Chapter 7 : Temporal Gene Regulation during the Chlamydial Developmental Cycle

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Temporal Gene Regulation during the Chlamydial Developmental Cycle, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817329/9781555816742_Chap07-2.gif


This chapter reviews the mechanisms of temporal gene regulation utilized during the three main stages of the developmental cycle, as well as how transcription is silenced in elementary body (EB). It begins with midcycle because the majority of chlamydial genes are regulated during this stage of reticulate body (RB) growth and replication. The transcriptional regulation of midcycle genes, late genes, EBs, and early genes in sequence, mirroring the events that occur during replication, conversion of an RB into an EB, and then back again into an RB at the start of a new round of infection are discussed. Alternative sigma factors have important roles in the regulation of virulence gene expression in many bacteria. A study showed that a subset of early genes resemble midcycle genes in having promoters that are supercoiling responsive. There is emerging evidence that gene expression during the chlamydial developmental cycle is also regulated by small RNAs (sRNAs). Two complementary genome-wide studies have since identified many more sRNAs in . spp. are likely to encode more sRNAs because neither study examined chlamydial RNA before 24 hpi, and both would therefore have missed sRNAs that are only present at earlier times.

Citation: Tan M. 2012. Temporal Gene Regulation during the Chlamydial Developmental Cycle, p 149-169. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Proposed mechanisms for temporal regulation of gene expression during the chlamydial developmental cycle. doi:10.1128/9781555817329.ch7.f1

Citation: Tan M. 2012. Temporal Gene Regulation during the Chlamydial Developmental Cycle, p 149-169. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abdelrahman, Y. M.,, and R. J. Belland. 2005. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29: 949 959. PubMed CrossRef
2. Abdelrahman, Y. M.,, L. A. Rose,, and R. J. Belland. 2011. Developmental expression of non-coding RNAs in Chlamydia trachomatis during normal and persistent growth. Nucleic Acids Res. 39: 1843 1854. PubMed CrossRef
3. Akers, J. C.,, H. HoDac,, R. H. Lathrop,, and M. Tan. 2011. Identification and functional analysis of CT069 as a novel transcriptional regulator in Chlamydia. J. Bacteriol. 193: 6123 6131. PubMed CrossRef
4. Akers, J. C.,, and M. Tan. 2006. Molecular mechanism of tryptophan-dependent transcriptional regulation in Chlamydia trachomatis. J. Bacteriol. 188: 4236 4243. PubMed CrossRef
5. Albrecht, M.,, C. M. Sharma,, R. Reinhardt,, J. Vogel,, and T. Rudel. 2010. Deep sequencing-based discovery of the Chlamydia trachomatis transcriptome. Nucleic Acids Res. 38: 868 877. PubMed CrossRef
6. Bae, S. H.,, S. H. Yun,, D. Sun,, H. M. Lim,, and B. S. Choi. 2006. Structural and dynamic basis of a supercoiling-responsive DNA element. Nucleic Acids Res. 34: 254 261. PubMed CrossRef
7. Barry, C.,, S. Hayes,, and T. Hackstadt. 1992. Nucleoid condensation in Escherichia coli that express a chlamydial histone homolog. Science 256: 377 379. PubMed
8. Barry, C. E., III,, T. J. Brickman,, and T. Hackstadt. 1993. Hc1-mediated effects on DNA structure: a potential regulator of chlamydial development. Mol. Microbiol. 9: 273 283. PubMed
