,, and I. N. Clarke. 1989. Chlamydia trachomatis 60 kDa cysteine rich outer membrane protein: sequence homology between trachoma and LGV biovars. FEMS Microbiol. Lett. 53: 293 297. PubMed
174. Webley, W. C.,, G. J. Vora,, and E. S. Stuart. 2004. Cell surface display of the chlamydial glycolipid exoantigen (GLXA) demonstrated by antibody-dependent complement-mediated cytotoxicity. Curr. Microbiol. 49: 13 21. PubMed CrossRef
175. Wehrl, W.,, V. Brinkmann,, P. R. Jungblut,, T. F. Meyer,, and A. J. Szczepek. 2004. From the inside out—processing of the chlamydial autotransporter PmpD and its role in bacterial adhesion and activation of human host cells. Mol. Microbiol. 51: 319 334. PubMed CrossRef
176. Welter-Stahl, L.,, D. M. Ojcius,, J. Viala,, S. Girardin,, W. Liu,, C. Delarbre,, D. Philpott,, K. A. Kelly,, and T. Darville. 2006. Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum. Cell. Microbiol. 8: 1047 1057. PubMed CrossRef
177. Wichlan, D. G.,, and T. P. Hatch. 1993. Identification of an early-stage gene of Chlamydia psittaci 6BC. J. Bacteriol. 175: 2936 2942. PubMed
178. Wilson, D. P.,, P. Timms,, D. L. McElwain,, and P. M. Bavoil. 2006. Type III secretion, contact-dependent model for the intracellular development of Chlamydia. Bull. Math. Biol. 68: 161 178. PubMed CrossRef
179. Wilson, D. P.,, J. A. Whittum-Hudson,, P. Timms,, and P. M. Bavoil. 2009. Kinematics of intracellular chlamydiae provide evidence for contact-dependent development. J. Bacteriol. 191: 5734 5742. PubMed CrossRef
180. Wolf, K.,, H. J. Betts,, B. Chellas-Gery,, S. Hower,, C. N. Linton,, and K. A. Fields. 2006. Treatment of Chlamydia trachomatis with a small molecule inhibitor of the Yersinia type III secretion system disrupts progression of the chlamydial developmental cycle. Mol. Microbiol. 61: 1543 1555. PubMed CrossRef
181. Wylie, J. L.,, G. M. Hatch,, and G. McClarty. 1997. Host cell phospholipids are trafficked to and then modified by Chlamydia trachomatis. J. Bacteriol. 179: 7233 7242. PubMed
182. Wyllie, S.,, R. H. Ashley,, D. Longbottom,, and A. J. Herring. 1998. The major outer membrane protein of Chlamydia psittaci functions as a porin-like ion channel. Infect. Immun. 66: 5202 5207. PubMed
183. Zhang, J. P.,, and R. S. Stephens. 1992. Mechanism of C. trachomatis attachment to eukaryotic host cells. Cell 69: 861 869. PubMed CrossRef

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error