Chapter 130 : Mechanisms of Resistance to Antifungal Agents*

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mechanisms of Resistance to Antifungal Agents*, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch130-1.gif /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch130-2.gif


Antifungal therapy is an important element of patient management for acute and chronic diseases. Yet, as the global burden of fungal infections rises, treatment choices are constrained due to limited classes of antifungal agents. Furthermore, clinical management of fungal diseases is made even more tenuous by the emergence of antifungal drug resistance. More recently, the evolution of multidrug resistant organisms refractory to several different classes of antifungal agents is alarming. The resistance mechanisms responsible are largely shared by strains displaying inherently reduced susceptibility to specific antifungal agents and strains acquiring resistance during therapy. The principal molecular mechanisms are well characterized and include diminished drug-target interactions through changes in affinity and target abundance, and reduction in the intracellular level of drug through expression of high-capacity efflux pumps and biofilm formation. In some strains, high-level resistance occurs through a stepwise evolution of multiple resistance mechanisms. In recent years, a great deal has been learned about the genetic factors that regulate these mechanisms and the effectors and modulators of cellular stress, which facilitate the emergence of resistance. Understanding the primary molecular mechanisms and their regulation, along with the cellular adaptation factors that promote their emergence, provides an opportunity to develop better diagnostic tools and therapeutic strategies to overcome and prevent the emergence of antifungal resistance.

Citation: Perlin D. 2015. Mechanisms of Resistance to Antifungal Agents*, p 2236-2254. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch130
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Homology structure model for Cyp51A from showing amino acid positions of substitutions conferring azole resistance (from Snelders et al. [ ]). doi:10.1128/9781555817381.ch130.f1

Citation: Perlin D. 2015. Mechanisms of Resistance to Antifungal Agents*, p 2236-2254. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch130
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic of biofilm composition and mechanisms of resistance showing effects on drug levels (adapted from Ramage et al. [ ]). doi:10.1128/9781555817381.ch130.f2

Citation: Perlin D. 2015. Mechanisms of Resistance to Antifungal Agents*, p 2236-2254. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch130
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Fks amino acid substitutions and polymorphisms in hot-spot regions conferring reduced susceptibility to echinocandin drugs among clinical isolates of spp. doi:10.1128/9781555817381.ch130.f3

Citation: Perlin D. 2015. Mechanisms of Resistance to Antifungal Agents*, p 2236-2254. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch130
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Schematic overview of major cellular processes induced in response to inhibition of glucan synthase (Fks) by echinocandin drugs resulting in cell wall stress and drug tolerance. doi:10.1128/9781555817381.ch130.f4

Citation: Perlin D. 2015. Mechanisms of Resistance to Antifungal Agents*, p 2236-2254. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch130
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Brown GD,, Denning DW,, Gow NA,, Levitz SM,, Netea MG,, White TC. 2012. Hidden killers: human fungal infections. Sci Transl Med 4: 165rv113.
2. Turnidge J,, Paterson DL. 2007. Setting and revising antibacterial susceptibility breakpoints. Clin Microbiol Rev 20: 391408, table of contents.
3. Rex JH,, Pfaller MA. 2002. Has antifungal susceptibility testing come of age? Clin Infect Dis 35: 982989.
4. Johnson EM. 2009. Rare and emerging Candida species. Curr Fungal Infect Rep 3: 152159.
5. Lewis RE. 2009. Overview of the changing epidemiology of candidemia. Curr Med Res Opin 25: 17321740.
6. Pfaller MA,, Diekema DJ. 2004. Twelve years of fluconazole in clinical practice: global trends in species distribution and fluconazole susceptibility of bloodstream isolates of Candida. Clin Microbiol Infect 10( Suppl 1) : 1123.
7. Tortorano AM,, Kibbler C,, Peman J,, Bernhardt H,, Klingspor L,, Grillot R. 2006. Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents 27: 359366.
8. Moosa MY,, Alangaden GJ,, Manavathu E,, Chandrasekar PH. 2002. Resistance to amphotericin B does not emerge during treatment for invasive aspergillosis. J Antimicrob Chemother 49: 209213.
9. Pfaller MA,, Espinel-Ingroff A,, Canton E,, Castanheira M,, Cuenca-Estrella M,, Diekema DJ,, Fothergill A,, Fuller J,, Ghannoum M,, Jones RN,, Lockhart SR,, Martin-Mazuelos E,, Melhem MS,, Ostrosky-Zeichner L,, Pappas P,, Pelaez T,, Peman J,, Rex J,, Szeszs MW. 2012. Wild-type MIC distributions and epidemiological cutoff values for amphotericin B, flucytosine, and itraconazole and Candida spp. as determined by CLSI broth microdilution. J Clin Microbiol 50: 20402046.
10. Pfaller MA,, Diekema DJ. 2004. Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42: 44194431.
11. Colombo AL,, Melo AS,, Crespo Rosas RF,, Salomao R,, Briones M,, Hollis RJ,, Messer SA,, Pfaller MA. 2003. Outbreak of Candida rugosa candidemia: an emerging pathogen that may be refractory to amphotericin B therapy. Diagn Microbiol Infect Dis 46: 253257.
12. Atkinson BJ,, Lewis RE,, Kontoyiannis DP. 2008. Candida lusitaniae fungemia in cancer patients: risk factors for amphotericin B failure and outcome. Med Mycol 46: 541546.
13. Woods RA,, Bard M,, Jackson IE,, Drutz DJ. 1974. Resistance to polyene antibiotics and correlated sterol changes in two isolates of Candida tropicalis from a patient with an amphotericin B-resistant funguria. J Infect Dis 129: 5358.
14. Walsh TJ,, Petraitis V,, Petraitiene R,, Field-Ridley A,, Sutton D,, Ghannoum M,, Sein T,, Schaufele R,, Peter J,, Bacher J,, Casler H,, Armstrong D,, Espinel-Ingroff A,, Rinaldi MG,, Lyman CA. 2003. Experimental pulmonary aspergillosis due to Aspergillus terreus: pathogenesis and treatment of an emerging fungal pathogen resistant to amphotericin B. J Infect Dis 188: 305319.
15. Steinbach WJ,, Benjamin DK Jr,., Kontoyiannis DP,, Perfect JR,, Lutsar I,, Marr KA,, Lionakis MS,, Torres HA,, Jafri H,, Walsh TJ. 2004. Infections due to Aspergillus terreus: a multicenter retrospective analysis of 83 cases. Clin Infect Dis 39: 192198.
16. Koss T,, Bagheri B,, Zeana C,, Romagnoli MF,, Grossman ME. 2002. Amphotericin B-resistant Aspergillus flavus infection successfully treated with caspofungin, a novel antifungal agent. J Am Acad Dermatol 46: 945947.
17. Azzola A,, Passweg JR,, Habicht JM,, Bubendorf L,, Tamm M,, Gratwohl A,, Eich G. 2004. Use of lung resection and voriconazole for successful treatment of invasive pulmonary Aspergillus ustus infection. J Clin Microbiol 42: 48054808.
18. Diekema D,, Arbefeville S,, Boyken L,, Kroeger J,, Pfaller M. 2012. The changing epidemiology of healthcare-associated candidemia over three decades. Diagn Microbiol Infect Dis 73: 4548.
19. Pfaller MA,, Jones RN,, Doern GV,, Sader HS,, Messer SA,, Houston A,, Coffman S,, Hollis RJ. 2000. Bloodstream infections due to Candida species: SENTRY antimicrobial surveillance program in North America and Latin America, 1997–1998. Antimicrob Agents Chemother 44: 747751.
20. Hope W,, Morton A,, Eisen DP. 2002. Increase in prevalence of nosocomial non- Candida albicans candidaemia and the association of Candida krusei with fluconazole use. J Hosp Infect 50: 5665.
21. Pfaller MA,, Diekema DJ,, Mendez M,, Kibbler C,, Erzsebet P,, Chang SC,, Gibbs DL,, Newell VA. 2006. Candida guilliermondii, an opportunistic fungal pathogen with decreased susceptibility to fluconazole: geographic and temporal trends from the ARTEMIS DISK antifungal surveillance program. J Clin Microbiol 44: 35513556.
22. Pavie J,, Lacroix C,, Hermoso DG,, Robin M,, Ferry C,, Bergeron A,, Feuilhade M,, Dromer F,, Gluckman E,, Molina JM,, Ribaud P. 2005. Breakthrough disseminated Aspergillus ustus infection in allogeneic hematopoietic stem cell transplant recipients receiving voriconazole or caspofungin prophylaxis. J Clin Microbiol 43: 49024904.