9. Belland, R. J.,, D. E. Nelson,, D. Virok,, D. D. Crane,, D. Hogan,, D. Sturdevant,, W. L. Beatty,, and H. D. Caldwell. 2003a. Transcriptome analysis of chlamydial growth during IFN-gamma-mediated persistence and reactivation. Proc. Natl. Acad. Sci. USA 100: 15971 15976. PubMed CrossRef
10. Belland, R. J.,, G. Zhong,, D. D. Crane,, D. Hogan,, D. Sturdevant,, J. Sharma,, W. L. Beatty,, and H. D. Caldwell. 2003b. Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc. Natl. Acad. Sci. USA 100: 8478 8483. PubMed CrossRef
11. Betts-Hampikian, H. J.,, and K. A. Fields. 2010. The chlamydial type III secretion mechanism: revealing cracks in a tough nut. Frontiers Microbiol. doi: 10.3389/fmicb.2010.00114. PubMed CrossRef
12. Brickman, T. J.,, C. E. Barry III,, and T. Hackstadt. 1993. Molecular cloning and expression of hctB encoding a strain-variant chlamydial histone-like protein with DNA-binding activity. J. Bacteriol. 175: 4274 4281. PubMed
13. Browning, D. F.,, and S. J. Busby. 2004. The regulation of bacterial transcription initiation. Nat. Rev. Microbiol. 2: 57 65. PubMed CrossRef
14. Carlson, J. H.,, H. Wood,, C. Roshick,, H. D. Caldwell,, and G. McClarty. 2006. In vivo and in vitro studies of Chlamydia trachomatis TrpR:DNA interactions. Mol. Microbiol. 59: 1678 1691. PubMed CrossRef
15. Case, E. D.,, J. C. Akers,, and M. Tan. 2011. CT406 encodes a chlamydial ortholog of NrdR, a repressor of ribonucleotide reductase. J. Bacteriol. 193: 4396 4404. PubMed CrossRef
16. Case, E. D.,, E. M. Peterson,, and M. Tan. 2010. Promoters for Chlamydia type III secretion genes show a differential response to DNA supercoiling that correlates with temporal expression pattern. J. Bacteriol. 192: 2569 2574. PubMed CrossRef
17. Cheng, E.,, and M. Tan. 2012. Differential effects of DNA supercoiling on Chlamydia early promoters correlate with expression patterns in midcycle. J. Bacteriol. 194: 3109 3115. PubMed CrossRef
18. Clarke, I. N.,, M. E. Ward,, and P. R. Lambden. 1988. Molecular cloning and sequence analysis of a developmentally regulated cysteine-rich outer membrane protein from Chlamydia trachomatis. Gene 71: 307 314. PubMed
19. Collingro, A.,, P. Tischler,, T. Weinmaier,, T. Penz,, E. Heinz,, R. C. Brunham,, T. D. Read,, P. M. Bavoil,, K. Sachse,, S. Kahane,, M. G. Friedman,, T. Rattei,, G. S. Myers,, and M. Horn. 2011. Unity in variety—the pangenome of the Chlamydiae. Mol. Biol. Evol. 28: 3253 3270. PubMed CrossRef
20. Dorman, C. J. 2006. DNA supercoiling and bacterial gene expression. Sci. Prog. 89: 151 166. PubMed
21. Douglas, A.,, and T. P. Hatch,. 2006. The phosphorelay system in Chlamydia trachomatis, p. 177 180. In M. Chernesky (ed.), Chlamydial Infections: Proceedings of the Eleventh International Symposium on Human Chlamydial Infections. Niagara-on-the-Lake, Canada.
22. Douglas, A. L.,, and T. P. Hatch. 2000. Expression of the transcripts of the sigma factors and putative sigma factor regulators of Chlamydia trachomatis L2. Gene 247: 209 214. PubMed
23. Drlica, K. 1992. Control of bacterial DNA supercoiling. Mol. Microbiol. 6: 425 433. PubMed
24. Engel, J.,, and D. Ganem,. 1990a. Identification and comparison of putative chlamydial promoter elements, p. 245 260. In L. Van der Ploeg (ed.), Immune Recognition and Evasion: Molecular Aspects of Host Parasite Interaction. Academic Press Inc., San Diego, CA.
