Chapter 6 : Molecular Microbiology*

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Molecular Microbiology*, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch6-1.gif /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch6-2.gif


Nucleic acid amplification techniques are now commonly used to diagnose and manage patients with infectious diseases. The growth in the number of FDA-cleared test kits and analyte-specific reagents has facilitated the use of this technology in the clinical laboratory. Technological advances in nucleic acid amplification techniques, automation, nucleic acid sequencing, and multiplex analysis have revitalized the field of molecular microbiology and created new opportunities for growth. Simple, sample-in, answer-out molecular test systems are now available that can be deployed in a variety of laboratory and clinical settings. Molecular microbiology remains the leading area in molecular pathology in terms of both the numbers of tests performed and clinical relevance. Nucleic acid-based tests have reduced the dependency of the clinical microbiology laboratory on more traditional antigen detection and culture-based methods and created new opportunities for the laboratory to affect patient care. This chapter covers nucleic acid probes, signal and target amplification techniques, postamplification detection and analysis (e.g., electrophoresis, hybridization, sequencing, microarrays, and mass spectrometry), clinical applications of these techniques, and the special challenges and opportunities that these techniques provide for the clinical laboratory.

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

PNA probes for (green), (yellow), and (red). Reprinted with permission of AdvanDx from http://www.advandx.com/Technology/image-gallery. doi:10.1128/9781555817381.ch6.f1

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

bDNA signal amplification. Reprinted with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f2

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Hybrid capture signal amplification. Reprinted with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f3

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Cleavase-invader probe-based amplification. Reprinted with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f4

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

PCR target amplification. Reprinted with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f5

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Real-time PCR amplification plot with commonly used terms and abbreviations. C, cycle threshold; R, normalized fluorescent signal from reporter dye. From , p 5-4 (Applied Biosystems, Foster City, CA, 2010). Reprinted with permission. doi:10.1128/9781555817381.ch6.f6

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

5′ Exonuclease chemistry for real-time PCR applications. Modified with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f7

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

Dual hybridization probes for real-time PCR applications. Reprinted with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f8

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9

Molecular beacon probes for real-time amplification applications. Modified with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f9

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10

Scorpion probes. (A) The primer element binds to the DNA target. The probe element is in the closed, nonfluorescent configuration. (B) The primer is extended and incorporates a probe-binding site into the new strand. The probe element remains in the closed, nonfluorescent configuration. (C) After a cycle of denaturation and reannealing, the probe flips forward to bind its target site on the same molecule. The fluorophore and quencher are now separated, and the fluorescence increases. Reprinted with permission from . doi:10.1128/9781555817381.ch6.f10

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11

Principles of partially double-stranded linear probes. A double-stranded linear probe contains two complementary oligonucleotides of very different lengths. The longer, positive strand is 5′ labeled with a fluorophore reporter, while the shorter, negative strand carries a quencher moiety at its 3′ end. When not bound to a target, the probe is nonfluorescent due to the close proximity of the fluorophore and the quencher. In the presence of a specific target, the positive strand preferentially hybridizes to the target, resulting in increased fluorescence signal generation. Modified from . doi:10.1128/9781555817381.ch6.f11

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12

Digital PCR works by partitioning a sample into many nanoliter-scale individual PCR reactions, some of which contain a target molecule (red) while others do not (gray). Following PCR, the ratio of positive to negative reactions is used to calculate the starting number of target molecules. gDNA, genomic DNA. Reprinted with permission from Applied Biosystems QuantStudio OpenArray Digital PCR Application Note. doi:10.1128/9781555817381.ch6.f12

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13

Transcription-based target amplification. NASBA and TMA are examples of transcription-based amplification systems. Reprinted with permission of Elsevier from . doi:10.1128/9781555817381.ch6.f13

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 14

Strand displacement target amplification. Modified from . doi:10.1128/9781555817381.ch6.f14

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 15

(a) Primer design of the LAMP reaction. For ease of explanation, six distinct regions are designated on the target DNA, labeled F3, F2, F1, B1c, B2c, and B3 from the 5′ end. As c represents a complementary sequence, the F1c sequence is complementary to the F1 sequence. Two inner primers (FIP and BIP) and outer primers (F3 and B3) are used in the LAMP method. FIP (BIP) is a hybrid primer consisting of the F1c (B1c) sequence and the F2 (B2) sequence. (b) Starting structure-producing step. DNA synthesis initiated from FIP proceeds as follows. The F2 region anneals to the F2c region on the target DNA and initiates the elongation. DNA amplification proceeds with BIP in a similar manner. The F3 primer anneals to the F3c region on the target DNA, and strand displacement DNA synthesis takes place. The DNA strand elongated from FIP is replaced and released. The released single strand forms a loop structure at its 3′ end (structure 3). DNA synthesis proceeds with the ssDNA as the template and BIP and B3 primer, in the same manner as described earlier, to generate structure 5, which possesses the loop structure at both ends (dumbbell-like structure). (c) Cycling amplification step. Using self-structure as the template, self-primed DNA synthesis is initiated from the 3′-end F1 region, and the elongation starts from FIP, annealing to the single strand of the F2c region in the loop structure. Passing through several steps, structure 7 is generated, which is complementary to structure 5, and structure 5 is produced from structure 8 in a reaction similar to that which led from structures 5 to 7. Structures 9 and 10 are produced from structures 6 and 8, respectively, and more elongated structures ( ) are also produced. Reprinted with permission of Nature Publishing Group from . doi:10.1128/9781555817381.ch6.f15

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 16

HDA amplifies target sequences using two sequence-specific primers flanking the fragment to be amplified and a mixture of enzymes for DNA strand separation and polymerization. In the first step of the HDA reaction, the helicase enzyme loads onto the template and traverses along the target DNA, disrupting the hydrogen bonds linking the two strands. Exposure of the single-stranded target region by helicase allows primers to anneal. The DNA polymerase then extends the 3′ ends of each primer using free deoxynucleotides (dNTPs) to produce two DNA replicates. The two replicated DNAs independently enter the next cycle of HDA, resulting in exponential amplification of the target sequence. Reprinted with permission of BioHelix from http://www.biohelix.com/HDA_mechanism.asp. doi:10.1128/9781555817381.ch6.f16

