Chapter 6 : Phage and Yeast Display

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Phage and Yeast Display, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817411/9781555817350_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817411/9781555817350_Chap06-2.gif


Bacteriophage (phage) are viruses that infect and replicate within bacterial cells. Filamentous phage particles inject single-stranded DNA into target bacterial cells for subsequent replication and assembly of new virions within the host cytoplasm. The filamentous phage species capable of infecting manifest as long, thin filaments that are secreted from host bacteria without cell lysis. Due to their ease of manipulation and stability in a range of temperatures and pH, F pilus-specific filamentous phage species, including f1, fd, and M13, serve as reliable vehicles for combinatorial technologies, such as phage display ( ).

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Overview of phage antibody library production and selections. (A) The phage antibody library repertoire is derived from the B cells of naïve or immune donors. The amplified and genes are subcloned into a phage display vector for expression and library production. (B) The phage antibody library is selected against an immobilized target antigen. After washing to remove nonbinders, the Ag-reactive phage antibodies are eluted, amplified, and reselected through subsequent rounds. ELISA screens identify monoclonal, Ag-binding phage antibodies, whose heavy and light chain antibody genes are subcloned into mammalian expression vectors.

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Types of phage antibody display. (A) Monovalent display with the scFv or Fab fusion (green circle) to truncated pIII along with wild-type copies of pIII (purple circles). This monovalent mAb display format can also be used with pVII (olive) or pIX (light blue) separately. (B) Multivalent display with the scFv or Fab fusion to all copies of truncated pIII. Multivalent mAb display is also possible with the major coat protein pVIII (black border) separate from pIII. The pVI (red circles) coat proteins are also present in these diagrams.

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Overview of yeast antibody display. The scFv (or Fab) is displayed as a fusion product with the Aga2p protein (light blue). This fusion product can be detected and normalized by fluorescent signaling through the HA tags (orange) and c-Myc tags (dark blue). During FACS selections, the Ag-reactive library variants are detected through the fluorescent avidin tag (pink) on the biotinylated target antigen (red).

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Rakonjac J,, Bennett NJ,, Spagnuolo J,, Gagic D,, Russel M . 2011. Filamentous bacteriophage: biology, phage display and nanotechnology applications. Curr Issues Mol Biol 13 : 51 76.[PubMed]
2. Boeke JD,, Model P . 1982. A prokaryotic membrane anchor sequence: carboxyl terminus of bacteriophage f1 gene III protein retains it in the membrane. Proc Natl Acad Sci USA 79 : 5200 5204.[PubMed] [CrossRef]
3. Rakonjac J,, Feng J,, Model P . 1999. Filamentous phage are released from the bacterial membrane by a two-step mechanism involving a short C-terminal fragment of pIII. J Mol Biol 289 : 1253 1265.[PubMed] [CrossRef]