23. Balajee SA,, Weaver M,, Imhof A,, Gribskov J,, Marr KA. 2004. Aspergillus fumigatus variant with decreased susceptibility to multiple antifungals. Antimicrob Agents Chemother 48: 11971203.
24. Balajee SA,, Gribskov JL,, Hanley E,, Nickle D,, Marr KA. 2005. Aspergillus lentulus sp. nov., a new sibling species of A. fumigatus. Eukaryot Cell 4: 625632.
25. Snelders E,, van der Lee HA,, Kuijpers J,, Rijs AJ,, Varga J,, Samson RA,, Mellado E,, Donders AR,, Melchers WJ,, Verweij PE. 2008. Emergence of azole resistance in Aspergillus fumigatus and spread of a single resistance mechanism. PLoS Med 5: e219.
26. Verweij PE,, Snelders E,, Kema GH,, Mellado E,, Melchers WJ. 2009. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis 9: 789795.
27. Verweij PE,, Mellado E,, Melchers WJ. 2007. Multiple-triazole-resistant aspergillosis. N Engl J Med 356: 14811483.
28. Camps SM,, Rijs AJ,, Klaassen CH,, Meis JF,, O’Gorman CM,, Dyer PS,, Melchers WJ,, Verweij PE. 2012. Molecular epidemiology of Aspergillus fumigatus isolates harboring the TR34/L98H azole resistance mechanism. J Clin Microbiol 50: 26742680.
29. Pfaller MA,, Castanheira M,, Messer SA,, Moet GJ,, Jones RN. 2011. Echinocandin and triazole antifungal susceptibility profiles for Candida spp., Cryptococcus neoformans, and Aspergillus fumigatus: application of new CLSI clinical breakpoints and epidemiologic cutoff values to characterize resistance in the SENTRY Antimicrobial Surveillance Program (2009). Diagn Microbiol Infect Dis 69: 4550.
30. Kabbara N,, Lacroix C,, Peffault de Latour R,, Socie G,, Ghannoum M,, Ribaud P. 2008. Breakthrough C. parapsilosis and C. guilliermondii blood stream infections in allogeneic hematopoietic stem cell transplant recipients receiving long-term caspofungin therapy. Haematologica 93: 639640.
31. Barchiesi F,, Arzeni D,, Greganti G,, Marigliano A,, Tomassetti S,, Spreghini E,, Scalise G. 2007. Fluconazole susceptibility of Candida spp. isolates collected over nine years in a teaching hospital of Ancona, Italy. J Chemother 19: 5861.
32. Pfaller MA,, Andes D,, Diekema DJ,, Espinel-Ingroff A,, Sheehan D. 2010. Wild-type MIC distributions, epidemiological cutoff values and species-specific clinical breakpoints for fluconazole and Candida: time for harmonization of CLSI and EUCAST broth microdilution methods. Drug Resist Updat 13: 180195.
33. Pfaller MA,, Castanheira M,, Diekema DJ,, Messer SA,, Jones RN. 2011. Wild-type MIC distributions and epidemiologic cutoff values for fluconazole, posaconazole, and voriconazole when testing Cryptococcus neoformans as determined by the CLSI broth microdilution method. Diagn Microbiol Infect Dis 71: 252259.
34. Pfaller MA,, Diekema DJ,, Gibbs DL,, Newell VA,, Bijie H,, Dzierzanowska D,, Klimko NN,, Letscher-Bru V,, Lisalova M,, Muehlethaler K,, Rennison C,, Zaidi M. 2009. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 47: 117123.
35. Pfaller MA,, Diekema DJ,, Jones RN,, Sader HS,, Fluit AC,, Hollis RJ,, Messer SA. 2001. International surveillance of bloodstream infections due to Candida species: frequency of occurrence and in vitro susceptibilities to fluconazole, ravuconazole, and voriconazole of isolates collected from 1997 through 1999 in the SENTRY antimicrobial surveillance program. J Clin Microbiol 39: 32543259.
36. Pfaller MA,, Messer SA,, Boyken L,, Rice C,, Tendolkar S,, Hollis RJ,, Diekema DJ. 2007. Use of fluconazole as a surrogate marker to predict susceptibility and resistance to voriconazole among 13,338 clinical isolates of Candida spp. tested by Clinical and Laboratory Standards Institute-recommended broth microdilution methods. J Clin Microbiol 45: 7075.
37. Pfaller MA,, Messer SA,, Hollis RJ,, Boyken L,, Tendolkar S,, Kroeger J,, Diekema DJ. 2009. Variation in susceptibility of bloodstream isolates of Candida glabrata to fluconazole according to patient age and geographic location in the United States in 2001 to 2007. J Clin Microbiol 47: 31853190.
38. Safdar A,, Chaturvedi V,, Koll BS,, Larone DH,, Perlin DS,, Armstrong D. 2002. Prospective, multicenter surveillance study of Candida glabrata: fluconazole and itraconazole susceptibility profiles in bloodstream, invasive, and colonizing strains and differences between isolates from three urban teaching hospitals in New York City (Candida Susceptibility Trends Study, 1998 to 1999). Antimicrob Agents Chemother 46: 32683272.
39. Pfaller MA,, Castanheira M,, Lockhart SR,, Ahlquist AM,, Messer SA,, Jones RN. 2012. Frequency of decreased susceptibility and resistance to echinocandins among fluconazole-resistant bloodstream isolates of Candida glabrata: results from the SENTRY Antimicrobial Surveillance Program (2006–2010) and the Centers for Disease Control and Prevention Population-Based Surveillance (2008–2010). J Clin Microbiol 50: 11991203.
40. Pfaller MA,, Diekema DJ,, Gibbs DL,, Newell VA,, Ellis D,, Tullio V,, Rodloff A,, Fu W,, Ling TA. 2010. Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: a 10.5-year analysis of susceptibilities of Candida species to fluconazole and voriconazole as determined by CLSI standardized disk diffusion. J Clin Microbiol 48: 13661377.
41. Brandt ME,, Pfaller MA,, Hajjeh RA,, Hamill RJ,, Pappas PG,, Reingold AL,, Rimland D,, Warnock DW. 2001. Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates in the United States: 1992 to 1994 and 1996 to 1998. Antimicrob Agents Chemother 45: 30653069.
42. Govender NP,, Patel J,, van Wyk M,, Chiller TM,, Lockhart SR. 2011. Trends in antifungal drug susceptibility of Cryptococcus neoformans isolates obtained through population-based surveillance in South Africa in 2002–2003 and 2007–2008. Antimicrob Agents Chemother 55: 26062611.
43. Denning DW,, Radford SA,, Oakley KL,, Hall L,, Johnson EM,, Warnock DW. 1997. Correlation between in-vitro susceptibility testing to itraconazole and in-vivo outcome of Aspergillus fumigatus infection. J Antimicrob Chemother 40: 401414.
44. Bueid A,, Howard SJ,, Moore CB,, Richardson MD,, Harrison E,, Bowyer P,, Denning DW. 2010. Azole antifungal resistance in Aspergillus fumigatus: 2008 and 2009. J Antimicrob Chemother 65: 21162118.
45. Howard SJ,, Cerar D,, Anderson MJ,, Albarrag A,, Fisher MC,, Pasqualotto AC,, Laverdiere M,, Arendrup MC,, Perlin DS,, Denning DW. 2009. Frequency and evolution of Azole resistance in Aspergillus fumigatus associated with treatment failure. Emerg Infect Dis 15: 10681076.
46. van der Linden JW,, Snelders E,, Kampinga GA,, Rijnders BJ,, Mattsson E,, Debets–Ossenkopp YJ,, Kuijper EJ,, Van Tiel FH,, Melchers WJ,, Verweij PE. 2011. Clinical implications of azole resistance in Aspergillus fumigatus, The Netherlands, 2007–2009. Emerg Infect Dis 17: 18461854.
47. Mortensen KL,, Jensen RH,, Johansen HK,, Skov M,, Pressler T,, Howard SJ,, Leatherbarrow H,, Mellado E,, Arendrup MC. 2011. Aspergillus species and other molds in respiratory samples from patients with cystic fibrosis: a laboratory-based study with focus on Aspergillus fumigatus azole resistance. J Clin Microbiol 49: 22432251.
48. Lockhart SR,, Frade JP,, Etienne KA,, Pfaller MA,, Diekema DJ,, Balajee SA. 2011. Azole resistance in Aspergillus fumigatus isolates from the ARTEMIS global surveillance study is primarily due to the TR/L98H mutation in the cyp51A gene. Antimicrob Agents Chemother 55: 44654468.