Citation: Nolte F. 2015. Molecular Microbiology*, p 54-90. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Arnold LJ Jr,, Hammond PW,, Wiese WA,, Nelson NC. 1989. Assay formats involving acridinium ester-labeled DNA probes. Clin Chem 35: 15881594.
2. Tenover FC. 1988. Diagnostic deoxyribonucleic acid probes for infectious diseases. Clin Microbiol Rev 1: 82101.
3. Hankin RC. 1992. In situ hybridization: principles and applications. Lab Med 23: 764770.
4. Stender H,, Fiandaca M,, Hyldig-Nielsen JJ,, Coull J. 2002. PNA for rapid microbiology. J Microbiol Methods 48: 117.
5. Montague NS,, Cleary TJ,, Martines OV,, Procop GW. 2008. Detection of group B streptococci in Lim broth by use of group B streptococcus peptide nucleic acid fluorescent in situ hybridization and selective and nonselective agars. J Clin Microbiol 46: 34703472.
6. Shepard JR,, Addison RM,, Alexander BD,, Della-Latta P,, Gherhard H,, Hall G,, Johnson JK,, Merz WG,, Peltroche-Llacsahuanga H,, Stender H,, Venezia RA,, Wilson D,, Procop GW,, Wu F,, Fiandaca MJ. 2008. Multicenter evaluation of the Candida albicans/Candida glabrata peptide nucleic acid fluorescent in situ hybridization method for simultaneous dual-color identification of C. albicans and C. glabrata directly from blood culture bottles. J Clin Microbiol 46: 5055.
7. Sogaard M,, Stender H,, Schonheyder HC. 2005. Direct identification of major blood culture pathogens, including Pseudomonas aeruginosa and Escherichia coli, by a panel of fluorescence in situ hybridization assays using peptide nucleic acid probes. J Clin Microbiol 43: 19471949.
8. Saiki RK,, Gelfand DH,, Stoffel S,, Scharf SJ,, Higuchi R,, Mullis KB,, Horn G,, Ehrlich HA. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487491.
9. Kricka LJ. 1999. Nucleic acid detection technologies—labels, strategies, and formats. Clin Chem 45: 453458.
10. Kern D,, Collins M,, Fultz T,, Detmer J,, Hamren S,, Peterkin JJ,, Sheridan P,, Urdea M,, White R,, Yeghiazarian T,, Todd J. 1996. An enhanced-sensitivity branched-DNA assay for quantification of human immunodeficiency virus type 1 RNA in plasma. J Clin Microbiol 34: 31963202.
11. Nolte FS. 1999. Branched DNA signal amplification for direct quantitation of nucleic acid sequences in clinical specimens. Adv Clin Chem 33: 201235.
12. Collins ML,, Zayati C,, Detmer JJ,, Daly B,, Kolberg JA,, Cha T,, Irvine BD,, Tucker J,, Urdea MS. 1995. Preparation and characterization of RNA standards for use in quantitative branched-DNA hybridization assays. Anal Biochem 226: 120129.
13. Piccirilli JA,, Krauch T,, Moroney SE,, Benner SA. 1990. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 343: 3337.
14. Cope JJ,, Hildesheim A,, Schiffman MH,, Manos MM,, Lorincz AT,, Burk RD,, Glass AG,, Greer C,, Burkland J,, Helgesen K,, Scott DR,, Sherman ME,, Kurman RJ,, Liaw KL. 1997. Comparison of the hybrid capture tube test and PCR for detection of human papillomavirus DNA in cervical specimens. J Clin Microbiol 35: 22622265.
15. Lieber MR. 1997. The FEN-1 family of structure-specific nucleases in eukaryotic DNA replication, recombination and repair. Bioessays 19: 233240.
16. Lyamichev V,, Mast A,, Hall JG,, Prudent JR,, Kaiser MW,, Takova T,, Kwiatkowski RK,, Sander TJ,, de Arruda M,, Arco D,, Weri BP,, Brow MA. 1999. Polymorphism identification and quantitative detection from genomic DNA by invasive cleavage of oligonucleotide probes. Nat Biotechnol 17: 292296.
17. Ginocchio CC,, Barth D,, Zhang F. 2008. Comparison of the Third Wave Invader human papillomavirus (HPV) assay and the Digene HPV Hybrid Capture 2 assay for detection of high-risk HPV DNA. J Clin Microbiol 46: 16411646.
18. Einstein MH,, Martens MG,, Garcia FA,, Ferris DG,, Mitchell AL,, Day SP,, Olson MC. 2010. Clinical validation of the Cervista HPV HR and 16/18 genotyping tests for use in women with ASC-US cytology. Gynecol Oncol 118: 116122.
19. Myers TW,, Gelfand DH. 1991. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 30: 76617666.
20. Chamberlain JS,, Gibbs RA,, Rainer JE,, Nguyen PN,, Caskey CT. 1988. Deletion screening of the Duchenne muscular dystrophy locus via multiplex DNA amplification. Nucleic Acids Res 16: 1114111156.
21. Boriskin YS,, Rice PS,, Stabler RA,, Hinds J,, Al-Ghusein H,, Vass K,, Butcher PD. 2004. DNA microarrays for virus detection in cases of central nervous system infection. J Clin Microbiol 42: 58115818.
22. Corless CE,, Guiver M,, Borrow R,, Edwards-Jones V,, Fox AJ,, Kaczmarski EB. 2001. Simultaneous detection of Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae in suspected cases of meningitis and septicemia using real-time PCR. J Clin Microbiol 39: 15531558.
23. Kim SR,, Ki C,, Lee NY. 2009. Rapid detection and identification of 12 respiratory viruses using a dual priming oligonucleotide system-based multiplex PCR assay. J Virol Methods 156: 111116.
24. Templeton KE,, Scheltinga SA,, Beersma MF,, Kroes AC,, and Claas EC. 2004. Rapid and sensitive method using multiplex real-time PCR for diagnosis of infections by influenza A and influenza B viruses, respiratory syncytial virus, and parainfluenza viruses 1, 2, 3, and 4. J Clin Microbiol 42: 15641569.
25. Mahony J,, Chong S,, Merante F,, Yaghoubian S,, Sinha T,, Lisle C,, Janeczko R. 2007. Development of a respiratory virus panel test for detection of twenty human respiratory viruses by use of multiplex PCR and a fluid microbead-based assay. J Clin Microbiol 45: 29652970.
26. Poritz MA,, Blaschke AJ,, Byington CL,, Meyers L,, Nilsson K,, Jones DE,, Thatcher SA,, Robbins T,, Lingenfelter B,, Amiott E,, Herbener A,, Daly J,, Dobrowolski SF,, Teng DH,, Ririe KM. 2011. FilmArray, an automated nested multiplex PCR aystem for multi-pathogen detection: development and application to respiratory tract infection. PLoS One 6:e26047. doi:10.1371/journal.pone .0026047.
27. Westh H,, Lisby G,, Breysse F,, Boddinghaus B,, Chomarat M,, Gant V,, Goglio A,, Raglio A,, Schuster H,, Stuber F,, Wissing H,, Hoeft A. 2009. Multiplex real-time PCR and blood culture for identification of bloodstream pathogens in patients with suspected sepsis. Clin Microbiol Infect 15: 544551.
28. Blaschke AJ,, Heyrend C,, Byington CL,, Fisher MA,, Barker E,, Garrone NF,, Thatcher SA,, Pavia AT,, Barney T,, Alger GD,, Daly JA,, Ririe KM,, Ota I,, Poritz MA. 2012. Rapid identification of pathogens from positive blood cultures by multiplex polymerase chain reaction using the FilmArray system. Diagn Microbiol Infect Dis 74: 349355.
29. Wojewoda CM,, Sercia L,, Navas M,, Tuohy M,, Wilson D,, Hall GS,, Procop GW,, Richter SS. 2013. Evaluation of the Verigene Gram-positive blood culture nucleic acid test for rapid detection of bacteria and resistance determinants. J Clin Microbiol 51: 20722076.
30. de Boer RF,, Ott A,, Kesztyus B,, Kooistra-Smid AM. 2010. Improved detection of five major gastrointestinal pathogens by use of a molecular screening approach. J Clin Microbiol 48: 41404146.