25. Engel, J.,, and D. Ganem. 1990b. A PCR-based approach to cloning sigma factors from eubacteria and its application to the isolation of a sigma70 homolog from Chlamydia trachomatis. J. Bacteriol. 172: 2447 2455. PubMed
26. Fahr, M. J.,, A. L. Douglas,, W. Xia,, and T. P. Hatch. 1995. Characterization of late gene promoters of Chlamydia trachomatis. J. Bacteriol. 177: 4252 4260. PubMed
27. Fan, T.,, H. Lu,, H. Hu,, L. Shi,, G. A. McClarty,, D. M. Nance,, A. H. Greenberg,, and G. Zhong. 1998. Inhibition of apoptosis in Chlamydia-infected cells: blockade of mitochondrial cytochrome c release and caspase activation. J. Exp. Med. 187: 487 496. PubMed
28. Fang, F. C. 2005. Sigma cascades in prokaryotic regulatory networks. Proc. Natl. Acad. Sci. USA 102: 4933 4934. PubMed CrossRef
29. Gao, R.,, and A. M. Stock. 2009. Biological insights from structures of two-component proteins. Annu. Rev. Microbiol. 63: 133 154. PubMed CrossRef
30. Gmuender, H.,, K. Kuratli,, K. Di Padova,, C. P. Gray,, W. Keck,, and S. Evers. 2001. Gene expression changes triggered by exposure of Haemophilus influenzae to novobiocin or ciprofloxacin: combined transcription and translation analysis. Genome Res. 11: 28 42. PubMed
31. Gottesman, S.,, and G. Storz. 27 October 2010. Bacterial small RNA regulators: versatile roles and rapidly evolving variations. Cold Spring Harb. Perspect. Biol. doi: 10.1101/cshperspect.a003798. PubMed CrossRef
32. Grieshaber, N. A.,, E. R. Fischer,, D. J. Mead,, C. A. Dooley,, and T. Hackstadt. 2004. Chlamydial histone-DNA interactions are disrupted by a metabolite in the methylerythritol phosphate pathway of isoprenoid biosynthesis. Proc. Natl. Acad. Sci. USA 101: 7451 7456. PubMed CrossRef
33. Grieshaber, N. A.,, S. S. Grieshaber,, E. R. Fischer,, and T. Hackstadt. 2005. A small RNA inhibits translation of the histone-like protein Hc1 in Chlamydia trachomatis. Mol. Microbiol. 59: 541 550. PubMed CrossRef
34. Grieshaber, N. A.,, J. B. Sager,, C. A. Dooley,, S. F. Hayes,, and T. Hackstadt. 2006. Regulation of the Chlamydia trachomatis histone H1-like protein Hc2 is IspE dependent and IhtA independent. J. Bacteriol. 188: 5289 5292. PubMed CrossRef
35. Gruber, T. M.,, and C. A. Gross. 2003. Multiple sigma subunits and the partitioning of bacterial transcription space. Annu. Rev. Microbiol. 57: 441 466. PubMed CrossRef
36. Hackstadt, T. 1991. Purification and N-terminal amino acid sequences of Chlamydia trachomatis histone analogs. J. Bacteriol. 173: 7046 7049. PubMed
37. Hackstadt, T., 1999. Cell biology, p. 101 138. In R. S. Stephens (ed.), Chlamydia: Intracellular Biology, Pathogenesis, and Immunity. ASM Press, Washington, DC.
38. Haider, S.,, M. Wagner,, M. C. Schmid,, B. S. Sixt,, J. G. Christian,, G. Hacker,, P. Pichler,, K. Mechtler,, A. Muller,, C. Baranyi,, E. R. Toenshoff,, J. Montanaro,, and M. Horn. 2010. Raman microspectroscopy reveals long-term extracellular activity of chlamydiae. Mol. Microbiol. 77: 687 700. PubMed CrossRef
39. Haldenwang, W. G. 1995. The sigma factors of Bacillus subtilis. Microbiol. Rev. 59: 1 30. PubMed
40. Hatch, T. P. 1996. Disulfide cross-linked envelope proteins: the functional equivalent of peptidoglycan in chlamydiae? J. Bacteriol. 178: 1 5. PubMed
41. Hatfield, G. W.,, and C. J. Benham. 2002. DNA topology-mediated control of global gene expression in Escherichia coli. Annu. Rev. Genet. 36: 175 203. PubMed CrossRef
42. Hickey, J. M.,, L. Weldon,, and P. S. Hefty. 2011. The atypical OmpR/PhoB response regulator ChxR from Chlamydia trachomatis forms homodimers in vivo and binds a direct repeat of nucleotide sequences. J. Bacteriol. 193: 389 398. PubMed CrossRef
43. Hooper, D. C. 2000. Mechanisms of action and resistance of older and newer fluoroquinolones. Clin. Infect. Dis. 31( Suppl. 2): S24 S28. PubMed CrossRef
44. Horn, M.,, A. Collingro,, S. Schmitz-Esser,, C. L. Beier,, U. Purkhold,, B. Fartmann,, P. Brandt,, G. J. Nyakatura,, M. Droege,, D. Frishman,, T. Rattei,, H. W. Mewes,, and M. Wagner. 2004. Illuminating the evolutionary history of chlamydiae. Science 304: 728 730. PubMed CrossRef