49. Howard SJ,, Arendrup MC. 2011. Acquired antifungal drug resistance in Aspergillus fumigatus: epidemiology and detection. Med Mycol 49(Suppl 1) : S9095.
50. Denning DW,, Perlin DS. 2011. Azole resistance in Aspergillus: a growing public health menace. Future Microbiol 6: 12291232.
51. Denning DW,, Park S,, Lass-Florl C,, Fraczek MG,, Kirwan M,, Gore R,, Smith J,, Bueid A,, Moore CB,, Bowyer P,, Perlin DS. 2011. High-frequency triazole resistance found in nonculturable Aspergillus fumigatus from lungs of patients with chronic fungal disease. Clin Infect Dis 52: 11231129.
52. Vandeputte P,, Ferrari S,, Coste AT. 2012. Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012: 713687.
53. Marie C,, White TC. 2009. Genetic basis of antifungal drug resistance. Curr Fungal Infect Rep 3: 163169.
54. Sanglard D. 2002. Resistance of human fungal pathogens to antifungal drugs. Curr Opin Microbiol 5: 379385.
55. Ramage G,, Rajendran R,, Sherry L,, Williams C. 2012. Fungal biofilm resistance. Int J Microbiol 2012: 528521.
56. Perea S,, Lopez-Ribot JL,, Kirkpatrick WR,, McAtee RK,, Santillan RA,, Martinez M,, Calabrese D,, Sanglard D,, Patterson TF. 2001. Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45: 26762684.
57. White TC. 1997. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob Agents Chemother 41: 14881494.
58. Xu Y,, Chen L,, Li C. 2008. Susceptibility of clinical isolates of Candida species to fluconazole and detection of Candida albicans ERG11 mutations. J Antimicrob Chemother 61: 798804.
59. Kelly SL,, Lamb DC,, Kelly DE. 1999. Y132H substitution in Candida albicans sterol 14alpha-demethylase confers fluconazole resistance by preventing binding to haem. FEMS Microbiol Lett 180: 171175.
60. Kelly SL,, Lamb DC,, Loeffler J,, Einsele H,, Kelly DE. 1999. The G464S amino acid substitution in Candida albicans sterol 14alpha-demethylase causes fluconazole resistance in the clinic through reduced affinity. Biochem Biophys Res Commun 262: 174179.
61. Asai K,, Tsuchimori N,, Okonogi K,, Perfect JR,, Gotoh O,, Yoshida Y. 1999. Formation of azole-resistant Candida albicans by mutation of sterol 14-demethylase P450. Antimicrob Agents Chemother 43: 11631169.
62. Rodero L,, Mellado E,, Rodriguez AC,, Salve A,, Guelfand L,, Cahn P,, Cuenca-Estrella M,, Davel G,, Rodriguez-Tudela JL. 2003. G484S amino acid substitution in lanosterol 14-alpha demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother 47: 36533656.
63. Sionov E,, Chang YC,, Garraffo HM,, Dolan MA,, Ghannoum MA,, Kwon-Chung KJ. 2012. Identification of a Cryptococcus neoformans cytochrome P450 lanosterol 14alpha–demethylase (Erg11) residue critical for differential susceptibility between fluconazole/voriconazole and itraconazole/posaconazole. Antimicrob Agents Chemother 56: 11621169.
64. Verweij PE,, Howard SJ,, Melchers WJ,, Denning DW. 2009. Azole-resistance in Aspergillus: proposed nomenclature and breakpoints. Drug Resist Updat 12: 141147.
65. Arendrup MC,, Mavridou E,, Mortensen KL,, Snelders E,, Frimodt-Moller N,, Khan H,, Melchers WJ,, Verweij PE. 2010. Development of azole resistance in Aspergillus fumigatus during azole therapy associated with change in virulence. PLoS One 5: e10080.
66. Mellado E,, Garcia-Effron G,, Alcazar-Fuoli L,, Melchers WJ,, Verweij PE,, Cuenca-Estrella M,, Rodriguez-Tudela JL. 2007. A new Aspergillus fumigatus resistance mechanism conferring in vitro cross-resistance to azole antifungals involves a combination of cyp51A alterations. Antimicrob Agents Chemother 51: 18971904.
67. Snelders E,, Huis In’t Veld RA,, Rijs AJ,, Kema GH,, Melchers WJ,, Verweij PE. 2009. Possible environmental origin of resistance of Aspergillus fumigatus to medical triazoles. Appl Environ Microbiol 75: 40534057.
68. Snelders E,, Karawajczyk A,, Verhoeven RJ,, Venselaar H,, Schaftenaar G,, Verweij PE,, Melchers WJ. 2011. The structure-function relationship of the Aspergillus fumigatus cyp51A L98H conversion by site-directed mutagenesis: the mechanism of L98H azole resistance. Fungal Genet Biol 48: 10621070.
69. Chowdhary A,, Kathuria S,, Xu J,, Sharma C,, Sundar G,, Singh PK,, Gaur SN,, Hagen F,, Klaassen CH,, Meis JF. 2012. Clonal expansion and emergence of environmental multiple-triazole-resistant Aspergillus fumigatus strains carrying the TR(3)(4)/L98H mutations in the cyp51A gene in India. PLoS One 7: e52871.
70. Bader O,, Weig M,, Reichard U,, Lugert R,, Kuhns M,, Christner M,, Held J,, Peter S,, Schumacher U,, Buchheidt D,, Tintelnot K,, Gross U. 2013. cyp51A-based mechanisms of Aspergillus fumigatus azole drug resistance present in clinical samples from Germany. Antimicrob Agents Chemother 57: 35133517.
71. Arikan-Akdagli S. 2012. Azole resistance in Aspergillus: global status in Europe and Asia. Ann NY Acad Sci 1272: 914.
72. van der Linden JW,, Camps SM,, Kampinga GA,, Arends JP,, Debets-Ossenkopp YJ,, Haas PJ,, Rijnders BJ,, Kuijper EJ,, van Tiel FH,, Varga J,, Karawajczyk A,, Zoll J,, Melchers WJ,, Verweij PE. 2013. Aspergillosis due to voriconazole highly resistant Aspergillus fumigatus and recovery of genetically related resistant isolates from domiciles. Clin Infect Dis 57: 513520.
73. Xiao L,, Madison V,, Chau AS,, Loebenberg D,, Palermo RE,, McNicholas PM. 2004. Three-dimensional models of wild-type and mutated forms of cytochrome P450 14alpha-sterol demethylases from Aspergillus fumigatus and Candida albicans provide insights into posaconazole binding. Antimicrob Agents Chemother 48: 568574.
74. Favre B,, Didmon M,, Ryder NS. 1999. Multiple amino acid substitutions in lanosterol 14alpha-demethylase contribute to azole resistance in Candida albicans. Microbiology 145( Pt 10) : 27152725.
75. Snelders E,, Karawajczyk A,, Schaftenaar G,, Verweij PE,, Melchers WJ. 2010. Azole resistance profile of amino acid changes in Aspergillus fumigatus CYP51A based on protein homology modeling. Antimicrob Agents Chemother 54: 24252430.
76. Fraczek MG,, Bromley M,, Bowyer P. 2011. An improved model of the Aspergillus fumigatus CYP51A protein. Antimicrob Agents Chemother 55: 24832486.
77. Alcazar-Fuoli L,, Cuesta I,, Rodriguez-Tudela JL,, Cuenca-Estrella M,, Sanglard D,, Mellado E. 2011. Three-dimensional models of 14alpha-sterol demethylase (Cyp51A) from Aspergillus lentulus and Aspergillus fumigatus: an insight into differences in voriconazole interaction. Int J Antimicrob Agents 38: 426434.
78. Song JL,, Harry JB,, Eastman RT,, Oliver BG,, White TC. 2004. The Candida albicans lanosterol 14-alpha-demethylase (ERG11) gene promoter is maximally induced after prolonged growth with antifungal drugs. Antimicrob Agents Chemother 48: 11361144.
79. Henry KW,, Nickels JT,, Edlind TD. 2000. Upregulation of ERG genes in Candida species by azoles and other sterol biosynthesis inhibitors. Antimicrob Agents Chemother 44: 26932700.
80. Flowers SA,, Barker KS,, Berkow EL,, Toner G,, Chadwick SG,, Gygax SE,, Morschhauser J,, Rogers PD. 2012. Gain-of-function mutations in UPC2 are a frequent cause of ERG11 upregulation in azole-resistant clinical isolates of Candida albicans. Eukaryot Cell 11: 12891299.