31. Coste JF,, Vuiblet V,, Moustapha B,, Bouin A,, Lavaud S,, Toupance O,, de Rougemont A,, Benejat L,, Megraud F,, Wolak-Thierry A,, Villena I,, Chemla C,, Le Magrex E,, de Champs C,, Andreoletti L,, Rieu P,, Leveque N. 2013. Microbiological diagnosis of severe diarrhea in kidney transplant recipients by use of multiplex PCR assays. J Clin Microbiol 51: 18411849.
32. Popowitch EB,, O’Neill SS,, Miller MB. 2013. Comparison of the Biofire FilmArray RP, Genmark eSensor RVP, Luminex xTAG RVPv1, and Luminex xTAG RVP Fast multiplex assays for detection of respiratory viruses. J Clin Microbiol 51: 15281533.
33. Dunbar SA,, Vander Zee CA,, Oliver KG,, Karem KL,, Jacobson JW. 2003. Quantitative, multiplexed detection of bacterial pathogens: DNA and protein applications of the Luminex LabMAP system. J Microbiol Methods 53: 245252.
34. Diaz MR,, Fell JW. 2004. High-throughput detection of pathogenic yeasts of the genus Trichosporon. J Clin Microbiol 42: 36963706.
35. Smith PL,, Walker Peach CR,, Fulton RJ,, DuBois DB. 1998. A rapid, sensitive, multiplexed assay for detection of viral nucleic acids using the FlowMetrix system. Clin Chem 44: 20542056.
36. Wallace J,, Woda BA,, Pihan G. 2005. Facile, comprehensive, high-throughput genotyping of human genital papillomaviruses using spectrally addressable liquid bead microarrays. J Mol Diagn 7: 7280.
37. Brunstein JD,, Cline CL,, McKinney S,, Thomas E. 2008. Evidence from multiplex molecular assays for complex multipathogen interactions in acute respiratory infections. J Clin Microbiol 46: 97102.
38. Nolte FS,, Marshall DJ,, Rasberry C,, Schievelbein S,, Banks GG,, Storch GA,, Arens MQ,, Buller RS,, Prudent JR. 2007. MultiCode-PLx system for mutiplexed detection of seventeen repiratory viruses. J Clin Microbiol 45: 27792786.
39. Mengelle C,, Mansuy J. M,, Prere MF,, Grouteau E,, Claudet I,, Kamar N,, Huynh A,, Plat G,, Benard M,, Marty N,, Valentin A,, Berry A,, Izopet J. 2013. Simultaneous detection of gastrointestinal pathogens with a multiplex Luminex-based molecular assay in stool samples from diarrhoeic patients. Clin Microbiol Infect 19: E458E465.
40. Higuchi R,, Fockler C,, Dollinger G,, Watson R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology (NY) 11: 10261030.
41. Morrison T,, Weiss JJ,, Wittwer CT. 1998. Quantification of low copy transcripts by continuous SYBR Green I dye monitoring during amplification. Biotechniques 24: 954958.
42. Ririe K,, Rasmussen RP,, Wittwer CT. 1997. Product differentiation by analysis of DNA melting curves during the polymerase chain reaction. Anal Biochem 245: 154160.
43. Holland PM,, Abramson RD,, Watson R,, Gelfand DH. 1991. Detection of specific polymerase chain reaction product by utilizing the 5′→3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci U S A 88: 72767280.
44. Heid C,, Stevens J,, Livak KJ,, Williams PM. 1996. Real time quantitative PCR. Genome Res 6: 986994.
45. Lay MJ,, Wittwer CT. 1997. Real-time fluorescence genotyping of factor V Leiden during rapid-cycle PCR. Clin Chem 43: 22622267.
46. Tyagi S,, Bratu DP,, Kramer FR. 1998. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 16: 4953.
47. Thelwell N,, Millington S,, Solinas A,, Booth J,, Brown T. 2000. Mode of action and application of Scorpion primers to mutation detection. Nucleic Acids Res 28: 37523761.
48. Whitcombe D,, Theaker J,, Guy SP,, Brown T,, Little S. 1999. Detection of PCR products using self-probing amplicons and fluorescence. Nat Biotechnol 17: 804807.
49. Kutyavin IV,, Afonina IA,, Mills A,, Gorn VV,, Lukhtanov EA,, Belousov ES,, Singer MJ,, Walburger DK,, Lokhov SG,, Gall AA,, Dempcy R,, Reed MW,, Meyer RB,, Hedgpeth J. 2000. 3′-Minor groove binder-DNA probes increase sequence specificity at PCR extension temperatures. Nucleic Acids Res 28: 655661.
50. Mulligan EK,, Germer JJ,, Arens MQ,, D’Amore KL,, Bisceglie AD,, Ledboer NA,, Moser MJ,, Newman AC,, O’Guin AK,, Olivo PD,, Podzorski DS,, Vaughan KA,, Yao JD,, Elagin SA,, Johnson SC. 2009. Detection and quantification of hepatitis C virus (HCV) by MultiCode-RTx real-time PCR targeting the HCV 3′ untranslated region. J Clin Microbiol 47: 26352638.
51. Sherrill CB,, Marshall DJ,, Moser MJ,, Larsen CA,, Daude-Snow L,, Prudent JR. 2004. Nucleic acid analysis using an expanded genetic alphabet to quench fluorescence. J Am Chem Soc 126: 45504556.
52. Svarovskaia ES,, Moser MJ,, Bae AS,, Prudent JR,, Miller MD,, Borroto-Esoda K. 2006. MultiCode-RTx real-time PCR system for detection of subpopulations of K65R human immunodeficiency virus type 1 reverse transcriptive mutant viruses in clinical samples. J Clin Microbiol 44: 42374241.
53. Luk KC,, Devare SG,, Hackett JR Jr. 2007. Partially double-stranded linear DNA probes: novel design for sensitive detection of genetically polymorphic targets. J Virol Methods 144: 111.
54. Hackett J Jr. 2012. Meeting the challenge of HIV diversity: strategies to mitigate the impact of HIV-1 genetic heterogeneity on performance of nucleic acid testing assays. Clin Lab 58: 199202.
55. Kricka LJ. 2002. Stains, labels and detection strategies for nucleic acids assays. Ann Clin Biochem 39: 114129.
56. Kalinina O,, Brown J,, Silver J. 1997. Nanoliter scale PCR with TaqMan detection. Nucleic Acids Res 25: 19992004.
57. Sykes PJ,, Neoh SH,, Brisco MJ,, Hughes E,, Condon J,, Morley AA. 1992. Quantitation of targets for PCR by use of limiting dilution. Biotechniques 13: 444449.
58. Vogelstein B,, Kinzler KW. 1999. Digital PCR. Proc Natl Acad Sci USA 96: 92369241.
59. White RA III,, Quake SR,, Curr K. 2011. Digital PCR provides absolute quantitation of viral load for an occult RNA virus. J Virol Methods 179: 4550.
60. Compton J. 1991. Nucleic acid sequence-based amplification. Nature 350: 9192.
61. Guatelli JC,, Whitfield KM,, Kwoh DY,, Barringer KJ,, Richman DD,, Gingeras TR. 1990. Isothermal, in vitro amplification of nucleic acids by multienzyme reaction modeled after retroviral replication. Proc Natl Acad Sci U S A 87: 18741878.
62. Kwoh DY,, David GR,, Whitfield KM,, Chapelle HL,, DiMichele LJ,, Gingeras TR. 1989. Transcription-based amplification system and detection of amplified human immunodeficiency virus type 1 with a bead-based sandwich hybridization format. Proc Natl Acad Sci U S A 86: 11731177.
63. Leone G,, van Schijndel H,, van Gemen B,, Kramer FR,, Schoen CD. 1998. Molecular beacon probes combined with amplification by NASBA enable homogeneous, real-time detection of RNA. Nucleic Acids Res 26: 21502155.
64. Capaul SE,, Georgievski-Hrisoho M. 2005. Detection of enterovirus RNA in cerebrospinal fluid (CSF) using NucliSens EasyQ Enterovirus assay. J Clin Virol 32: 236240.
65. Walker GT,, Fraiser MS,, Schram JL,, Little MC,, Nadeau JG,, Malinowski DP. 1992. Strand displacement amplification—an isothermal, in vitro DNA amplification technique. Nucleic Acids Res 20: 16911696.
66. Little MC,, Andrews J,, Moore R,, Bustos S,, Jones L,, Embres C,, Durmowicz G,, Harris J,, Berger D,, Yanson K,, Rostkowski C,, Yursis D,, Price J,, Fort T,, Walters A,, Collis M,, Llorin O,, Wood J,, Failing F,, O’Keefe C,, Scrivens B,, Pope B,, Hansen T,, Marino K,, Williams K,, Boenisch M. 1999. Strand displacement amplification and homogeneous real-time detection incorporated in a second-generation DNA probe system, BDProbeTecET. Clin Chem 45: 777784.