4. Loeb T . 1960. Isolation of a bacteriophage for the F plus and Hfr mating types of Escherichia coli K-12. Science 131 : 932 933.[PubMed] [CrossRef]
5. Barbas CF III,, Kang AS,, Lerner RA,, Benkovic SJ . 1991. Assembly of combinatorial antibody libraries on phage surfaces: the gene III site. Proc Natl Acad Sci USA 88 : 7978 7982.[PubMed] [CrossRef]
6. Clackson T,, Hoogenboom HR,, Griffiths AD,, Winter G . 1991. Making antibody fragments using phage display libraries. Nature 352 : 624 628.[PubMed] [CrossRef]
7. Marks JD,, Hoogenboom HR,, Bonnert TP,, McCafferty J,, Griffiths AD,, Winter G . 1991. By-passing immunization. Human antibodies from V-gene libraries displayed on phage. J Mol Biol 222 : 581 597.[PubMed] [CrossRef]
8. Marks JD,, Tristem M,, Karpas A,, Winter G . 1991. Oligonucleotide primer for polymerase chain reaction amplification of human immunoglobulin variable genes and design of family-specific oligonucleotide probes. Eur J Immunol 21 : 985 991.[PubMed] [CrossRef]
9. de Haard HJ,, van Neer N,, Reurs A,, Hufton SE,, Roovers RC,, Henderikx P,, de Bruïne AP,, Arends JW,, Hoogenboom HR . 1999. A large non-immunized human Fab phage library that permits rapid isolation and kinetic analysis of high affinity antibodies. J Biol Chem 274 : 18218 18230.[PubMed]
10. Vaughan TJ,, Williams AJ,, Pritchard K,, Osbourn JK,, Pope AR,, Earnshaw JC,, McCafferty J,, Hodits RA,, Wilton J,, Johnson KS . 1996. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat Biotechnol 14 : 309 314.[PubMed] [CrossRef]
11. Gram H,, Marconi LA,, Barbas CF 3rd,, Collet TA,, Lerner RA,, Kang AS . 1992. In vitro selection and affinity maturation of antibodies from a naïve combinatorial immunoglobulin library. Proc Natl Acad Sci USA 89 : 3576 3580.[PubMed] [CrossRef]
12. Hoogenboom HR, . 2002. Overview of antibody phage-display technology and its applications, p 1 38. In O’Brien PM,, Aitken R (ed), Antibody Phage Display, Methods and Protocols. Methods in Molecular Biology, Vol. 178. Humana Press, Totowa, NJ. [PubMed] [CrossRef]
13. Griffiths AD,, Malmqvist M,, Marks JD,, Bye JM,, Embleton MJ,, McCafferty J,, Baier M,, Holliger KP,, Gorick BD,, Hughes-Jones NC . 1993. Human anti-self antibodies with high specificity from phage display libraries. EMBO J 12 : 725 734.[PubMed]
14. Burton DR,, Barbas CF 3rd,, Persson MA,, Koenig S,, Chanock RM,, Lerner RA . 1991. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci USA 88 : 10134 10137.[PubMed] [CrossRef]
15. de Wildt RM,, Finnern R,, Ouwehand WH,, Griffiths AD,, van Venrooij WJ,, Hoet RM . 1996. Characterization of human variable domain antibody fragments against the U1 RNA-associated A protein, selected from a synthetic and a patient-derived combinatorial V gene library. Eur J Immunol 26 : 629 639.[PubMed] [CrossRef]
16. Barbas CF 3rd,, Burton DR . 1996. Selection and evolution of high-affinity human anti-viral antibodies. Trends Biotechnol 14 : 230 234.[PubMed] [CrossRef]
17. Hoogenboom HR,, Winter G . 1992. By-passing immunization. Human antibodies from synthetic repertoires of germline VH segments rearranged in vitro. J Mol Biol 227 : 381 388.[PubMed] [CrossRef]
18. Zhu K,, Day T . 2013. Ab initio structure prediction of the antibody hypervariable H3 loop. Proteins 81 : 1081 1089.[PubMed] [CrossRef]