81. MacPherson S,, Akache B,, Weber S,, De Deken X,, Raymond M,, Turcotte B. 2005. Candida albicans zinc cluster protein Upc2p confers resistance to antifungal drugs and is an activator of ergosterol biosynthetic genes. Antimicrob Agents Chemother 49: 17451752.
82. Silver PM,, Oliver BG,, White TC. 2004. Role of Candida albicans transcription factor Upc2p in drug resistance and sterol metabolism. Eukaryot Cell 3: 13911397.
83. Oliver BG,, Song JL,, Choiniere JH,, White TC. 2007. cis-Acting elements within the Candida albicans ERG11 promoter mediate the azole response through transcription factor Upc2p. Eukaryot Cell 6: 22312239.
84. Hoot SJ,, Oliver BG,, White TC. 2008. Candida albicans UPC2 is transcriptionally induced in response to antifungal drugs and anaerobicity through Upc2p-dependent and -independent mechanisms. Microbiology 154: 27482756.
85. Znaidi S,, Weber S,, Al-Abdin OZ,, Bomme P,, Saidane S,, Drouin S,, Lemieux S,, De Deken X,, Robert F,, Raymond M. 2008. Genomewide location analysis of Candida albicans Upc2p, a regulator of sterol metabolism and azole drug resistance. Eukaryot Cell 7: 836847.
86. Marr KA,, Lyons CN,, Rustad TR,, Bowden RA,, White TC. 1998. Rapid, transient fluconazole resistance in Candida albicans is associated with increased mRNA levels of CDR. Antimicrob Agents Chemother 42: 25842589.
87. Franz R,, Kelly SL,, Lamb DC,, Kelly DE,, Ruhnke M,, Morschhauser J. 1998. Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 42: 30653072.
88. Nascimento AM,, Goldman GH,, Park S,, Marras SA,, Delmas G,, Oza U,, Lolans K,, Dudley MN,, Mann PA,, Perlin DS. 2003. Multiple resistance mechanisms among Aspergillus fumigatus mutants with high-level resistance to itraconazole. Antimicrob Agents Chemother 47: 17191726.
89. Sanglard D,, Kuchler K,, Ischer F,, Pagani JL,, Monod M,, Bille J. 1995. Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39: 23782386.
90. White TC,, Holleman S,, Dy F,, Mirels LF,, Stevens DA. 2002. Resistance mechanisms in clinical isolates of Candida albicans. Antimicrob Agents Chemother 46: 17041713.
91. Braun BR,, van Het Hoog M,, d’Enfert C,, Martchenko M,, Dungan J,, Kuo A,, Inglis DO,, Uhl MA,, Hogues H,, Berriman M,, Lorenz M,, Levitin A,, Oberholzer U,, Bachewich C,, Harcus D,, Marcil A,, Dignard D,, Iouk T,, Zito R,, Frangeul L,, Tekaia F,, Rutherford K,, Wang E,, Munro CA,, Bates S,, Gow NA,, Hoyer LL,, Kohler G,, Morschhauser J,, Newport G,, Znaidi S,, Raymond M,, Turcotte B,, Sherlock G,, Costanzo M,, Ihmels J,, Berman J,, Sanglard D,, Agabian N,, Mitchell AP,, Johnson AD,, Whiteway M,, Nantel A. 2005. A human-curated annotation of the Candida albicans genome. PLoS Genet 1: 3657.
92. Prasad R,, De Wergifosse P,, Goffeau A,, Balzi E. 1995. Molecular cloning and characterization of a novel gene of Candida albicans, CDR1, conferring multiple resistance to drugs and antifungals. Curr Genet 27: 320329.
93. Shukla S,, Saini P,, Smriti,, Jha S,, Ambudkar SV,, Prasad R. 2003. Functional characterization of Candida albicans ABC transporter Cdr1p. Eukaryot Cell 2: 13611375.
94. Sanglard D,, Ischer F,, Monod M,, Bille J. 1997. Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143( Pt 2) : 405416.
95. Sanglard D,, Ischer F,, Calabrese D,, Majcherczyk PA,, Bille J. 1999. The ATP binding cassette transporter gene CgCDR1 from Candida glabrata is involved in the resistance of clinical isolates to azole antifungal agents. Antimicrob Agents Chemother 43: 27532765.
96. Izumikawa K,, Kakeya H,, Tsai HF,, Grimberg B,, Bennett JE. 2003. Function of Candida glabrata ABC transporter gene, PDH1. Yeast 20: 249261.
97. Torelli R,, Posteraro B,, Ferrari S,, La Sorda M,, Fadda G,, Sanglard D,, Sanguinetti M. 2008. The ATP-binding cassette transporter-encoding gene CgSNQ2 is contributing to the CgPDR1-dependent azole resistance of Candida glabrata. Mol Microbiol 68: 186201.
98. Brun S,, Berges T,, Poupard P,, Vauzelle-Moreau C,, Renier G,, Chabasse D,, Bouchara JP. 2004. Mechanisms of azole resistance in petite mutants of Candida glabrata. Antimicrob Agents Chemother 48: 17881796.
99. Sanguinetti M,, Posteraro B,, La Sorda M,, Torelli R,, Fiori B,, Santangelo R,, Delogu G,, Fadda G. 2006. Role of AFR1, an ABC transporter-encoding gene, in the in vivo response to fluconazole and virulence of Cryptococcus neoformans. Infect Immun 74: 13521359.
100. Katiyar SK,, Edlind TD. 2001. Identification and expression of multidrug resistance–related ABC transporter genes in Candida krusei. Med Mycol 39: 109116.
101. Gaur M,, Puri N,, Manoharlal R,, Rai V,, Mukhopadhayay G,, Choudhury D,, Prasad R. 2008. MFS transportome of the human pathogenic yeast Candida albicans. BMC Genomics 9: 579.
102. Goldway M,, Teff D,, Schmidt R,, Oppenheim AB,, Koltin Y. 1995. Multidrug resistance in Candida albicans: disruption of the BENr gene. Antimicrob Agents Chemother 39: 422426.
103. Sasse C,, Schillig R,, Reimund A,, Merk J,, Morschhauser J. 2012. Inducible and constitutive activation of two polymorphic promoter alleles of the Candida albicans multidrug efflux pump MDR1. Antimicrob Agents Chemother 56: 44904494.
104. Calabrese D,, Bille J,, Sanglard D. 2000. A novel multidrug efflux transporter gene of the major facilitator superfamily from Candida albicans (FLU1) conferring resistance to fluconazole. Microbiology 146( Pt 11) : 27432754.
105. Slaven JW,, Anderson MJ,, Sanglard D,, Dixon GK,, Bille J,, Roberts IS,, Denning DW. 2002. Increased expression of a novel Aspergillus fumigatus ABC transporter gene, atrF, in the presence of itraconazole in an itraconazole resistant clinical isolate. Fungal Genet Biol 36: 199206.
106. da Silva Ferreira ME,, Capellaro JL,, dos Reis Marques E,, Malavazi I,, Perlin D,, Park S,, Anderson JB,, Colombo AL,, Arthington-Skaggs BA,, Goldman MH,, Goldman GH. 2004. In vitro evolution of itraconazole resistance in Aspergillus fumigatus involves multiple mechanisms of resistance. Antimicrob Agents Chemother 48: 44054413.
107. Fraczek MG,, Bromley M,, Buied A,, Moore CB,, Rajendran R,, Rautemaa R,, Ramage G,, Denning DW,, Bowyer P. 2013. The cdr1B efflux transporter is associated with non-cyp51a-mediated itraconazole resistance in Aspergillus fumigatus. J Antimicrob Chemother 68: 14861496.
108. Albarrag AM,, Anderson MJ,, Howard SJ,, Robson GD,, Warn PA,, Sanglard D,, Denning DW. 2011. Interrogation of related clinical pan-azole-resistant Aspergillus fumigatus strains: G138C, Y431C, and G434C single nucleotide polymorphisms in cyp51A, upregulation of cyp51A, and integration and activation of transposon Atf1 in the cyp51A promoter. Antimicrob Agents Chemother 55: 51135121.
109. Buied A,, Moore CB,, Denning DW,, Bowyer P. 2013. High-level expression of cyp51B in azole-resistant clinical Aspergillus fumigatus isolates. J Antimicrob Chemother 68: 512514.