67. Nycz CM,, Dean CH,, Haaland PD,, Spargo CA,, Walker GT. 1998. Quantitative reverse transcription strand displacement amplification: quantitation of nucleic acids using an isothermal amplification technique. Anal Biochem 259: 226234.
68. Notomi T,, Okayama H,, Masubuchi H,, Yonekawa T,, Wananabe K,, Amino N,, Hase T. 2000. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28:E63. doi:10.1093/nar/28.12.e63.
69. Tomita N,, Mori Y,, Kanda H,, Notomi T. 2008. Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc 3: 877882.
70. Ihira M,, Yoshikawa T,, Enomoto Y,, Akimoto S,, Ohashi M,, Suga S,, Nishimura N,, Ozaki T,, Nishiyama Y,, Notomi T,, Ohta Y,, Asano Y. 2004. Rapid diagnosis of human herpesvirus 6 infection by a novel DNA amplification method, loop mediated isothermal amplification. J Clin Microbiol 42: 140145.
71. Okamoto S,, Yoshikawa T,, Ihira M,, Suszuki K,, Shimokata K,, Nishiyama Y,, Asano Y. 2004. Rapid detection of varicella-zoster virus infection by a loop-mediated isothermal amplification method. J Med Virol 74: 667682.
72. Hong TC,, Mai QL,, Cuong DV,, Parida M,, Minekawa H,, Notomi T,, Hasebe F,, Morita K. 2004. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J Clin Microbiol 42: 19561961.
73. Yoda T,, Suzuki Y,, Yamazaki K,, Sakon N,, Kanki M,, Aoyama I,, Tsukamoto T. 2007. Evaluation and application of reverse transcription loop-mediated isothermal amplification for detection of noroviruses. J Med Virol 79: 326334.
74. Iwamoto T,, Sonobe T,, Hayashi K. 2003. Loop mediated isothermal amplification for direct detection of Mycobacterium tuberculosis complex, M. avium and M. intracellulare in sputum samples. J Clin Microbiol 41: 26162622.
75. Le Roux CA,, Kubo T,, Grobbelaar AA,, van Vuren PJ,, Weyer J,, Nel LH,, Swanepoel R,, Morita K,, Paweska JT. 2009. Development and evaluation of a real-time reverse transcription-loop-mediated isothermal amplification assay for rapid detection of Rift Valley fever virus in clinical specimens. J Clin Microbiol 47: 645651.
76. Pancholi P,, Kelly C,, Raczkowski M,, Balada-Llasat JM. 2012. Detection of toxigenic Clostridium difficile: comparison of the cell culture neutralization, Xpert C. difficile, Xpert C. difficile/Epi, and Illumigene C. difficile assays. J Clin Microbiol 50: 13311335.
77. Vincent M,, Xu Y,, Kong H. 2004. Helicase-dependent isothermal DNA amplification. EMBO Rep 5: 795800.
78. Tong Y,, Tang W,, Kim H,, Pan X,, Ranall TA,, Kong T. 2008. Development of isothermal TaqMan assays for detection of biothreat organisms. Biotechniques 45: 543557.
79. Chow WH,, McCloskey C,, Tong Y,, Hu L,, You Q,, Kelly CP,, Kong H,, Tang Y,, Tang W. 2008. Application of isothermal helicase-dependent amplification with a disposable detection device in a simple sensitive stool test for toxigenic Clostridium difficile. J Mol Diagn 10: 452458.
80. Goldmeyer J,, Li H,, McCormac M,, Cook S,, Stratton C,, Lemieux B,, Kong H,, Tang W,, Tang Y. 2008. Identification of Staphylococcus aureus and determination of methicillin resistance directly from positive blood cultures by isothermal amplification and a disposable detection device. J Clin Microbiol 46: 15341536.
81. Tang W,, Chow WH,, Li Y,, Kong H,, Tang YW,, Lemieux B. 2010. Nucleic acid assay system for tier II laboratories and moderately complex clinics to detect HIV in low-resource settings. J Infect Dis 201(Suppl 1): S46S51.
82. Orita M,, Iwahana H,, Kanazawa H,, Hayashi K,, Sekiya T. 1989. Detection of polymorphisms of human DNA by gel electrophoresis as single-strand conformation polymorphisms. Proc Natl Acad Sci U S A 86: 27662770.
83. Telenti A,, Imboden P,, Marchesi F,, Schmidheini T,, Bodmer T. 1993. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 37: 20542058.
84. Garcia EP,, Dowding LA,, Stanton LW,, Slepnev VI. 2005. Scalable transcriptional analysis routine-multiplexed quantitative real-time polymerase chain reaction platform for gene expression analysis and molecular diagnostics. J Mol Diagn 7: 444454.
85. Hlousek L,, Voronov S,, Diankov V,, Leblang AB,, Wells PJ,, Ford DM,, Nolling J,, Hart KW,, Espinoza PA,, Bristol MR,, Tsongalis GJ,, Yen-Lieberman B,, Slepnev VI,, Kong LI,, Lee MC. 2012. Automated high multiplex qPCR platform for simultaneous detection and quantification of multiple nucleic acid targets. Biotechniques 52: 316324.
86. Bibby DF,, McElarney I,, Breuer J,, Clark DA. 2011. Comparative evaluation of the Seegene Seeplex RV15 and real-time PCR for respiratory virus detection. J Med Virol 83: 14691475.
87. Loeffelholz MJ,, Lewinski CA,, Silver SR,, Purohit A,, Herman SA,, Buonagurio DA,, Dragon EA. 1992. Detection of Chlamydia trachomatis in endocervical specimens by polymerase chain reaction. J Clin Microbiol 30: 28472851.
88. Mantero G,, Zonaro A,, Albertini A,, Bertolo P,, Primi D. 1991. DNA enzyme immunoassay: general method for detecting products of polymerase chain reaction. Clin Chem 37: 422429.
89. Rossau R,, Traore H,, De Beenhouwer H,, Mijs W,, Jannes G,, De Rijk P,, Portaels F. 1997. Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother 41: 20932098.
90. Stuyver L,, Wyseur A,, Rombout A,, Louwagie J,, Scarcez T,, Verhofstede C,, Rimland D,, Schinazi RF,, Rossau R. 1997. Line probe assay for rapid detection of drug-selected mutations in the human immunodeficiency virus type 1 reverse transcriptase gene. Antimicrob Agents Chemother 41: 284291.
91. Stuyver L,, Wyseur A,, van Arnhem W,, Hernandez F,, Maertens G. 1996. Second-generation line probe assay for hepatitis C virus genotyping. J Clin Microbiol 34: 22592266.
92. Fontaine V,, Mascaux C,, Weyn C,, Bernis A,, Celio N,, Lefevre P,, Kaufman L,, Garbar C. 2007. Evaluation of combined general primer-mediated PCR sequencing and type-specific PCR strategies for determination of human papillomavirus genotypes in cervical cell specimens. J Clin Microbiol 45: 928934.
93. Osiowy C,, Giles E. 2003. Evaluation of the INNO-LiPA HBV genotyping assay for determination of hepatitis B virus genotype. J Clin Microbiol 41: 54735477.
94. Tortoli E,, Nanetti A,, Piersimoni C,, Cichero P,, Farina C,, Mucignat G,, Scarparo C,, Bartolini L,, Valentini R,, Nista D,, Gesu G,, Tosi CP,, Crovatto M,, Brusarosco G. 2001. Performance assessment of new multiplex probe assay for identification of mycobacteria. J Clin Microbiol 39: 10791084.
95. Steinau M,, Swan DC,, Unger ER. 2008. Type-specific reproducibility of the Roche linear array HPV genotyping test. J Clin Virol 42: 412414.
96. Innis MA,, Myambo KB,, Gelfand DH,, Brow MA. 1998. DNA sequencing with Thermus aquaticus DNA polymerase and direct sequencing of polymerase chain reaction-amplified DNA. Proc Natl Acad Sci U S A 85: 94369440.
97. Felmlee TA,, Oda RP,, Persing DA,, Landers JP. 1995. Capillary electrophoresis of DNA potential utility for clinical diagnoses. J Chromatogr A 717: 127137.