19. Hoet RM,, Cohen EH,, Kent RB,, Rookey K,, Schoonbroodt S,, Hogan S,, Rem L,, Frans N,, Daukandt M,, Pieters H,, van Hegelsom R,, Neer NC,, Nastri HG,, Rondon IJ,, Leeds JA,, Hufton SE,, Huang L,, Kashin I,, Devlin M,, Kuang G,, Steukers M,, Viswanathan M,, Nixon AE,, Sexton DJ,, Hoogenboom HR,, Ladner RC . 2005. Generation of high-affinity human antibodies by combining donor-derived and synthetic complementarity-determining-region diversity. Nat Biotechnol 23 : 344 348.[PubMed] [CrossRef]
20. Rothe C,, Urlinger S,, Löhning C,, Prassler J,, Stark Y,, Jäger U,, Hubner B,, Bardroff M,, Pradel I,, Boss M,, Bittlingmaier R,, Bataa T,, Frisch C,, Brocks B,, Honegger A,, Urban M . 2008. The human combinatorial antibody library HuCAL GOLD combines diversification of all six CDRs according to the natural immune system with a novel display method for efficient selection of high-affinity antibodies. J Mol Biol 376 : 1182 1200.[PubMed] [CrossRef]
21. Knappik A,, Ge L,, Honegger A,, Pack P,, Fischer M,, Wellnhofer G,, Hoess A,, Wölle J,, Plückthun A,, Virnekäs B . 2000. Fully synthetic human combinatorial antibody libraries (HuCAL) based on modular consensus frameworks and CDRs randomized with trinucleotides. J Mol Biol 11 : 57 86.[PubMed] [CrossRef]
22. Tiller T,, Schuster I,, Deppe D,, Siegers K,, Strohner R,, Herrmann T,, Berenguer M,, Poujol D,, Stehle J,, Stark Y,, Heßling M,, Daubert D,, Felderer K,, Kaden S,, Kölln J,, Enzelberger M,, Urlinger S . 2013. A fully synthetic human Fab antibody library fixed on VH/VL framework pairings with favorable biophysical properties. MAbs 5 : 445 470.[PubMed] [CrossRef]
23. Gao C,, Mao S,, Lo CH,, Wirsching P,, Lerner RA,, Janda KD . 1999. Making artificial antibodies: a format for phage display of combinatorial heterodimeric arrays. Proc Natl Acad Sci USA 96 : 6025 6030.[PubMed] [CrossRef]
24. Jespers LS,, De Keyser A,, Stanssens PE . 1996. LambdaZLG6: a phage lambda vector for high-efficiency cloning and surface expression of cDNA libraries on filamentous phage. Gene 173 : 179 181.[PubMed] [CrossRef]
25. Iannolo G,, Minenkova O,, Petruzzelli R,, Cesareni G . 1995. Modifying filamentous phage capsid: limits in the size of the major capsid protein. J Mol Biol 248 : 835 844.[PubMed] [CrossRef]
26. Zwick MB,, Shen J,, Scott JK . 2000. Homodimeric peptides displayed by the major coat protein of filamentous phage. J Mol Biol 300 : 307 320.[PubMed] [CrossRef]
27. O’Connell D,, Becerril B,, Roy-Burman A,, Daws M,, Marks JD . 2002. Phage versus phagemid libraries for generation of human monoclonal antibodies. J Mol Biol 312 : 49 56.[PubMed] [CrossRef]
28. Marks JD,, Hoogenboom HR,, Griffiths AD,, Winter G . 1992. Molecular evolution of proteins on filamentous phage. Mimicking the strategy of the immune system. J Biol Chem 267 : 16007 16010.[PubMed]
29. de Wildt RM,, Tomlinson IM,, Ong JL,, Holliger P . 2002. Isolation of receptor-ligand pairs by capture of long-lived multivalent interaction complexes. Proc Natl Acad Sci USA 99 : 8530 8535.[PubMed] [CrossRef]
30. Rakonjac J,, Jovanovic G,, Model P . 1997. Filamentous phage infection-mediated gene expression: construction and propagation of the gIII deletion mutant helper phage R408d3. Gene 198 : 99 103.[PubMed] [CrossRef]
31. Chasteen L,, Ayriss J,, Pavlik P,, Bradbury AR . 2006. Eliminating helper phage from phage display. Nucleic Acid Res 34 : e145. [PubMed] [CrossRef]