110. Hiller D,, Sanglard D,, Morschhauser J. 2006. Overexpression of the MDR1 gene is sufficient to confer increased resistance to toxic compounds in Candida albicans. Antimicrob Agents Chemother 50: 13651371.
111. Marr KA,, White TC,, van Burik JA,, Bowden RA. 1997. Development of fluconazole resistance in Candida albicans causing disseminated infection in a patient undergoing marrow transplantation. Clin Infect Dis 25: 908910.
112. Lopez-Ribot JL,, McAtee RK,, Lee LN,, Kirkpatrick WR,, White TC,, Sanglard D,, Patterson TF. 1998. Distinct patterns of gene expression associated with development of fluconazole resistance in serial Candida albicans isolates from human immunodeficiency virus-infected patients with oropharyngeal candidiasis. Antimicrob Agents Chemother 42: 29322937.
113. Eddouzi J,, Parker JE,, Vale-Silva LA,, Coste A,, Ischer F,, Kelly S,, Manai M,, Sanglard D. 2013. Molecular mechanisms of drug resistance in clinical Candida species isolated from Tunisian hospitals. Antimicrob Agents Chemother 57: 31823193.
114. Coste AT,, Karababa M,, Ischer F,, Bille J,, Sanglard D. 2004. TAC1, transcriptional activator of CDR genes, is a new transcription factor involved in the regulation of Candida albicans ABC transporters CDR1 and CDR2. Eukaryot Cell 3: 16391652.
115. Schubert S,, Barker KS,, Znaidi S,, Schneider S,, Dierolf F,, Dunkel N,, Aid M,, Boucher G,, Rogers PD,, Raymond M,, Morschhauser J. 2011. Regulation of efflux pump expression and drug resistance by the transcription factors Mrr1, Upc2, and Cap1 in Candida albicans. Antimicrob Agents Chemother 55: 22122223.
116. Wirsching S,, Michel S,, Kohler G,, Morschhauser J. 2000. Activation of the multiple drug resistance gene MDR1 in fluconazole-resistant, clinical Candida albicans strains is caused by mutations in a trans-regulatory factor. J Bacteriol 182: 400404.
117. MacCallum DM,, Coste A,, Ischer F,, Jacobsen MD,, Odds FC,, Sanglard D. 2010. Genetic dissection of azole resistance mechanisms in Candida albicans and their validation in a mouse model of disseminated infection. Antimicrob Agents Chemother 54: 14761483.
118. Schubert S,, Rogers PD,, Morschhauser J. 2008. Gain-of-function mutations in the transcription factor MRR1 are responsible for overexpression of the MDR1 efflux pump in fluconazole-resistant Candida dubliniensis strains. Antimicrob Agents Chemother 52: 42744280.
119. Coste A,, Turner V,, Ischer F,, Morschhauser J,, Forche A,, Selmecki A,, Berman J,, Bille J,, Sanglard D. 2006. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics 172: 21392156.
120. Schubert S,, Popp C,, Rogers PD,, Morschhauser J. 2011. Functional dissection of a Candida albicans zinc cluster transcription factor, the multidrug resistance regulator Mrr1. Eukaryot Cell 10: 11101121.
121. Riggle PJ,, Kumamoto CA. 2006. Transcriptional regulation of MDR1, encoding a drug efflux determinant, in fluconazole-resistant Candida albicans strains through an Mcm1p binding site. Eukaryot Cell 5: 19571968.
122. Ferrari S,, Ischer F,, Calabrese D,, Posteraro B,, Sanguinetti M,, Fadda G,, Rohde B,, Bauser C,, Bader O,, Sanglard D. 2009. Gain of function mutations in CgPDR1 of Candida glabrata not only mediate antifungal resistance but also enhance virulence. PLoS Pathog 5: e1000268.
123. Vermitsky JP,, Edlind TD. 2004. Azole resistance in Candida glabrata: coordinate upregulation of multidrug transporters and evidence for a Pdr1-like transcription factor. Antimicrob Agents Chemother 48: 37733781.
124. Ferrari S,, Sanguinetti M,, Torelli R,, Posteraro B,, Sanglard D. 2011. Contribution of CgPDR1-regulated genes in enhanced virulence of azole-resistant Candida glabrata. PLoS One 6: e17589.
125. Manoharlal R,, Gaur NA,, Panwar SL,, Morschhauser J,, Prasad R. 2008. Transcriptional activation and increased mRNA stability contribute to overexpression of CDR1 in azole-resistant Candida albicans. Antimicrob Agents Chemother 52: 14811492.
126. Coste A,, Selmecki A,, Forche A,, Diogo D,, Bougnoux ME,, d’Enfert C,, Berman J,, Sanglard D. 2007. Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryot Cell 6: 18891904.
127. Coste AT,, Crittin J,, Bauser C,, Rohde B,, Sanglard D. 2009. Functional analysis of cis- and trans-acting elements of the Candida albicans CDR2 promoter with a novel promoter reporter system. Eukaryot Cell 8: 12501267.
128. Sionov E,, Lee H,, Chang YC,, Kwon-Chung KJ. 2010. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 6: e1000848.
129. Sionov E,, Chang YC,, Garraffo HM,, Kwon-Chung KJ. 2009. Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 53: 28042815.
130. Sionov E,, Chang YC,, Kwon-Chung KJ. 2013. Azole heteroresistance in Cryptococcus neoformans: emergence of resistant clones with chromosomal disomy in the mouse brain during fluconazole treatment. Antimicrob Agents Chemother 53: 28042815.
131. Sasse C,, Dunkel N,, Schafer T,, Schneider S,, Dierolf F,, Ohlsen K,, Morschhauser J. 2012. The stepwise acquisition of fluconazole resistance mutations causes a gradual loss of fitness in Candida albicans. Mol Microbiol 86: 539556.
132. Mavridou E,, Meletiadis J,, Arendrup M,, Melchers W,, Mouton J,, Verweij P. 2010. Presented at the 20th European Congress of Clinical Microbiology and Infectious Diseases, Vienna, Austria, 10–13 April, 2010.
133. Vale-Silva L,, Ischer F,, Leibundgut-Landmann S,, Sanglard D. 2013. Gain-of-function mutations in PDR1, a regulator of antifungal drug resistance in Candida glabrata, control adherence to host cells. Infect Immun 81: 17091720.
134. Ferrari S,, Sanguinetti M,, De Bernardis F,, Torelli R,, Posteraro B,, Vandeputte P,, Sanglard D. 2011. Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother 55: 18521860.
135. Kelly SL,, Lamb DC,, Kelly DE,, Manning NJ,, Loeffler J,, Hebart H,, Schumacher U,, Einsele H. 1997. Resistance to fluconazole and cross-resistance to amphotericin B in Candida albicans from AIDS patients caused by defective sterol delta5,6-desaturation. FEBS Lett 400: 8082.
136. Miyazaki Y,, Geber A,, Miyazaki H,, Falconer D,, Parkinson T,, Hitchcock C,, Grimberg B,, Nyswaner K,, Bennett JE. 1999. Cloning, sequencing, expression and allelic sequence diversity of ERG3 (C–5 sterol desaturase gene) in Candida albicans. Gene 236: 4351.
137. Sanglard D,, Ischer F,, Parkinson T,, Falconer D,, Bille J. 2003. Candida albicans mutations in the ergosterol biosynthetic pathway and resistance to several antifungal agents. Antimicrob Agents Chemother 47: 24042412.
138. Geber A,, Hitchcock CA,, Swartz JE,, Pullen FS,, Marsden KE,, Kwon-Chung KJ,, Bennett JE. 1995. Deletion of the Candida glabrata ERG3 and ERG11 genes: effect on cell viability, cell growth, sterol composition, and antifungal susceptibility. Antimicrob Agents Chemother 39: 27082717.
139. Kumamoto CA. 2002. Candida biofilms. Curr Opin Microbiol 5: 608611.
140. Ramage G,, Mowat E,, Jones B,, Williams C,, Lopez-Ribot J. 2009. Our current understanding of fungal biofilms. Crit Rev Microbiol 35: 340355.
141. Chandra J,, Zhou G,, Ghannoum MA. 2005. Fungal biofilms and antimycotics. Curr Drug Targets 6: 887894.
142. Fanning S,, Mitchell AP. 2012. Fungal biofilms. PLoS Pathog 8: e1002585.
143. Mukherjee PK,, Chandra J,, Kuhn DM,, Ghannoum MA. 2003. Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 71: 43334340.
144. Ramage G,, Bachmann S,, Patterson TF,, Wickes BL,, Lopez-Ribot JL. 2002. Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49: 973980.