98. Ruano G,, Kidd KK. 1991. Coupled amplification and sequencing of genomic DNA. Proc Natl Acad Sci U S A 88: 28152819.
99. Diggle MA,, Clarke SC. 2004. Pyrosequencing: sequence typing at the speed of light. Mol Biotechnol 28: 129137.
100. Arnold C,, Westland L,, Mowat G,, Underwood A,, Magee J,, Gharbia S. 2005. Single-nucleotide polymorphism-based differentiation and drug resistance detection in Mycobacterium tuberculosis from isolates or directly from sputum. Clin Microbiol Infect 11: 122130.
101. Gharizadeh B,, Norberg E,, Loffler J,, Jalal S,, Tollemar J,, Einsele H,, Klingspor L,, Nyren P. 2004. Identification of medically important fungi by the pyrosequencing technology. Mycoses 47: 2933.
102. Haanpera M,, Huovinen P,, Jalava J. 2005. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob Agents Chemother 49: 457460.
103. O’Meara D,, Wilbe K,, Leitner T,, Hejdeman B,, Albert J,, Lundeberg J. 2001. Monitoring resistance to human immunodeficiency virus type 1 protease inhibitors by pyrosequencing. J Clin Microbiol 39: 464473.
104. ten Bosch JR,, Grody WW. 2008. Keeping up with the next generation: massively parallel sequencing in clinical diagnostics. J Mol Diagn 10: 484492.
105. Metzker ML. 2010. Sequencing technologies—the next generation. Nat Rev Genet 11: 3146.
106. Clinical and Laboratory Standards Institute. 2013. Nucleic Acid Sequencing Methods in Diagnostic Laboratory Medicine; Approved Guideline— 2nd Edition. CLSI Document MM9-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
107. Rothberg JM,, Hinz W,, Rearick TM,, Schultz J,, Mileski W,, Davey M,, Leamon JH,, Johnson K,, Milgrew MJ,, Edwards M,, Hoon J,, Simons JF,, Marran D,, Myers JW,, Davidson JF,, Branting A,, Nobile JR,, Puc BP,, Light D,, Clark TA,, Huber M,, Branciforte JT,, Stoner IB,, Cawley SE,, Lyons M,, Fu Y,, Homer N,, Sedova M,, Miao X,, Reed B,, Sabina J,, Feierstein E,, Schorn M,, Alanjary M,, Dimalanta E,, Dressman D,, Kasinskas R,, Sokolsky T,, Fidanza JA,, Namsaraev E,, McKernan KJ,, Williams A,, Roth GT,, Bustillo J. 2011. An integrated semiconductor device enabling non-optical genome sequencing. Nature 475: 348352.
108. Simen BB,, Simons JF,, Hullsiek KH,, Novak RM,, Macarthur RD,, Baxter JD,, Huang C,, Lubeski C,, Turenchalk GS,, Braverman MS,, Desany B,, Rothberg JM,, Egholm M,, Kozal MJ,, Terry Beirn Community Programs for Clinical Research on AIDS. 2009. Low-abundance drug-resistant viral variants in chronically HIV-infected, antiretroviral treatment-naive patients significantly impact treatment outcomes. J Infect Dis 199: 610612.
109. Wang C,, Mitsuya Y,, Gharizadeh B. 2007. Characterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resistance. Genome Res 17: 11951201.
110. Newman RM,, Kuntzen T,, Weiner B,, Berical A,, Charlebois P,, Kuiken C,, Murphy DG,, Simmonds P,, Bennett P,, Lennon NJ,, Birren BW,, Zody MC,, Allen TM,, Henn MR. 2013. Whole genome pyrosequencing of rare hepatitis C virus genotypes enhances subtype classification and identification of naturally occurring drug resistance variants. J Infect Dis 208: 1731.
111. Miller MB,, Tang YW. 2009. Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 22: 611633.
112. Clinical and Laboratory Standards Institute. 2013. Microarrays for Diagnosis and Monitoring of Infectious Diseases; Proposed Guideline. CLSI Document MM22-P. Clinical and Standards Institute, Wayne, PA.
113. Pease AC,, Solas D,, Sullivan EJ,, Cronin MT,, Holmes CP,, Fodor SP. 1994. Light-generated oligonucleotide arrays for rapid DNA sequence analysis. Proc Natl Acad Sci U S A 91: 50225026.
114. Schena M,, Shalon D,, Heller R,, Chai A,, Brown PO,, Davis RW. 1996. Parallel human genome analysis: microarray-based expression monitoring of 1000 genes. Proc Natl Acad Sci U S A 93: 1061410619.
115. Cheung VG,, Morley M,, Aguilar F,, Massimi A,, Kucherlapati R,, Childs G. 1999. Making and reading microarrays. Nat Genet 21: 1519.
116. Wang D,, Coscoy L,, Zylberberg M,, Avila PC,, Boushey HA,, Ganem D,, DeRisi JL. 2002. Microarray-based detection and genotyping of viral pathogens. Proc Natl Acad Sci U S A 99: 1568715692.
117. Chin CY,, Urisman A,, Grenhow S,, Rouskin S,, Yagi S,, Schnurr D,, Wright C,, Drew WL,, Wang D,, Weintrub PS,, Derisi JL,, Ganem D. 2008. Utility of DNA microarrays for detection of viruses in acute respiratory tract infections in children. J Pediatr 153: 7683.
118. Wang D,, Urisman A,, Liu YT,, Springer M,, Ksiazek TG,, Erdman DD,, Mardis ER,, Hickenbotham MM,, Magrini V,, Eldred J,, Latreille JP,, Wilson RK,, Ganem D,, DeRisi JL. 2003. Viral discovery and sequence recovery using DNA microarrays. PLoS Biol 1: E2. doi:10.1371/journal .pbio.0000002.
119. Korimbocus J,, Scaramozzino N,, Lecroix B,, Crance JM,, Garin D,, Vermet G. 2005. DNA probe array for the simultaneous identification of herpes viruses, enteroviruses, and flaviviruses. J Clin Microbiol 43: 37793787.
120. Lin B,, Wang Z,, Vora GJ,, Thornton JA,, Schnur JM,, Thach DC,, Blaney KM,, Ligler AG,, Malanoski AP,, Santiago J,, Walter EA,, Agan BK,, Metzgar D,, Seto D,, Daum LT,, Kruzelock R,, Rowley RK,, Hanson EH,, Tibbetts C,, Stenger DA. 2006. Broad-spectrum respiratory tract pathogen identification using resequencing DNA microarrays. Genome Res 16: 527535.
121. Palacios G,, Quan P,, Jabado OJ,, Conlan S,, Hirschberg DL,, Liu Y,, Zhai J,, Renwick N,, Hui J,, Hegy H,, Grolla A,, Strong JE,, Towner JS,, Geisbert TW,, Jahrling PB,, Buchen-Osmond C,, Ellerbrok H,, Sanchez-Seco MP,, Lussier Y,, Formenty P,, Nichol ST,, Feldman H,, Briese T,, Lipkin W. 2007. Panmicrobial oligonucleotide array for diagnosis of infectious diseases. Emerg Infect Dis 13: 7381.
122. Wong CW,, Heng CL,, Wan Yee L,, Soh SW,, Kartasasmita CB,, Simoes EA,, Hibberd ML,, Sung WK,, Miller LD. 2007. Optimization and clinical validation of a pathogen detection microarray. Genome Biol 8: R93. doi:10.1186/gb-2007-8-5-r93.
123. Raymond F,, Carbonneau J,, Boucher N,, Robitaille L,, Boisvert S,, Wu WK,, De Serres G,, Boivin G,, Corbeil J. 2009. Comparison of automated microarray detection with real-time PCR assays for detection of respiratory viruses in specimens obtained from children. J Clin Microbiol 47: 743750.
124. Jannetto PJ,, Buchan BW,, Vaughan KA,, Ledford JS,, Anderson DK,, Henley DC,, Quigley NB,, Ledeboer NA. 2010. Real-time detection of influenza A, influenza B, and respiratory syncytial virus A and B in respiratory specimens by use of nanoparticle probes. J Clin Microbiol 48: 39974002.
125. Samuel LP,, Tibbetts RJ,, Agotesku A,, Fey M,, Hensley R,, Meier FA. 2013. Evaluation of a microarray-based assay for rapid identification of Gram-positive organisms and resistance markers in positive blood cultures. J Clin Microbiol 51: 11881192.
126. Liu RH,, Coty WA,, Reed M,, Gust G. 2008. Electrochemical detection-based DNA microarrays. IVD Technol 14: 3138.
127. Pierce VM,, Hodinka RL. 2012. Comparison of the GenMark Diagnostics eSensor respiratory viral panel to real-time PCR for detection of respiratory viruses in children. J Clin Microbiol 50: 34583465.