32. Hoogenboom HR,, Griffiths AD,, Johnson KS,, Chiswell DJ,, Hudson P,, Winter G . 1991. Multi-subunit proteins on the surface of filamentous phage: methodologies for displaying antibody (Fab) heavy and light chains. Nucleic Acids Res 19 : 4133 4137.[PubMed] [CrossRef]
33. Garrard LJ,, Yang M,, O’Connell MP,, Kelley RF,, Henner DJ . 1991. Fab assembly and enrichment in a monovalent phage system. Biotechnology 9 : 1373 1377.[PubMed] [CrossRef]
34. Chan CE,, Chan AH,, Lim AP,, Hanson BJ . 2011. Comparison of the efficiency of antibody selection from semi-synthetic scFv and non-immune Fab phage display libraries against protein targets for rapid development of diagnostic immunoassays. J Immunol Methods 373 : 79 88.[PubMed] [CrossRef]
35. Qi J,, Ye X,, Ren G,, Kan F,, Zhang Y,, Guo M,, Zhang Z,, Li D . 2014. Pharmacological efficacy of anti-IL-1β scFv, Fab, and full-length antibodies in treatment of rheumatoid arthritis. Mol Immunol 57 : 59 65.[PubMed] [CrossRef]
36. Steinwand M,, Droste P,, Frenzel A,, Hust M,, Dübel S,, Schirrmann T . 2014. The influence of antibody fragment format on phage display based affinity maturation of IgG. MAbs 6 : 204 218.[PubMed] [CrossRef]
37. Lauring AS,, Frydman J,, Andino R . 2013. The role of mutational robustness in RNA virus evolution. Nat Rev Microbiol 11 : 327 336.[PubMed] [CrossRef]
38. Balmer O,, Tanner M . 2011. Prevalence and implications of multiple-strain infections. Lancet Infect Dis 11 : 868 878.[PubMed] [CrossRef]
39. Leye N,, Vidal N,, Ndiaye O,, Diop-Ndiaye H,, Wade AS,, Mboup S,, Delaporte E,, Toure-Kane C,, Peeters M . 2013. High frequency of HIV-1 infections with multiple HIV-1 strains in men having sex with men (MSM) in Senegal. Infect Genet Evol 20 : 206 214.[PubMed] [CrossRef]
40. Yewdell JW,, Spiro DJ,, Golding H,, Quill H,, Mittelman A,, Nabel GJ . 2013. Getting to the heart of influenza. Sci Transl Med 5 : e191ed8. [PubMed]
41. Corti D,, Lanzavecchia A . 2013. Broadly neutralizing antiviral antibodies. Annu Rev Immunol 31 : 705 742.[PubMed] [CrossRef]
42. Marasco WA,, Sui J . 2007. The growth and potential of human antiviral monoclonal antibody therapeutics. Nat Biotechnol 25 : 1421 1434.[PubMed] [CrossRef]
43. Thie H,, Meyer T,, Schirrmann T,, Hust M,, Dübel S . 2008. Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 9 : 439 446.[PubMed] [CrossRef]
44. Jegaskanda S,, Job ER,, Kramski M,, Laurie K,, Isitman G,, de Rose R,, Winnall WR,, Stratov I,, Brooks AG,, Reading PC,, Kent SJ . 2013. Cross-reactive influenza-specific antibody-dependent cellular cytotoxicity antibodies in the absence of neutralizing antibodies. J Immunol 190 : 1837 1848.[PubMed] [CrossRef]
45. Gamblin SJ,, Skehel JJ . 2010. Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem 285 : 38403 38409.[PubMed] [CrossRef]
46. Skehal JJ,, Wiley DC . 2000. Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem 69 : 531 569.[PubMed] [CrossRef]
47. Wiley DC,, Wilson IA,, Skehel JJ . 1981. Structural identification of the antibody-binding sites of Hong Kong influenza haemagglutinin and their involvement in antigenic variation. Nature 289 : 373 378.[PubMed] [CrossRef]
48. Both GW,, Sleigh MJ,, Cox NJ,, Kendal AP . 1983. Antigenic drift in influenza virus H3 hemagglutinin from 1968 to 1980: multiple evolutionary pathways and sequential amino acid changes at key antigenic sites. J Virol 48 : 52 60.[PubMed]