145. Nett JE,, Crawford K,, Marchillo K,, Andes DR. 2010. Role of Fks1p and matrix glucan in Candida albicans biofilm resistance to an echinocandin, pyrimidine, and polyene. Antimicrob Agents Chemother 54: 35053508.
146. Mitchell KF,, Taff HT,, Cuevas MA,, Reinicke EL,, Sanchez H,, Andes DR. 2013. Role of matrix beta-1,3 glucan in antifungal resistance of non- albicans Candida biofilms. Antimicrob Agents Chemother 57: 19181920.
147. Nett J,, Lincoln L,, Marchillo K,, Massey R,, Holoyda K,, Hoff B,, VanHandel M,, Andes D. 2007. Putative role of beta-1,3 glucans in Candida albicans biofilm resistance. Antimicrob Agents Chemother 51: 510520.
148. Nett JE,, Sanchez H,, Cain MT,, Andes DR. 2010. Genetic basis of Candida biofilm resistance due to drug-sequestering matrix glucan. J Infect Dis 202: 171175.
149. Nett JE,, Sanchez H,, Cain MT,, Ross KM,, Andes DR. 2011. Interface of Candida albicans biofilm matrix-associated drug resistance and cell wall integrity regulation. Eukaryot Cell 10: 16601669.
150. Desai JV,, Bruno VM,, Ganguly S,, Stamper RJ,, Mitchell KF,, Solis N,, Hill EM,, Xu W,, Filler SG,, Andes DR,, Fanning S,, Lanni F,, Mitchell AP. 2013. Regulatory role of glycerol in Candida albicans biofilm formation. MBio 4: e0063700612.
151. Nobile CJ,, Nett JE,, Hernday AD,, Homann OR,, Deneault JS,, Nantel A,, Andes DR,, Johnson AD,, Mitchell AP. 2009. Biofilm matrix regulation by Candida albicans Zap1. PLoS Biol 7: e1000133.
152. Shapiro RS,, Zaas AK,, Betancourt-Quiroz M,, Perfect JR,, Cowen LE. 2012. The Hsp90 co-chaperone Sgt1 governs Candida albicans morphogenesis and drug resistance. PLoS One 7: e44734.
153. Robbins N,, Uppuluri P,, Nett J,, Rajendran R,, Ramage G,, Lopez-Ribot JL,, Andes D,, Cowen LE. 2011. Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7: e1002257.
154. Silva S,, Henriques M,, Martins A,, Oliveira R,, Williams D,, Azeredo J. 2009. Biofilms of non- Candida albicans Candida species: quantification, structure and matrix composition. Med Mycol 47: 681689.
155. LaFleur MD,, Kumamoto CA,, Lewis K. 2006. Candida albicans biofilms produce antifungal-tolerant persister cells. Antimicrob Agents Chemother 50: 38393846.
156. Ramage G,, Williams C. 2013. The clinical importance of fungal biofilms. Adv Appl Microbiol 84: 2783.
157. Cowen LE. 2009. Hsp90 orchestrates stress response signaling governing fungal drug resistance. PLoS Pathog 5: e1000471.
158. Cowen LE,, Carpenter AE,, Matangkasombut O,, Fink GR,, Lindquist S. 2006. Genetic architecture of Hsp90-dependent drug resistance. Eukaryot Cell 5: 21842188.
159. LaFayette SL,, Collins C,, Zaas AK,, Schell WA,, Betancourt-Quiroz M,, Gunatilaka AA,, Perfect JR,, Cowen LE. 2010. PKC signaling regulates drug resistance of the fungal pathogen Candida albicans via circuitry comprised of Mkc1, calcineurin, and Hsp90. PLoS Pathog 6: e1001069.
160. Shapiro RS,, Robbins N,, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol Mol Biol Rev 75: 213267.
161. Zotchev SB. 2003. Polyene macrolide antibiotics and their applications in human therapy. Curr Med Chem 10: 211223.
162. Kanafani ZA,, Perfect JR. 2008. Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 46: 120128.
163. Messer SA,, Moet GJ,, Kirby JT,, Jones RN. 2009. Activity of contemporary antifungal agents, including the novel echinocandin anidulafungin, tested against Candida spp., Cryptococcus spp., and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2006 to 2007). J Clin Microbiol 47: 19421946.
164. Messer SA,, Jones RN,, Fritsche TR. 2006. International surveillance of Candida spp. and Aspergillus spp.: report from the SENTRY Antimicrobial Surveillance Program (2003). J Clin Microbiol 44: 17821787.
165. Hull CM,, Bader O,, Parker JE,, Weig M,, Gross U,, Warrilow AG,, Kelly DE,, Kelly SL. 2012. Two clinical isolates of Candida glabrata exhibiting reduced sensitivity to amphotericin B both harbor mutations in ERG2. Antimicrob Agents Chemother 56: 64176421.
166. Hull CM,, Parker JE,, Bader O,, Weig M,, Gross U,, Warrilow AG,, Kelly DE,, Kelly SL. 2012. Facultative sterol uptake in an ergosterol-deficient clinical isolate of Candida glabrata harboring a missense mutation in ERG11 and exhibiting cross-resistance to azoles and amphotericin B. Antimicrob Agents Chemother 56: 42234232.
167. Vazquez JA,, Arganoza MT,, Boikov D,, Yoon S,, Sobel JD,, Akins RA. 1998. Stable phenotypic resistance of Candida species to amphotericin B conferred by preexposure to subinhibitory levels of azoles. J Clin Microbiol 36: 26902695.
168. Manavathu EK,, Cutright JL,, Chandrasekar PH. 2005. In vivo resistance of a laboratory-selected Aspergillus fumigatus isolate to amphotericin B. Antimicrob Agents Chemother 49: 428430.
169. Vandeputte P,, Tronchin G,, Larcher G,, Ernoult E,, Berges T,, Chabasse D,, Bouchara JP. 2008. A nonsense mutation in the ERG6 gene leads to reduced susceptibility to polyenes in a clinical isolate of Candida glabrata. Antimicrob Agents Chemother 52: 37013709.
170. Kelly SL,, Lamb DC,, Taylor M,, Corran AJ,, Baldwin BC,, Powderly WG. 1994. Resistance to amphotericin B associated with defective sterol delta 8→7 isomerase in a Cryptococcus neoformans strain from an AIDS patient. FEMS Microbiol Lett 122: 3942.
171. Alcazar-Fuoli L,, Mellado E,, Garcia-Effron G,, Buitrago MJ,, Lopez JF,, Grimalt JO,, Cuenca-Estrella JM,, Rodriguez-Tudela JL. 2006. Aspergillus fumigatus C-5 sterol desaturases Erg3A and Erg3B: role in sterol biosynthesis and antifungal drug susceptibility. Antimicrob Agents Chemother 50: 453460.
172. Blum G,, Perkhofer S,, Haas H,, Schrettl M,, Wurzner R,, Dierich MP,, Lass-Florl C. 2008. Potential basis for amphotericin B resistance in Aspergillus terreus. Antimicrob Agents Chemother 52: 15531555.
173. Onishi J,, Meinz M,, Thompson J,, Curotto J,, Dreikorn S,, Rosenbach M,, Douglas C,, Abruzzo G,, Flattery A,, Kong L,, Cabello A,, Vicente F,, Pelaez F,, Diez MT,, Martin I,, Bills G,, Giacobbe R,, Dombrowski A,, Schwartz R,, Morris S,, Harris G,, Tsipouras A,, Wilson K,, Kurtz MB. 2000. Discovery of novel antifungal (1,3)-beta- d-glucan synthase inhibitors. Antimicrob Agents Chemother 44: 368377.
174. Pappas PG,, Kauffman CA,, Andes D,, Benjamin DK Jr,, Calandra TF,, Edwards JE Jr,, Filler SG,, Fisher JF,, Kullberg BJ,, Ostrosky-Zeichner L,, Reboli AC,, Rex JH,, Walsh TJ,, Sobel JD. 2009. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48: 503535.
175. Bernard M,, Latge JP. 2001. Aspergillus fumigatus cell wall: composition and biosynthesis. Med Mycol 39( Suppl 1) : 917.
176. Ernst EJ,, Klepser ME,, Ernst ME,, Messer SA,, Pfaller MA. 1999. In vitro pharmacodynamic properties of MK-0991 determined by time-kill methods. Diagn Microbiol Infect Dis 33: 7580.