128. Lavigne JP,, Espinal P,, Dunyach-Remy C,, Messad N,, Pantel A,, Sotto A. 2013. Mass spectrometry: a revolution in clinical microbiology? Clin Chem Lab Med 51: 257270.
129. Ganova-Raeva LM,, Khudyakov YE. 2013. Application of mass spectrometry to molecular diagnostics of viral infections. Expert Rev Mol Diagn 13: 377388.
130. Ecker D,, Drader JJ,, Gutierrez J,, Gutierrez A,, Hannis JC,, Schink A,, Sampath R,, Blyn LB,, Eshoo MW,, Hall TA,, Tobarmosquera M,, Jiang Y,, Sannes-Lowery KA,, Cummins LL,, Libby B,, Walcott DJ,, Massire C,, Ranken R,, Manalili S,, Ivy C,, Melton R,, Levene H,, Harpin V,, Li F,, White N,, Pear M,, Ecker JA,, Samant V,, Knize D,, Robbins D,, Rudnick K,, Hajjar F,, Hofstadler SA. 2006. The Ibis T5000 Universal Biosensor: an automated platform for pathogen identification and strain typing. J Assoc Lab Autom 11: 341351.
131. Wolk DM,, Kaleta EJ,, Wysocki VH. 2012. PCR-electrospray ionization mass spectrometry: the potential to change infectious disease diagnostics in clinical and public health laboratories. J Mol Diagn 14: 295304.
132. Honish C,, Chen Y,, Mortimer C,, Arnold C,, Schmidt O,, van den Boom D,, Cantor CR,, Shah HN,, Gharbia SE. 2007. Automated comparative sequence analysis by base-specific cleavage and mass spectrometry for nucleic acid-based microbial typing. Proc Natl Acad Sci U S A 104: 1064910654.
133. Lefmann M,, Honisch C,, Bocker S,, Storm N,, van Wintzingerode F,, Schlotelberg C,, Moter A,, van den Boom D,, Gobel UB. 2004. Novel mass spectrometry-based tool for genotypic identification of mycobateria. J Clin Microbiol 42: 339346.
134. Liu J,, Lim SL,, Ruan Y,, Ling AE,, Ng FP,, Dosten C,, Liu ET,, Stanton LW,, Hibberd ML. 2005. SARS transmission pattern in Singapore reassessed by viral sequence variation analysis. PLoS Med 2: 43. doi:10.1371/journal.pmed. 0020043.
135. Soderlund-Strand A,, Dillner J,, Carlson J. 2008. High-throughput genotyping of oncogenic human papilloma viruses with MALDI-TOF mass spectrometry. Clin Chem 54: 8692.
136. Sturenburg E,, Storm N,, Sobottka I,, Horstkotte MA,, Scherpe S,, Aepfelbacher M,, Muller S. 2006. Detection and genotyping of SHV β-lactamase variants by mass spectrometry after base-specific cleavage of in vitro-generated RNA transcripts. J Clin Microbiol 44: 909915.
137. Syrmis MW,, Moser RJ,, Whiley DM,, Vaska V,, Coombs GW,, Nissen MD,, Sloots TP,, Nimmo GR. 2011. Comparison of a multiplexed MassARRAY system with real-time allele-specific PCR technology for genotyping of methicillin-resistant Staphylococcus aureus. Clin Microbiol Infect 17: 18041810.
138. Clementi M,, Menzo S,, Bagnarelli P,, Manzin A,, Valenza A,, Varaldo PE. 1993. Quantitative PCR and RT-PCR in virology. PCR Methods Appl 2: 191196.
139. Pinheiro LB,, Coleman VA,, Hindson CM,, Herrmann J,, Hindson BJ,, Bhat S,, Emslie KR. 2012. Evaluation of a droplet digital polymerase chain reaction format for DNA copy number quantification. Anal Chem 84: 10031011.
140. Henrich TJ,, Gallien S,, Li JZ,, Pereyra F,, Kuritzkes DR. 2012. Low-level detection and quantitation of cellular HIV-1 DNA and 2-LTR circles using droplet digital PCR. J Virol Methods 186: 6872.
141. Hayden RT,, Gu Z,, Ingersoll J,, Abdul-Ali D,, Shi L,, Pounds S,, Caliendo AM. 2013. Comparison of droplet digital PCR to real-time PCR for quantitative detection of cytomegalovirus. J Clin Microbiol 51: 540546.
142. Clinical and Laboratory Standards Institute. 2010. Quantitative Molecular Methods for Infectious Diseases; Approved Guideline— 2nd Edition. CLSI Document MM6-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
143. Barbeau JM,, Goforth J,, Caliendo AM,, Nolte FS. 2004. Performance characteristics of a quantitative TaqMan hepatitis C virus RNA analyte-specific reagent. J Clin Microbiol 42: 37393746.
144. Mitchell PS,, Germer JJ,, Yao JD,. 2011. Laboratory design and operations, p 127141. In Persing DH,, Tenover FC,, Tang YW,, Nolte FS,, Hayden RT,, Van Belkum A( ed), Molecular Microbiology: Diagnostic Principles and Practice, 2nd ed. ASM Press, Washington, DC.
145. Persing DH,, Tenover FC,, Tang YW,, Nolte FS,, Hayden RT,, Van Belkum A ( ed). 2011. Molecular Microbiology: Diagnostic Principles and Practice, 2nd ed. ASM Press, Washington, DC.
146. Peterson LR,, Robicsek A. 2009. Does my patient have Clostridium difficile infection? Ann Intern Med 151: 176179.
147. Centers for Disease Control and Prevention. 2013. Detection of acute HIV infection in two evaluations of a new HIV diagnostic testing algorithm—United States, 2011–2013. MMWR Morb Mortal Wkly Rep 62: 489494.
148. Centers for Disease Control and Prevention (CDC). 2013. Testing for HCV infection: an update of guidance for clinicians and laboratorians. MMWR Morb Mortal Wkly Rep 62: 362365.
149. Smith BD,, Morgan RL,, Beckett GA,, Falck-Ytter Y,, Holtzman D,, Ward JW. 2012. Hepatitis C virus testing of persons born during 1945–1965: recommendations from the Centers for Disease Control and Prevention. Ann Intern Med 157: 817822.
150. Bissonnette L,, Bergeron MG. 2012. Multiparametric technologies for the diagnosis of syndromic infections. Clin Microbiol Newsl 34: 159168.
151. Choo QL,, Kuo G,, Weiner AJ,, Overby LR,, Bradley DW,, Houghton M. 1989. Isolation of a cDNA clone derived from a blood-borne non-A, non-B viral hepatitis genome. Science 244: 359362.
152. Relman DA,, Schmidt TM,, MacDermott RP,, Falkow S. 1992. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med 327: 293301.
153. Ksiazek TG,, Erdman D,, Goldsmith CS,, Zaki SR,, Peret T,, Emery S,, Tong S,, Urbani C,, Comer JA,, Lim W,, Rollin PE,, Dowell SF,, Ling AE,, Humphrey CD,, Shieh WJ,, Guarner J,, Paddock CD,, Rota P,, Fields B,, DeRisi J,, Yang JY,, Cox N,, Hughes JM,, LeDuc JW,, Bellini WJ,, Anderson LJ,, the SARS Working Group. 2003. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 348: 19531966.
154. Peiris JS,, Lai ST,, Poon LL,, Guan Y,, Yam LY,, Lim W,, Nicholls J,, Yee WK,, Yan WW,, Cheung MT,, Cheng VC,, Chan KH,, Tsang DN,, Yung RW,, Ng TK,, Yuen KY,, SARS Study Group. 2003. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet 361: 13191325.
155. Gaynor AM,, Nissen MD,, Whiley DM,, Mackay IM,, Lambert SB,, Wu G,, Brennan DC,, Storch GA,, Sloots TP,, Wang D. 2007. Identification of a novel polyomavirus from patients with acute repiratory tract infections. PLoS Pathog 3: e64. doi:10.1371/journal.ppat.0030064.
156. Le BM,, Demertzis LM,, Wu G,, Tibbits RJ,, Buller R,, Arens MQ,, Gaynor AM,, Storch GA,, Wang D. 2007. Clinical and epidemiologic characterization of WU polyomavirus infection, St. Louis, Missouri. Emerg Infect Dis 13: 19361938.
157. Relman DA. 2011. Microbial genomics and infectious diseases. N Engl J Med 365: 347357.
158. Woese CR. 1987. Bacterial evolution. Microbiol Rev 51: 221271.
159. Kurtzman CP,, Robnett CJ. 1997. Identification of clinically important ascomycetous yeasts based on nucleotide divergence in the 5′ end of the large-subunit (26S) ribosomal DNA gene. J. Clin. Microbiol 35: 12161223.