49. Sui J,, Hwang WC,, Perez S,, Wei G,, Aird D,, Chen LM,, Santelli E,, Stec B,, Cadwell G,, Ali M,, Wan H,, Murakami A,, Yammanuru A,, Han T,, Cox NJ,, Bankston LA,, Donis RO,, Liddington RC,, Marasco WA . 2009. Structural and functional bases for broad-spectrum neutralization of avian and human influenza A viruses. Nat Struct Mol Biol 16 : 265 273.[PubMed] [CrossRef]
50. Throsby M,, van den Brink E,, Jongeneelen M,, Poon LL,, Alard P,, Cornelissen L,, Bakker A,, Cox F,, van Deventer E,, Guan Y,, Cinatl J,, ter Meulen J,, Lasters I,, Carsetti R,, Peiris M,, de Kruif J,, Goudsmit J . 2008. Heterosubtypic neutralizing monoclonal antibodies cross-protective against H5N1 and H1N1 recovered from human IgM+ memory B cells. PLoS One 3 : e3942. doi:10.1371/journal.pone.0003942. [CrossRef]
51. Dreyfus C,, Laursen NS,, Kwaks T,, Zuijdgeest D,, Khayat R,, Ekiert DC,, Lee JH,, Metlagel Z,, Bujny MV,, Jongeneelen M,, van der Vlugt R,, Lamrani M,, Korse HJ,, Geelen E,, Sahin Ö,, Sieuwerts M,, Brakenhoff JP,, Vogels R,, Li OT,, Poon LL,, Peiris M,, Koudstaal W,, Ward AB,, Wilson IA,, Goudsmit J,, Friesen RH . 2012. Highly conserved protective epitopes on influenza B viruses. Science 337 : 1343 1348.[PubMed] [CrossRef]
52. Avnir Y,, Tallarico AS,, Zhu Q,, Bennett AS,, Connelly G,, Sheehan J,, Sui J,, Fahmy A,, Huang CY,, Cadwell G,, Bankston LA,, McGuire AT,, Stamatatos L,, Wagner G,, Liddington RC,, Marasco WA . 2014. Molecular signatures of hemagglutinin stem-directed heterosubtypic human neutralizing antibodies against influenza A viruses. PLoS Pathog 10 : e1004103. doi:10.1371/journal.ppat.1004103. [PubMed] [CrossRef]
53. Ekiert DC,, Kashyap AK,, Steel J,, Rubrum A,, Bhabha G,, Khayat R,, Lee JH,, Dillon MA,, O’Neil RE,, Faynboym AM,, Horowitz M,, Horowitz L,, Ward AB,, Palese P,, Webby R,, Lerner RA,, Bhatt RR,, Wilson IA . 2012. Cross-neutralization of influenza A viruses mediated by a single antibody loop. Nature 489 : 526 532.[PubMed] [CrossRef]
54. Iba Y,, Fujii Y,, Ohshima N,, Sumida T,, Kubota-Koketsu R,, Ikeda M,, Wakiyama M,, Shirouzu M,, Okada J,, Okuno Y,, Kurosawa Y,, Yokoyama S . Conserved neutralizing epitope at globular head of hemagglutinin in H3N2 influenza viruses. J Virol 88 : 7130 7144.[PubMed] [CrossRef]
55. Caton AJ,, Brownlee GG,, Yewdell JW,, Gerhard W . 1982. The antigenic structure of the influenza virus A/PR/8/34 hemagglutinin (H1 subtype). Cell 31 : 417 427.[PubMed] [CrossRef]
56. Bartesaghi A,, Merk A,, Borgnia MJ,, Milne JL,, Subramaniam S . 2013. Prefusion structure of trimeric HIV-1 envelope glycoprotein determined by cryo-electron microscopy. Nat Struct Mol Biol 20 : 1352 1357.[PubMed] [CrossRef]
57. Taylor BS,, Sobieszczyk ME,, McCutchan FE,, Hammer SM . The challenge of HIV-1 subtype diversity. N Engl J Med 358 : 1590 1602.[PubMed] [CrossRef]
58. Quakkelaar ED,, Bunnik EM,, van Alphen FP,, Boeser-Nunnink BD,, van Nuenen AC,, Schuitemaker H . 2007. Escape of human immunodeficiency virus type 1 from broadly neutralizing antibodies is not associated with a reduction of viral replicative capacity in vitro . Virology 363 : 447 453.[PubMed] [CrossRef]
59. Burton DR,, Barbas CF 3rd,, Persson MA,, Koenig S,, Chanock RM,, Lerner RA . 1991. A large array of human monoclonal antibodies to type 1 human immunodeficiency virus from combinatorial libraries of asymptomatic seropositive individuals. Proc Natl Acad Sci USA 88 : 10134 10137.[CrossRef]