177. Bowman JC,, Abruzzo GK,, Flattery AM,, Gill CJ,, Hickey EJ,, Hsu MJ,, Kahn JN,, Liberator PA,, Misura AS,, Pelak BA,, Wang TC,, Douglas CM. 2006. Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. Antimicrob Agents Chemother 50: 42024205.
178. Bowman JC,, Hicks PS,, Kurtz MB,, Rosen H,, Schmatz DM,, Liberator PA,, Douglas CM. 2002. The antifungal echinocandin caspofungin acetate kills growing cells of Aspergillus fumigatus in vitro. Antimicrob Agents Chemother 46: 30013012.
179. Bachmann SP,, Patterson TF,, Lopez-Ribot JL. 2002. In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol 40: 22282230.
180. Ferreira JA,, Carr JH,, Starling CE,, de Resende MA,, Donlan RM. 2009. Biofilm formation and effect of caspofungin on biofilm structure of Candida species bloodstream isolates. Antimicrob Agents Chemother 53: 43774384.
181. Simitsopoulou M,, Peshkova P,, Tasina E,, Katragkou A,, Kyrpitzi D,, Velegraki A,, Walsh TJ,, Roilides E. 2013. Species-specific and drug-specific differences in susceptibility of Candida biofilms to echinocandins: characterization of less common bloodstream isolates. Antimicrob Agents Chemother 57: 25622570.
182. Pfaller M,, Boyken L,, Hollis R,, Kroeger J,, Messer S,, Tendolkar S,, Diekema D. 2011. Use of epidemiological cutoff values to examine 9-year trends in susceptibility of Candida species to anidulafungin, caspofungin, and micafungin. J Clin Microbiol 49: 624629.
183. Perlin DS. 2011. Echinocandin-resistant Candida: molecular methods and phenotypes. Curr Fungal Infect Rep 5: 113119.
184. Mazur P,, Baginsky W. 1996. In vitro activity of 1,3-beta- d-glucan synthase requires the GTP-binding protein Rho1. J Biol Chem 271: 1460414609.
185. Mio T,, Adachi-Shimizu M,, Tachibana Y,, Tabuchi H,, Inoue SB,, Yabe T,, Yamada-Okabe T,, Arisawa M,, Watanabe T,, Yamada-Okabe H. 1997. Cloning of the Candida albicans homolog of Saccharomyces cerevisiae GSC1/FKS1 and its involvement in beta-1,3-glucan synthesis. J Bacteriol 179: 40964105.
186. Katiyar SK,, Alastruey–Izquierdo A,, Healey KR,, Johnson ME,, Perlin DS,, Edlind TD. 2012. Fks1 and Fks2 are functionally redundant but differentially regulated in Candida glabrata: implications for echinocandin resistance. Antimicrob Agents Chemother 56: 63046309.
187. Dannaoui E,, Desnos-Ollivier M,, Garcia-Hermoso D,, Grenouillet F,, Cassaing S,, Baixench MT,, Bretagne S,, Dromer F,, Lortholary O. 2012. Candida spp. with acquired echinocandin resistance, France, 2004–2010(1). Emerg Infect Dis 18: 8690.
188. Pfaller MA,, Messer SA,, Moet GJ,, Jones RN,, Castanheira M. 2011. Candida bloodstream infections: comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008–2009). Int J Antimicrob Agents 38: 6569.
189. Pfaller MA,, Moet GJ,, Messer SA,, Jones RN,, Castanheira M. 2011. Geographic variations in species distribution and echinocandin and azole antifungal resistance rates among Candida bloodstream infection isolates: report from the SENTRY Antimicrobial Surveillance Program (2008 to 2009). J Clin Microbiol 49: 396399.
190. Castanheira M,, Woosley LN,, Diekema DJ,, Messer SA,, Jones RN,, Pfaller MA. 2010. Low prevalence of fks1 hot spot 1 mutations in a worldwide collection of Candida strains. Antimicrob Agents Chemother 54: 26552659.
191. Lortholary O,, Desnos-Ollivier M,, Sitbon K,, Fontanet A,, Bretagne S,, Dromer F. 2011. Recent exposure to caspofungin or fluconazole influences the epidemiology of candidemia: a prospective multicenter study involving 2,441 patients. Antimicrob Agents Chemother 55: 532538.
192. Thompson GR 3rd,, Wiederhold NP,, Vallor AC,, Villareal NC,, Lewis JS 2nd,, Patterson TF. 2008. Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother 52: 37833785.
193. Fekkar A,, Meyer I,, Brossas JY,, Dannaoui E,, Palous M,, Uzunov M,, Nguyen S,, Leblond V,, Mazier D,, Datry A. 2013. Rapid emergence of echinocandin resistance during Candida kefyr fungemia treatment with caspofungin. Antimicrob Agents Chemother 57: 23802382.
194. Alexander BD,, Johnson MD,, Pfeiffer CD,, Jimenez–Ortigosa C,, Catania J,, Booker R,, Castanheira M,, Messer SA,, Perlin DS,, Pfaller MA. 2013. Increasing echinocandin resistance in Candida glabrata: clinical failure correlates with presence of FKS mutations and elevated minimum inhibitory concentrations. Clin Infect Dis 56: 17241732.
195. Pfaller MA,, Diekema DJ,, Andes D,, Arendrup MC,, Brown SD,, Lockhart SR,, Motyl M,, Perlin DS. 2011. Clinical breakpoints for the echinocandins and Candida revisited: Integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 14: 164176.
196. Bachmann SP,, Ramage G,, VandeWalle K,, Patterson TF,, Wickes BL,, Lopez-Ribot JL. 2003. Antifungal combinations against Candida albicans biofilms in vitro. Antimicrob Agents Chemother 47: 36573659.
197. Niimi K,, Maki K,, Ikeda F,, Holmes AR,, Lamping E,, Niimi M,, Monk BC,, Cannon RD. 2006. Overexpression of Candida albicans CDR1, CDR2, or MDR1 does not produce significant changes in echinocandin susceptibility. Antimicrob Agents Chemother 50: 11481155.
198. Perlin DS. 2011. Current perspectives on echinocandin class drugs. Future Microbiol 6: 441457.
199. Garcia-Effron G,, Lee S,, Park S,, Cleary JD,, Perlin DS. 2009. Effect of Candida glabrata FKS1 and FKS2 mutations on echinocandin sensitivity and kinetics of 1,3-beta- d-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother 53: 36903699.
200. Garcia-Effron G,, Park S,, Perlin DS. 2009. Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother 53: 112122.
201. Katiyar S,, Pfaller M,, Edlind T. 2006. Candida albicans and Candida glabrata clinical isolates exhibiting reduced echinocandin susceptibility. Antimicrob Agents Chemother 50: 28922894.
202. Arendrup MC,, Perlin DS,, Jensen RH,, Howard SJ,, Goodwin J,, Hope W. 2012. Differential in vivo activities of anidulafungin, caspofungin, and micafungin against Candida glabrata isolates with and without FKS resistance mutations. Antimicrob Agents Chemother 56: 24352442.
203. Slater JL,, Howard SJ,, Sharp A,, Goodwin J,, Gregson LM,, Alastruey-Izquierdo A,, Arendrup MC,, Warn PA,, Perlin DS,, Hope WW. 2011. Disseminated candidiasis caused by Candida albicans with amino acid substitutions in Fks1 at Position Ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother 55: 30753083.
204. Wiederhold NP,, Najvar LK,, Bocanegra RA,, Kirkpatrick WR,, Patterson TF. 2011. Caspofungin dose escalation for invasive candidiasis due to resistant Candida albicans. Antimicrob Agents Chemother 55: 32543260.
205. Park S,, Kelly R,, Kahn JN,, Robles J,, Hsu MJ,, Register E,, Li W,, Vyas V,, Fan H,, Abruzzo G,, Flattery A,, Gill C,, Chrebet G,, Parent SA,, Kurtz M,, Teppler H,, Douglas CM,, Perlin DS. 2005. Specific substitutions in the echinocandin target Fks1p account for reduced susceptibility of rare laboratory and clinical Candida sp. isolates. Antimicrob Agents Chemother 49: 32643273.
206. Eng WK,, Faucette L,, McLaughlin MM,, Cafferkey R,, Koltin Y,, Morris RA,, Young PR,, Johnson RK,, Livi GP. 1994. The yeast FKS1 gene encodes a novel membrane protein, mutations in which confer FK506 and cyclosporin A hypersensitivity and calcineurin-dependent growth. Gene 151: 6171.