160. Tang YW,, Ellis NM,, Hopkins MK,, Smith DH,, Dodge DE,, Persing DH. 1998. Comparison of phenotypic and genotypic techniques for identification of unusual aerobic pathogenic gram-negative bacilli. J Clin Microbiol 36: 36743679.
161. Hall L,, Wohlfiel S,, Roberts GD. 2003. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of commonly encountered, clinically important yeast species. J Clin Microbiol 41: 50995102.
162. Hall L,, Wohlfiel S,, Roberts GD. 2004. Experience with the MicroSeq D2 large-subunit ribosomal DNA sequencing kit for identification of filamentous fungi encountered in the clinical laboratory. J Clin Microbiol 42: 622626.
163. Procop GW. 2007. Molecular diagnostics for the detection and characterization of microbial pathogens. Clin Infect Dis 45: 99111.
164. Tuohy MJ,, Hall GS,, Sholtis M,, Procop GW. 2005. Pyrosequencing as a tool for the identification of common isolates of Mycobacterium sp. Diagn Microbiol Infect Dis 51: 245250.
165. Clinical and Laboratory Standards Institute. 2008. Interpretive Criteria for Identification of Bacteria and Fungi by DNA Target Sequencing; Approved Guideline. CLSI Document MM18-A. Clinical and Laboratory Standards Institute, Wayne, PA.
166. Kuczynski J,, Lauber CL,, Walters WA,, Parfrey LW,, Clemente JC,, Gevers D,, Knight R. 2012. Experimental and analytical tools for studying the human microbiome. Nat Rev Genet 13: 4758.
167. Mellors JW,, Rinaldo CR Jr,, Gupta P,, White RM,, Todd JA,, Kingsley LA. 1996. Prognosis in HIV-1 infection predicted by the quantity of virus in plasma. Science 272: 11671170.
168. Walsh EE,, McConnochie KM,, Long CE,, Hall CB. 1997. Severity of respiratory syncytial virus infection is related to virus strain. J Infect Dis 175: 814820.
169. Reid R,, Greenberg M,, Jensen AB,, Husain M,, Willett J,, Daoud Y,, Temple G,, Stanhope CR,, Sherman A,, Phibbs DG. 1987. Sexually transmitted papillomaviral infections. I. The anatomic distribution and pathologic grade of neoplastic lesions associated with different viral types. Am J Obstet Gynecol 156: 212222.
170. Solomon D,, Schiffman M,, Tarone R,, ALTS Study Group. 2001. Comparison of three management strategies for patients with atypical squamous cells of undetermined significance: baseline results from a randomized trial. J Natl Cancer Inst 93: 293299.
171. Wright TC Jr,, Schiffman M,, Solomon D,, Cox JT,, Garcia F,, Goldie S,, Hatch K,, Noller KL,, Roach N,, Runowicz C,, Saslow D. 2004. Interim guidance for the use of human papillomavirus DNA testing as an adjunct to cervical cytology for screening. Obstet Gynecol 103: 304309.
172. Saslow D,, Solomon D,, Lawson HW,, Killackey M,, Kulasingam SL,, Cain J,, Garcia FA,, Moriarty AT,, Waxman AG,, Wilbur DC,, Wentzensen N,, Downs LS Jr,, Spitzer M,, Moscicki AB,, Franco EL,, Stoler MH,, Schiffman M,, Castle PE,, Myers ER,, ACS-ASCCP-ASCP Cervical Cancer Guideline Committee. 2012. American Cancer Society, American Society for Colposcopy and Cervical Pathology, and American Society for Clinical Pathology screening guidelines for the prevention and early detection of cervical cancer. CA Cancer J Clin 62: 147172.
173. Emery VC,, Sabin CA,, Cope AV,, Gor D,, Hassan-Walker AF,, Griffiths PD. 2000. Application of viral-load kinetics to identify patients who develop cytomegalovirus disease after transplantation. Lancet 355: 20322036.
174. Humar A,, Gregson D,, Caliendo AM,, McGeer A,, Malkan G,, Krajden M,, Corey P,, Greig P,, Walmsley S,, Levy G,, Mazzulli T. 1999. Clinical utility of quantitative cytomegalovirus viral load determination for predicting cytomegalovirus disease in liver transplant recipients. Transplantation 68: 13051311.
175. Tenover FC,, Kamile J,. 2011. Detection of antimicrobial resistance genes and mutations associated with antimicrobial resistance in microorganisms, p 507524. In Persing DH,, Tenover FC,, Tang YW,, Nolte FS,, Hayden RT,, Van Belkum A ( ed), Molecular Microbiology: Diagnostic Principles and Practice, 2nd ed. ASM Press, Washington, DC.
176. Cole JM,, Schuetz AN,, Hill CE,, Nolte FS. 2009. Development and evaluation of a real-time PCR assay for detection of Klebsiella pneumoniae carbapenemase genes. J Clin Microbiol 47: 322326.
177. Fried MW,, Shiffman ML,, Reddy KR,, Smith C,, Marinos G,, Goncales FL Jr,, Haussinger D,, Diago M,, Carosi G,, Dhumeaux D,, Craxi A,, Lin A,, Hoffman J,, Yu J. 2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N Engl J Med 347: 975982.
178. Hadiyannis SJ,, Sette H Jr,, Morgan TR,, Balan V,, Diago M,, Marcellin P,, Ramdori G,, Bodenheimer H Jr,, Bernstein D,, Rizzetto M,, Zeuzem S,, Pockros PJ,, Lin A,, Ackrill AM,, PEGASYS International Study Group. 2004. Peginterferon-α2a and ribavirin combination therapy in chronic hepatitis C: a randomized study of treatment duration and ribavirin dose. Ann Intern Med 140: 346355.
179. Manns MP,, McHutchison JG,, Gordon SC,, Rutsgi VK,, Shiffman M,, Reindollar R,, Goodman ZD,, Koury K,, Ling MH,, Albrecht JK,, International Hepatitis Interventional Therapy Group. 2001. Peginterferon alfa-2b plus ribavirin compared with interferon alfa-2b plus ribavirin for initial treatment of chronic hepatitis C: a randomized trial. Lancet 358: 958965.
180. Zeuzem S,, Rizzetto M,, Ferenci P,, Shiffman ML. 2009. Management of hepatitis C virus genotype 2 or 3 infection: treatment optimization on the basis of virological response. Antivir Ther 14: 143154.
181. Dienstag JL,, Hutchinson JG. 2006. American Gastroenterological Association medical position statement on the management of hepatitis C. Gastroenterology 130: 225230.
182. Ghany MG,, Nelson DR,, Strader DB,, Thomas DL,, Seeff LB,, American Association for Study of Liver Diseases. 2011. An update on treatment of genotype 1 chronic hepatitis C virus infection: 2011 practice guideline by the American Association for the Study of Liver Diseases. Hepatology 54: 14331444.
183. Liang TJ,, Ghany MG. 2013. Current and future therapies for hepatitis C virus infection. N Engl J Med 368: 19071917.
184. Thompson MA,, Aberg JA,, Hoy JF,, Telenti A,, Benson C,, Cahn P,, Eron JJ,, Gunthard HF,, Hammer SM,, Reiss P,, Richman DD,, Rizzardini G,, Thomas DL,, Jacobsen DM,, Volberding PA. 2012. Antiretroviral treatment of adult HIV infection: 2012 recommendations of the International Antiviral Society-USA panel. JAMA 308: 387402.
185. Lim SG,, Ng TM,, Kung N,, Krastev Z,, Volfova M,, Husa P,, Lee SS,, Chan S,, Shiffman ML,, Washington MK,, Rigney A,, Anderson J,, Mondou E,, Snow A,, Sorbel J,, Guan R,, Rousseau F,, Emtricitabine FTCB-301 Study Group. 2006. A double-blind placebo-controlled study of emtricitabine in chronic hepatitis B. Arch Intern Med 166: 4956.
186. Hirsch HH,, Brennan DC,, Drachenberg CB,, Ginevri F,, Gordon J,, Limaye AP,, Mihatsch MJ,, Nickeleit V,, Ramos VE,, Randhawa P,, Shapiro E,, Steiger J,, Suthanthiran MJ,, Trofe J. 2005. Polyomavirus-associated nephropathy in renal transplantation: interdisciplinary analyses and recommendations. Transplantation 79: 12771286.