45. Hua, L.,, P. S. Hefty,, Y. J. Lee,, Y. M. Lee,, R. S. Stephens,, and C. W. Price. 2006. Core of the partner switching signalling mechanism is conserved in the obligate intracellular pathogen Chlamydia trachomatis. Mol. Microbiol. 59: 623 636. PubMed CrossRef
46. Hybiske, K.,, and R. S. Stephens. 2007. Mechanisms of host cell exit by the intracellular bacterium Chlamydia. Proc. Natl. Acad. Sci. USA 104: 11430 11435. PubMed CrossRef
47. Karlinsey, J. E.,, and K. T. Hughes. 2006. Genetic transplantation: Salmonella enterica serovar Typhimurium as a host to study sigma factor and anti-sigma factor interactions in genetically intractable systems. J. Bacteriol. 188: 103 114. PubMed CrossRef
48. Kazmierczak, M. J.,, M. Wiedmann,, and K. J. Boor. 2005. Alternative sigma factors and their roles in bacterial virulence. Microbiol. Mol. Biol. Rev. 69: 527 543. PubMed CrossRef
49. Koo, I. C.,, and R. S. Stephens. 2003. A developmentally regulated two-component signal transduction system in Chlamydia. J. Biol. Chem. 278: 17314 17319. PubMed CrossRef
50. Lad, S. P.,, J. Li,, J. da Silva Correia,, Q. Pan,, S. Gadwal,, R. J. Ulevitch,, and E. Li. 2007. Cleavage of p65/RelA of the NF-kappaB pathway by Chlamydia. Proc. Natl. Acad. Sci. USA 104: 2933 2938. PubMed CrossRef
51. Lambden, P. R.,, J. S. Everson,, M. E. Ward,, and I. N. Clarke. 1990. Sulfur-rich proteins of Chlamydia trachomatis: developmentally regulated transcription of polycistronic mRNA from tandem promoters. Gene 87: 105 112. PubMed
52. Madan Babu, M.,, S. A. Teichmann,, and L. Aravind. 2006. Evolutionary dynamics of prokaryotic transcriptional regulatory networks. J. Mol. Biol. 358: 614 633. PubMed CrossRef
53. Martinez-Antonio, A.,, and J. Collado-Vides. 2003. Identifying global regulators in transcriptional regulatory networks in bacteria. Curr. Opin. Microbiol. 6: 482 489. PubMed
54. Mathews, S. A.,, A. Douglas,, K. S. Sriprakash,, and T. P. Hatch. 1993. In vitro transcription in Chlamydia psittaci and Chlamydia trachomatis. Mol. Microbiol. 7: 937 946. PubMed CrossRef
55. Mathews, S. A.,, K. M. Volp,, and P. Timms. 1999. Development of a quantitative gene expression assay for Chlamydia trachomatis identified temporal expression of sigma factors. FEBS Lett. 458: 354 358. PubMed
56. Maurer, A. P.,, A. Mehlitz,, H. J. Mollenkopf,, and T. F. Meyer. 2007. Gene expression profiles of Chlamydophila pneumoniae during the developmental cycle and iron depletion-mediated persistence. PLoS Pathog. 3: e83. PubMed CrossRef
57. Moulder, J. W. 1991. Interaction of chlamydiae and host cells in vitro. Microbiol. Rev. 55: 143 190. PubMed
58. Nicholson, T. L.,, L. Olinger,, K. Chong,, G. Schoolnik,, and R. S. Stephens. 2003. Global stage-specific gene regulation during the developmental cycle of Chlamydia trachomatis. J. Bacteriol. 185: 3179 3189. PubMed CrossRef
59. Niehus, E.,, E. Cheng,, and M. Tan. 2008. DNA supercoiling-dependent gene regulation in Chlamydia. J. Bacteriol. 190: 6419 6427. PubMed CrossRef
60. Pedersen, L. B.,, S. Birkelund,, and G. Christiansen. 1994. Interaction of the Chlamydia trachomatis histone H1-like protein (Hc1) with DNA and RNA causes repression of transcription and translation in vitro. Mol. Microbiol. 11: 1085 1098. PubMed CrossRef
61. Pedersen, L. B.,, S. Birkelund,, and G. Christiansen. 1996. Purification of recombinant Chlamydia trachomatis histone H1-like protein Hc2, and comparative functional analysis of Hc2 and Hc1. Mol. Microbiol. 20: 295 311. PubMed CrossRef
62. Perara, E.,, D. Ganem,, and J. Engel. 1992. A developmentally regulated chlamydial gene with apparent homology to eukaryotic histone H1. Proc. Natl. Acad. Sci. USA 89: 2125 2129. PubMed
63. Peter, B. J.,, J. Arsuaga,, A. M. Breier,, A. B. Khodursky,, P. O. Brown,, and N. R. Cozzarelli. 2004. Genomic transcriptional response to loss of chromosomal supercoiling in Escherichia coli. Genome Biol. 5: R87. PubMed CrossRef
64. Plaunt, M. R.,, and T. P. Hatch. 1988. Protein synthesis early in the developmental cycle of Chlamydia psittaci. Infect. Immun. 56: 3021 3025. PubMed
65. Price, C. W., 2002. General stress response, p. 369 384. In A. L. Sonenshein,, J. A. Hoch,, and R. Losick (ed.), Bacillus subtilis and Its Closest Relatives: from Genes to Cells. ASM Press, Washington, DC.