60. Burton DR,, Pyati J,, Kodrui R,, Sharp SJ,, Thornton GB,, Parren PW,, Sawyer LA,, Hendry RM,, Dunlop N,, Nara PL,, Lamacchia M,, Garratty E,, Stiehm ER,, Bryson YJ,, Cao Y,, Moore JP,, Ho DD,, Barbas CF 3rd . 1994. Efficient neutralization of primary isolates of HIV-1 by a recombinant human monoclonal antibody. Science 266 : 1024 1027.[PubMed] [CrossRef]
61. Zwick MB,, Labrijn AF,, Wang M,, Spenlehauer C,, Saphire EO,, Binley JM,, Moore JP,, Stiegler G,, Katinger H,, Burton DR,, Parren PW . 2001. Broadly neutralizing antibodies targeted to the membrane-proximal external region of human immunodeficiency virus type 1 glycoprotein gp41. J Virol 75 : 10892 10905.[PubMed] [CrossRef]
62. Zhu Z,, Qin HR,, Chen W,, Zhao Q,, Shen X,, Schutte R,, Wang Y,, Ofek G,, Streaker E,, Prabakaran P,, Fouda GG,, Liao HX,, Owens J,, Louder M,, Yang Y,, Klaric KA,, Moody MA,, Mascola JR,, Scott JK,, Kwong PD,, Montefiori D,, Haynes BF,, Tomaras GD,, Dimitrov DS . 2011. Cross-reactive HIV-1-neutralizing human monoclonal antibodies identified from a patient with 2F5-like antibodies. J Virol 85 : 11401 11408.[PubMed] [CrossRef]
63. Choudhry V,, Zhang MY,, Sidorov IA,, Louis JM,, Harris I,, Dimitrov AS,, Bouma P,, Cham F,, Choudhary A,, Rybak SM,, Fouts T,, Montefiori DC,, Broder CC,, Quinnan GV Jr,, Dimitrov DS . 2007. Cross-reactive HIV-1 neutralizing monoclonal antibodies selected by screening of an immune human phage library against an envelope glycoprotein (gp140) isolated from a patient (R2) with broadly HIV-1 neutralizing antibodies. Virology 363 : 79 90.[PubMed] [CrossRef]
64. Yoshikawa M,, Mukai Y,, Tsunoda S,, Tsutsumi Y,, Yoshioka Y,, Okada N,, Nakagawa S . 2011. Modifying the antigen-immunization schedule improves the variety of monoclonal antibodies obtained from immune-phage antibody libraries against HIV-1 Nef and Vif. J Biosci Bioeng 111 : 597 599.[PubMed] [CrossRef]
65. Sui J,, Li W,, Murakami A,, Tamin A,, Matthews LJ,, Wong SK,, Moore MJ,, Tallarico AS,, Olurinde M,, Choe H,, Anderson LJ,, Bellini WJ,, Farzan M,, Marasco WA . 2004. Potent neutralization of severe acute respiratory syndrome (SARS) coronavirus by a human mAb to S1 protein that blocks receptor association. Proc Natl Acad Sci USA 101 : 2536 2541.[PubMed] [CrossRef]
66. Prabakaran P,, Gan J,, Feng Y,, Zhu Z,, Choudhry V,, Xiao X,, Ji X,, Dimitrov DS . 2006. Structure of severe acute respiratory syndrome coronavirus receptor-binding domain complexed with neutralizing antibody. J Biol Chem 281 : 15829 15836.[PubMed] [CrossRef]
67. Ferguson NM,, Van Kerkhove MD . 2014. Identification of MERS-CoV in dromedary camels. Lancet Infect Dis 14 : 93 94.[PubMed] [CrossRef]
68. Memish ZA,, Mishra N,, Olival KJ,, Fagbo SF,, Kapoor V,, Epstein JH,, Alhakeem R,, Durosinloun A,, Al Asmari M,, Islam A,, Kapoor A,, Briese T,, Daszak P,, Al Rabeeah AA,, Lipkin WI . 2013. Middle East respiratory syndrome coronavirus in bats, Saudi Arabia. Emerg Infect Dis 19 : 1819 1823.[PubMed] [CrossRef]
69. Raj VS,, Mou H,, Smits SL,, Dekkers DH,, Müller MA,, Dijkman R,, Muth D,, Demmers JA,, Zaki A,, Fouchier RA,, Thiel V,, Drosten C,, Rottier PJ,, Osterhaus AD,, Bosch BJ,, Haagmans BL . Dipeptidyl pepetidase 4 is a functional receptor for the emerging human coronavirus-EMC. Nature 495 : 251 254.[PubMed] [CrossRef]