207. Johnson ME,, Katiyar SK,, Edlind TD. 2011. New Fks hot spot for acquired echinocandin resistance in Saccharomyces cerevisiae and its contribution to intrinsic resistance of Scedosporium species. Antimicrob Agents Chemother 55: 37743781.
208. Ben-Ami R,, Garcia-Effron G,, Lewis RE,, Gamarra S,, Leventakos K,, Perlin DS,, Kontoyiannis DP. 2011. The fitness and virulence cost of fks1 mutations causing echinocandin-resistance in Candida albicans. J Infect Dis 204: 626635.
209. Pfaller MA,, Boyken L,, Hollis RJ,, Kroeger J,, Messer SA,, Tendolkar S,, Jones RN,, Turnidge J,, Diekema DJ. 2010. Wild-type MIC distributions and epidemiological cutoff values for the echinocandins and Candida spp. J Clin Microbiol 48: 5256.
210. Tortorano AM,, Prigitano A,, Lazzarini C,, Passera M,, Deiana ML,, Cavinato S,, De Luca C,, Grancini A,, Lo Cascio G,, Ossi C,, Sala E,, Montagna MT. 2013. A 1-year prospective survey of candidemia in Italy and changing epidemiology over one decade. Infection 41: 655662.
211. Pfaller MA,, Diekema DJ,, Andes D,, Arendrup MC,, Brown SD,, Lockhart SR,, Motyl M,, Perlin DS. 2011. Clinical breakpoints for the echinocandins and Candida revisited: integration of molecular, clinical, and microbiological data to arrive at species-specific interpretive criteria. Drug Resist Updat 14: 164176.
212. Mora-Duarte J,, Betts R,, Rotstein C,, Colombo AL,, Thompson-Moya L,, Smietana J,, Lupinacci R,, Sable C,, Kartsonis N,, Perfect J. 2002. Comparison of caspofungin and amphotericin B for invasive candidiasis. N Engl J Med 347: 20202029.
213. Kale-Pradhan PB,, Morgan G,, Wilhelm SM,, Johnson LB. 2010. Comparative efficacy of echinocandins and nonechinocandins for the treatment of Candida parapsilosis infections: a meta-analysis. Pharmacotherapy 30: 12071213.
214. Forrest GN,, Weekes E,, Johnson JK. 2008. Increasing incidence of Candida parapsilosis candidemia with caspofungin usage. J Infect 56: 126129.
215. Garcia-Effron G,, Katiyar SK,, Park S,, Edlind TD,, Perlin DS. 2008. A naturally occurring proline-to-alanine amino acid change in Fks1p in Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis accounts for reduced echinocandin susceptibility. Antimicrob Agents Chemother 52: 23052312.
216. Perlin DS. 2007. Resistance to echinocandin-class antifungal drugs. Drug Resist Updat 10: 121130.
217. Walker LA,, Gow NA,, Munro CA. 2010. Fungal echinocandin resistance. Fungal Genet Biol 47: 117126.
218. Kartsonis N,, Killar J,, Mixson L,, Hoe CM,, Sable C,, Bartizal K,, Motyl M. 2005. Caspofungin susceptibility testing of isolates from patients with esophageal candidiasis or invasive candidiasis: relationship of MIC to treatment outcome. Antimicrob Agents Chemother 49: 36163623.
219. Pfaller MA,, Diekema DJ,, Ostrosky-Zeichner L,, Rex JH,, Alexander BD,, Andes D,, Brown SD,, Chaturvedi V,, Ghannoum MA,, Knapp CC,, Sheehan DJ,, Walsh TJ. 2008. Correlation of MIC with outcome for Candida species tested against caspofungin, anidulafungin, and micafungin: analysis and proposal for interpretive MIC breakpoints. J Clin Microbiol 46: 26202629.
220. Munro CA,, Selvaggini S,, de Bruijn I,, Walker L,, Lenardon MD,, Gerssen B,, Milne S,, Brown AJ,, Gow NA. 2007. The PKC, HOG and Ca2+ signalling pathways co-ordinately regulate chitin synthesis in Candida albicans. Mol Microbiol 63: 13991413.
221. Walker LA,, Munro CA,, de Bruijn I,, Lenardon MD,, McKinnon A,, Gow NA. 2008. Stimulation of chitin synthesis rescues Candida albicans from echinocandins. PLoS Pathog 4: e1000040.
222. Healey KR,, Katiyar SK,, Raj S,, Edlind TD. 2012. CRS-MIS in Candida glabrata: sphingolipids modulate echinocandin-Fks interaction. Mol Microbiol 86: 303313.
223. Singh SD,, Robbins N,, Zaas AK,, Schell WA,, Perfect JR,, Cowen LE. 2009. Hsp90 governs echinocandin resistance in the pathogenic yeast Candida albicans via calcineurin. PLoS Pathog 5: e1000532.
224. Singh-Babak SD,, Babak T,, Diezmann S,, Hill JA,, Xie JL,, Chen YL,, Poutanen SM,, Rennie RP,, Heitman J,, Cowen LE. 2012. Global analysis of the evolution and mechanism of echinocandin resistance in Candida glabrata. PLoS Pathog 8: e1002718.
225. Gow NA,, Netea MG,, Munro CA,, Ferwerda G,, Bates S,, Mora-Montes HM,, Walker L,, Jansen T,, Jacobs L,, Tsoni V,, Brown GD,, Odds FC,, Van der Meer JW,, Brown AJ,, Kullberg BJ. 2007. Immune recognition of Candida albicans beta-glucan by dectin-1. J Infect Dis 196: 15651571.
226. Lee KK,, Maccallum DM,, Jacobsen MD,, Walker LA,, Odds FC,, Gow NA,, Munro CA. 2012. Elevated cell wall chitin in Candida albicans confers echinocandin resistance in vivo. Antimicrob Agents Chemother 56: 208217.
227. Stevens DA,, Espiritu M,, Parmar R. 2004. Paradoxical effect of caspofungin: reduced activity against Candida albicans at high drug concentrations. Antimicrob Agents Chemother 48: 34073411.
228. Stevens DA,, Ichinomiya M,, Koshi Y,, Horiuchi H. 2006. Escape of Candida from caspofungin inhibition at concentrations above the MIC (paradoxical effect) accomplished by increased cell wall chitin; evidence for beta-1,6-glucan synthesis inhibition by caspofungin. Antimicrob Agents Chemother 50: 31603161.
229. Leber R,, Fuchsbichler S,, Klobucnikova V,, Schweighofer N,, Pitters E,, Wohlfarter K,, Lederer M,, Landl K,, Ruckenstuhl C,, Hapala I,, Turnowsky F. 2003. Molecular mechanism of terbinafine resistance in Saccharomyces cerevisiae. Antimicrob Agents Chemother 47: 38903900.
230. Osborne CS,, Leitner I,, Favre B,, Ryder NS. 2005. Amino acid substitution in Trichophyton rubrum squalene epoxidase associated with resistance to terbinafine. Antimicrob Agents Chemother 49: 28402844.
231. Rocha EM,, Gardiner RE,, Park S,, Martinez-Rossi NM,, Perlin DS. 2006. A Phe389Leu substitution in ergA confers terbinafine resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 50: 25332536.
232. Dodgson AR,, Dodgson KJ,, Pujol C,, Pfaller MA,, Soll DR. 2004. Clade-specific flucytosine resistance is due to a single nucleotide change in the FUR1 gene of Candida albicans. Antimicrob Agents Chemother 48: 22232227.
233. Hope WW,, Tabernero L,, Denning DW,, Anderson MJ. 2004. Molecular mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents Chemother 48: 43774386.
234. Papon N,, Noel T,, Florent M,, Gibot-Leclerc S,, Jean D,, Chastin C,, Villard J,, Chapeland-Leclerc F. 2007. Molecular mechanism of flucytosine resistance in Candida lusitaniae: contribution of the FCY2, FCY1, and FUR1 genes to 5-fluorouracil and fluconazole cross-resistance. Antimicrob Agents Chemother 51: 369371.
235. Edlind TD,, Katiyar SK. 2010. Mutational analysis of flucytosine resistance in Candida glabrata. Antimicrob Agents Chemother 54: 47334738.


Generic image for table

Antifungal targets, drug resistance mechanisms, and effectors

Citation: Perlin D. 2015. Mechanisms of Resistance to Antifungal Agents*, p 2236-2254. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch130
Generic image for table

Amino acid substitutions in Cyp51A conferring triazole resistance and associated MIC values

Citation: Perlin D. 2015. Mechanisms of Resistance to Antifungal Agents*, p 2236-2254. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch130

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error