66. Rao, X.,, P. Deighan,, Z. Hua,, X. Hu,, J. Wang,, M. Luo,, J. Wang,, Y. Liang,, G. Zhong,, A. Hochschild,, and L. Shen. 2009. A regulator from Chlamydia trachomatis modulates the activity of RNA polymerase through direct interaction with the beta subunit and the primary sigma subunit. Genes Dev. 23: 1818 1829. PubMed CrossRef
67. Rosario, C. J.,, and M. Tan. 2012. The early gene product EUO is a transcriptional repressor that selectively regulates promoters of Chlamydia late genes. Mol. Microbiol. 84: 1097 1107. PubMed CrossRef
68. Schachter, J. 1988. The intracellular life of Chlamydia. Curr. Topics Microbiol. Immunol. 138: 109 139. PubMed
69. Schaumburg, C. S.,, and M. Tan. 2000. A positive cis-acting DNA element is required for high-level transcription in Chlamydia. J. Bacteriol. 182: 5167 5171. PubMed CrossRef
70. Schaumburg, C. S.,, and M. Tan. 2006. Arginine-dependent gene regulation via the ArgR repressor is species specific in Chlamydia. J. Bacteriol. 188: 919 927. PubMed CrossRef
71. Shaw, A. C.,, K. Gevaert,, H. Demol,, B. Hoorelbeke,, J. Vandekerckhove,, M. R. Larsen,, P. Roepstorff,, A. Holm,, G. Christiansen,, and S. Birkelund. 2002. Comparative proteome analysis of Chlamydia trachomatis serovar A, D and L2. Proteomics 2: 164 186.
72. Shaw, E. I.,, C. A. Dooley,, E. R. Fischer,, M. A. Scidmore,, K. A. Fields,, and T. Hackstadt. 2000. Three temporal classes of gene expression during the Chlamydia trachomatis developmental cycle. Mol. Microbiol. 37: 913 925. PubMed CrossRef
73. Shen, L.,, X. Feng,, Y. Yuan,, X. Luo,, T. P. Hatch,, K. T. Hughes,, J. S. Liu,, and Y. X. Zhang. 2006. Selective promoter recognition by chlamydial sigma28 holoenzyme. J. Bacteriol. 188: 7364 7377. PubMed CrossRef
74. Shen, L.,, M. Li,, and Y. X. Zhang. 2004. Chlamydia trachomatis sigma28 recognizes the fliC promoter of Escherichia coli and responds to heat shock in chlamydiae. Microbiology 150: 205 215. PubMed CrossRef
75. Sixt, B. S.,, C. Heinz,, P. Pichler,, E. Heinz,, J. Montanaro,, H. J. Op den Camp,, G. Ammerer,, K. Mechtler,, M. Wagner,, and M. Horn. 2011. Proteomic analysis reveals a virtually complete set of proteins for translation and energy generation in elementary bodies of the amoeba symbiont Protochlamydia amoebophila. Proteomics 11: 1868 1892. PubMed CrossRef
76. Skipp, P.,, J. Robinson,, C. D. O’Connor,, and I. N. Clarke. 2005. Shotgun proteomic analysis of Chlamydia trachomatis. Proteomics 5: 1558 1573. PubMed CrossRef
77. Solbrig, M. V.,, M. L. Wong,, and R. S. Stephens. 1990. Developmental stage specific plasmid supercoiling in Chlamydia trachomatis. Mol. Microbiol. 4: 1 7. PubMed CrossRef
78. Spaeth, K. E.,, Y. S. Chen,, and R. H. Valdivia. 2009. The Chlamydia type III secretion system C-ring engages a chaperone-effector protein complex. PLoS Pathog. 5: e1000579. PubMed CrossRef
79. Stephens, R. S.,, S. Kalman,, C. Lammel,, J. Fan,, R. Marathe,, L. Aravind,, W. Mitchell,, L. Olinger,, R. L. Tatusov,, Q. Zhao,, E. V. Koonin,, and R. W. Davis. 1998. Genome sequence of an obligate intracellular pathogen of humans: Chlamydia trachomatis. Science 282: 754 759. PubMed CrossRef
80. Stephens, R. S.,, E. A. Wagar,, and U. Edman. 1988. Developmental regulation of tandem promoters for the major outer membrane protein of Chlamydia trachomatis. J. Bacteriol. 170: 744 750. PubMed
81. Stragier, P.,, and R. Losick. 1990. Cascades of sigma factors revisited. Mol. Microbiol. 4: 1801 1806. PubMed CrossRef
82. Tan, M., 2006. Regulation of gene expression, p. 103 131. In P. M. Bavoil, and P. B. Wyrick (ed.), Chlamydia: Genomics and Pathogenesis. Horizon Bioscience, Wymondham, United Kingdom.