70. Graham RL,, Donaldson EF,, Baric RS . A decade after SARS: strategies for controlling emerging coronaviruses. Nat Rev Microbiol 11 : 836 848.[PubMed] [CrossRef]
71. Gierer S,, Bertram S,, Kaup F,, Wrensch F,, Heurich A,, Krämer-Kühl A,, Welsch K,, Winkler M,, Meyer B,, Drosten C,, Dittmer U,, von Hahn T,, Simmons G,, Hofmann H,, Pöhlmann S . 2013. The spike protein of the emerging coronavirus EMC uses a novel coronavirus receptor for entry, can be activated by TMPRSS2, and is targeted by neutralizing antibodies. J Virol 87 : 5502 5511.[PubMed] [CrossRef]
72. Tang XC,, Agnihothram SS,, Jiao Y,, Stanhope J,, Graham RL,, Peterson EC,, Avnir Y,, Tallarico AS,, Sheehan J,, Zhu Q,, Baric RS,, Marasco WA . 2014. Identification of human neutralizing antibodies against MERS-CoV and their role in virus adaptive evolution. Proc Natl Acad Sci USA 111 : E2018 E2026.[PubMed] [CrossRef]
73. Ying T,, Du L,, Ju TW,, Prabakaran P,, Lau CC,, Lu L,, Liu Q,, Wang L,, Feng Y,, Wang Y,, Zheng BJ,, Yuen KY,, Jiang S,, Dimitrov DS . 2014. Exceptionally potent neutralization of Middle East respiratory syndrome coronavirus by human monoclonal antibodies. J Virol 88 : 7796 7805.[PubMed] [CrossRef]
74. Gould LH,, Sui J,, Foellmer H,, Oliphant T,, Wang T,, Ledizet M,, Murakami A,, Noonan K,, Lambeth C,, Kar K,, Anderson JF,, de Silva AM,, Diamond MS,, Koski RA,, Marasco WA,, Fikrig E . 2005. Protective and therapeutic capacity of human single-chain Fv-Fc fusion proteins against West Nile Virus. J Virol 79 : 14606 14613.[PubMed] [CrossRef]
75. Throsby M,, Geuijen C,, Goudsmit J,, Bakker AQ,, Korimbocus J,, Kramer RA,, Clijsters-van der Horst M,, de Jong M,, Jongeneelen M,, Thijsse S,, Smit R,, Visser TJ,, Bijl N,, Marissen WE,, Loeb M,, Kelvin DJ,, Preiser W,, ter Meulen J,, de Kruif J . 2006. Isolation and charactertization of human monoclonal antibodies from individuals infected with West Nile Virus. J Virol 80 : 6982 6992.[PubMed] [CrossRef]
76. Cabezas S,, Rojas G,, Pavon A,, Alvarez M,, Pupo M,, Guillen G,, Guzman MG . 2008. Selection of phage-displayed human antibody fragments on dengue virus particles captured by a monoclonal antibody: application to the four serotypes. J Virol Methods 147 : 235 243.[PubMed] [CrossRef]
77. Zhao Y,, Moreland NJ,, Tay MY,, Lee CC,, Swaminathan K,, Vasudevan SG . 2014. Identification and molecular characterization of human antibody fragments specific for dengue NS5 protein. Virus Res 179 : 225 230.[PubMed] [CrossRef]
78. Maruyama T,, Rodriguez LL,, Jahrling PB,, Sanchez A,, Khan AS,, Nichol ST,, Peters CJ,, Parren PW,, Burton DR . 1999. Ebola virus can be effectively neutralized by antibody produced in natural human infection. J Virol 73 : 6024 6030.[PubMed]
79. Barbas CF 3rd,, Crowe JE Jr,, Cababa D,, Jones TM,, Zebedee SL,, Murphy BR,, Chanock RM,, Burton DR . 1992. Human monoclonal Fab fragments derived from a combinatorial library bind to respiratory syncytial virus F glycoprotein and neutralize infectivity. Proc Natl Acad Sci USA 89 : 10164 10168.[PubMed] [CrossRef]
80. Crowe JE Jr,, Murphy BR,, Chanock RM,, Williamson RA,, Barbas CF 3rd,, Burton DR . 1994. Recombinant human respiratory syncytial virus (RSV) monoclonal antibody Fab is effective therapeutically when introduced directly into the lungs of RSV-infected mice. Proc Natl Acad Sci USA 91 : 1386 1390.[PubMed] [CrossRef]