187. Caliendo AM,, St George K,, Kao SY,, Allega J,, Tan BH,, LaFontaine R,, Bui L,, Rinaldo CR. 2000. Comparison of quantitative cytomegalovirus (CMV) PCR in plasma and CMV antigenemia assay: clinical utility of the prototype AMPLICOR CMV MONITOR test in transplant recipients. J Clin Microbiol 38: 21222127.
188. Clinical and Laboratory Standards Institute. 2006. Molecular Diagnostic Methods for Infectious Diseases; Approved Guideline2nd Edition. CLSI Document MM3-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
189. Clinical and Laboratory Standards Institute. 2006. Collection, Transport, Preparation, and Storage of Specimens and Samples for Molecular Methods; Approved Guideline. CLSI Document MM13-A. Clinical and Laboratory Standards Institute, Wayne, PA.
190. Clinical and Laboratory Standards Institute. 2011. Establishing Molecular Testing in Clinical Laboratory Environments; Approved Guideline. CLSI Document MM19-A. Clinical and Laboratory Standards Institute, Wayne, PA.
191. Saag MS,, Holodniy M,, Kuritzkes DR,, O’Brien WA,, Coombs R,, Poscher ME,, Jacobsen DM,, Shaw GM,, Richman DD,, Volberding PA. 1996. HIV viral load markers in clinical practice. Nat Med 2: 625629.
192. Gaydos CA,, Crotchfelt KA,, Howell MR,, Kralian S,, Hauptman P,, Quinn TC. 1998. Molecular amplification assays to detect chlamydial infections in urine specimens from high school female students and to monitor the persistence of chlamydial DNA after therapy. J Infect Dis 177: 417424.
193. Lee HH,, Chernesky MA,, Schachter J,, Burczak JD,, Andrews WW,, Muldoon S,, Leckie G,, Stamm WE. 1995. Diagnosis of Chlamydia trachomatis genitourinary infection in women by ligase chain reaction assay of urine. Lancet 345: 213216.
194. Blin N,, Stafford DW. 1976. A general method for isolation of high molecular weight DNA from eukaryotes. Nucleic Acids Res 3: 23032308.
195. Gross-Bellard M,, Oudet P,, Chambon P. 1973. Isolation of high-molecular-weight DNA from mammalian cells. Eur J Biochem 36: 3238.
196. Chomczynski P,, Sacchi N. 1987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 62: 156159.
197. Boom R,, Sol CJ,, Salimans MM,, Jansen CL,, Wertheim-van Dillen PM,, van der Noordaa J. 1990. Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28: 495503.
198. Mitchell PS,, Espy MJ,, Smith TF,, Toal DR,, Rys PN,, Berbari EF,, Osmon DR,, Persing DH. 1997. Laboratory diagnosis of central nervous system infections with herpes simplex virus by PCR performed with cerebrospinal fluid specimens. J Clin Microbiol 35: 28732877.
199. Rosenstraus M,, Wang Z,, Chang SY,, DeBonville D,, Spadoro JP. 1998. An internal control for routine diagnostic PCR: design, properties, and effect on clinical performance. J Clin Microbiol 36: 191197.
200. Beutler E,, Gelbart T,, Kuhl W. 1990. Interference of heparin with the polymerase chain reaction. Biotechniques 9: 166.
201. Higuchi R. 1989. Simple and Rapid Preparation of Samples for PCR. Stockton Press, New York, NY.
202. Furukawa K,, Bhavanandan VP. 1983. Influences of anionic polysaccharides on DNA synthesis in isolated nuclei and by DNA polymerase alpha: correlation of observed effects with properties of the polysaccharides. Biochim Biophys Acta 740: 466475.
203. Longo MC,, Berninger MS,, Hartley JL. 1990. Use of uracil DNA glycosylase to control carry-over contamination in polymerase chain reactions. Gene 93: 125128.
204. Pang J,, Modlin J,, Yolken R. 1992. Use of modified nucleotides and uracil-DNA glycosylase (UNG) for the control of contamination in the PCR-based amplification of RNA. Mol Cell Probes 6: 251256.
205. Thornton CG,, Hartley JL,, Rashtchian A. 1992. Utilizing uracil DNA glycosylase to control carryover contamination in PCR: characterization of residual UDG activity following thermal cycling. Biotechniques 13: 180184.
206. Espy M,, Smith TF,, Persing DH. 1993. Dependence of polymerase chain reaction product inactivation protocols on amplicon length and sequence composition. J Clin Microbiol 31: 23612365.
207. Burd EM. 2010. Validation of laboratory-developed molecular assays for infectious diseases. Clin Microbiol Rev 23: 550576.
208. Schachter J,, Stamm WE,, Quinn TC,, Andrews WW,, Burczak JD,, Lee HH. 1994. Ligase chain reaction to detect Chlamydia trachomatis infection of the cervix. J Clin Microbiol 32: 25402543.
209. Pang XL,, Fox JD,, Fenton JM,, Miller GG,, Caliendo AM,, Preiksaitis JK. 2009. Interlaboratory comparison of cytomegalovirus viral load assays. Am J Transplant 9: 258268.
210. Farrell DJ. 1999. Evaluation of AMPLICOR Neisseria gonorrhoeae PCR using cppB nested PCR and 16S rRNA PCR. J Clin Microbiol 37: 386390.
211. Lakeman FD,, Whitley RJ,, National Institute of Allergy and Infectious Diseases Collaborative Antiviral Study Group. 1995. Diagnosis of herpes simplex encephalitis: application of polymerase chain reaction to cerebrospinal fluid from brain-biopsied patients and correlation with disease. J Infect Dis 171: 857863.
212. Gerna G,, Zipeto D,, Parea M,, Revello MG,, Silini E,, Percivalle E,, Zavattoni M,, Grossi P,, Milanesi G. 1991. Monitoring of human cytomegalovirus infections and ganciclovir treatment in heart transplant recipients by determination of viremia, antigenemia, and DNAemia. J Infect Dis 164: 488498.
213. Nolte FS,, Emmens RK,, Thurmond C,, Mitchell PS,, Pascuzzi C,, Devine SM,, Saral R,, Wingard JR. 1995. Early detection of human cytomegalovirus viremia in bone marrow transplant recipients by DNA amplification. J Clin Microbiol 33: 12631266.
214. Klugman KP,, Madhi SA,, Albrich WC. 2008. Novel approaches to the identification of Streptococcus pneumoniae as the cause of community-acquired pneumonia. Clin Infect Dis 47: 202206.
215. Halfon P,, Bourliere M,, Halimi G,, Khiri H,, Bertezene P,, Portal I,, Botta-Fridlund D,, Gauthier AP,, Jullien M,, Feryn JM,, Gerolami V,, Cartouzou G. 1998. Assessment of spontaneous fluctuations of viral load in untreated patients with chronic hepatitis C by two standardized quantitation methods: branched DNA and Amplicor Monitor. J Clin Microbiol 36: 20732075.
216. Office of the Federal Register. 2004. Code of Federal Regulations. Clinical Laboratory Improvement Act Regulations, part 493, subpart K, section 1253. U.S. Government Printing Office and Office of the Federal Register, Washington, DC. http://www.phppo.cdc.gov/clia/regs/subpart_k.aspx.
217. American Medical Association. 2013. CPT 2013, Current Procedural Terminology. AMA Press, Chicago, IL.
218. Niemz A,, Ferguson TM,, Boyle DS. 2011. Point-of-care nucleic acid testing for infectious diseases. Trends Biotechnol 29: 240250.
219. Wolk D,, Mitchell S,, Patel R. 2001. Principles of molecular microbiology testing methods. Infect Dis Clin North Am 15: 11571204.
220. Carters R,, Ferguson J,, Gaut R,, Ravetto P,, Thelwell N,, Whitcombe D. 2008. Design and use of scorpions fluorescent signaling molecules. Methods Mol Biol 429: 99115.
221. Poljak M,, Seme K. 1996. Rapid detection and typing of human papillomaviruses by consensus polymerase chain reaction and enzyme-linked immunosorbent assay. J Virol Methods 56: 231238.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error