83. Tao, S.,, R. Kaul,, and W. M. Wenman. 1991. Identification and nucleotide sequence of a developmentally regulated gene encoding a eukaryotic histone H1-like protein from Chlamydia trachomatis. J. Bacteriol. 173: 2818 2822. PubMed
84. Ward, M. E., 1988. The chlamydial developmental cycle, p. 71 98. In A. L. Barron (ed.), Microbiology of Chlamydia. CRC Press, Boca Raton, FL..
85. Wichlan, D. G.,, and T. P. Hatch. 1993. Identification of an early-stage gene of Chlamydia psittaci 6BC. J. Bacteriol. 175: 2936 2942. PubMed
86. Wilson, A. C.,, and M. Tan. 2002. Functional analysis of the heat shock regulator HrcA of Chlamydia trachomatis. J. Bacteriol. 184: 6566 6571. PubMed CrossRef
87. Wyllie, S.,, and J. E. Raulston. 2001. Identifying regulators of transcription in an obligate intracellular pathogen: a metal-dependent repressor in Chlamydia trachomatis. Mol. Microbiol. 40: 1027 1036. PubMed CrossRef
88. Yu, H. H. Y.,, E. G. Di Russo,, M. A. Rounds,, and M. Tan. 2006a. Mutational analysis of the promoter recognized by Chlamydia and Escherichia coli sigma 28 RNA polymerase. J. Bacteriol. 188: 5524 5531. PubMed CrossRef
89. Yu, H. H. Y.,, D. Kibler,, and M. Tan. 2006b. In silico prediction and functional validation of sigma 28-regulated genes in Chlamydia and Escherichia coli. J. Bacteriol. 188: 8206 8212. PubMed CrossRef
90. Yu, H. H. Y.,, and M. Tan. 2003. Sigma 28 RNA polymerase regulates hctB, a late developmental gene in Chlamydia. Mol. Microbiol. 50: 577 584. PubMed CrossRef
91. Yuan, Y.,, Y. X. Zhang,, D. S. Manning,, and H. D. Caldwell. 1990. Multiple tandem promoters of the major outer membrane protein gene ( omp1) of Chlamydia psittaci. Infect. Immun. 58: 2850 2855. PubMed
92. Zhang, L.,, A. L. Douglas,, and T. P. Hatch. 1998. Characterization of a Chlamydia psittaci DNA binding protein (EUO) synthesized during the early and middle phases of the developmental cycle. Infect. Immun. 66: 1167 1173. PubMed
93. Zhang, L.,, M. M. Howe,, and T. P. Hatch. 2000. Characterization of in vitro DNA binding sites of the EUO protein of Chlamydia psittaci. Infect. Immun. 68: 1337 1349. PubMed CrossRef


Generic image for table

Chlamydial factors for which there are data to support a role in regulating temporal gene expression during the developmental cycle

Citation: Tan M. 2012. Temporal Gene Regulation during the Chlamydial Developmental Cycle, p 149-169. In Tan M, Bavoil P (ed), Intracellular Pathogens I: . ASM Press, Washington, DC. doi: 10.1128/9781555817329.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error