81. Burioni R,, Williamson RA,, Sanna PP,, Bloom FE,, Burton DR . 1994. Recombinant human Fab to glycoprotein D neutralizes infectivity and prevents cell-to-cell transmission of herpes simplex viruses 1 and 2 in vitro . Proc Natl Acad Sci USA 91 : 355 359.[PubMed] [CrossRef]
82. Christensen DJ,, Gottlin EB,, Benson RE,, Hamilton PT . 2001. Phage display for target-based antibacterial drug discovery. Drug Discov Today 6 : 721 727.[PubMed] [CrossRef]
83. Lee HS,, Loh YX,, Lee JJ,, Liu CS,, Chu C . 2014. Antimicrobial consumption and resistance in five Gram-negative bacterial species in a hospital from 2003 to 2011. J Microbiol Immunol Infect S1684 : 1182(14)00074-7. doi:10.1016/j.jmii.2014.04.009. [PubMed] [CrossRef]
84. Velayati AA,, Masjedi MR,, Farnia P,, Tabarsi P,, Ghanavi J,, Ziazarifi AH,, Hoffner SE . 2009. Emergence of new forms of totally drug-resistant tuberculosis bacilli: super extensively drug-resistant tuberculosis or totally drug-resistant strains in Iran. Chest 136 : 420 425.[PubMed] [CrossRef]
85. Ford C,, Yusim K,, Ioerger T,, Feng S,, Chase M,, Greene M,, Korber B,, Fortune S . 2012. Mycobacterium tuberculosis—heterogeneity revealed through whole genome sequencing. Tuberculosis (Edinb) 92 : 194 201.[PubMed] [CrossRef]
86. Gronski P,, Seiler FR,, Schwick HG . 1991. Discovery of antitoxins and development of antibody preparations for clinical uses from 1890 to 1990. Mol Immunol 28 : 1321 1332.[PubMed] [CrossRef]
87. Oleksiewicz MB,, Nagy G,, Nagy E . 2012. Anti-bacterial monoclonal antibodies: back to the future? Arch Biochem Biophys 526 : 124 131.[PubMed] [CrossRef]
88. Amersdorfer P,, Wong C,, Smith T,, Chen S,, Deshpande S,, Sheridan R,, Marks JD . 2002. Genetic and immunological comparison of anti-botulinum type A antibodies from immune and non-immune human phage libraries. Vaccine 20 : 1640 1648.[PubMed] [CrossRef]
89. Rossetto O,, Pirazzini M,, Bolognese P,, Rigoni M,, Montecucco C . 2011. An update of the mechanism of action of tetanus and botulinum neurotoxins. Acta Chim Slov 58 : 702 707.[PubMed]
90. Amersdorfer P,, Wong C,, Chen S,, Smith T,, Deshpande S,, Sheridan R,, Finnern R,, Marks JD . 1997. Molecular charactertization of murine humoral immune response to botulinum neurotoxin type A binding domain as assessed by using phage antibody libraries. Infect Immun 65 : 3743 3752.[PubMed]
91. Marks JD . 2004. Deciphering antibody properties that lead to potent botulinum neurotoxin neutralization. Mov Disord 19( Suppl 8) : S101 S108.[PubMed] [CrossRef]
92. Jernigan DB,, Raghunathan PL,, Bell BP,, Brechner R,, Bresnitz EA,, Butler JC,, Cetron M,, Cohen M,, Doyle T,, Fischer M,, Greene C,, Griffith KS,, Guarner J,, Hadler JL,, Hayslett JA,, Meyer R,, Petersen LR,, Phillips M,, Pinner R,, Popovic T,, Quinn CP,, Reefhuis J,, Reissman D,, Rosenstein N,, Schuchat A,, Shieh WJ,, Siegal L,, Swerdlow DL,, Tenover FC,, Traeger M,, Ward JW,, Weisfuse I,, Wiersma S,, Yeskey K,, Zaki S,, Ashford DA,, Perkins BA,, Ostroff S,, Hughes J,, Fleming D,, Koplan JP,, Gerberding JL . 2002. Investigation of bioterrorism-related anthrax, United States, 2001: epidemiologic findings. Emerg Infect Dis 8 : 1019 1028.[PubMed] [CrossRef]
93. Chen Z,, Moayeri M,, Purcell R . 2011. Monoclonal antibody therapies against anthrax. Toxins (Basel) 3 : 1004 1019.[PubMed] [CrossRef]
94. Migone TS,, Subramanian GM,, Zhong J,, Healey LM,, Corey A,, Devalaraja M,, Lo L,, Ullrich S,, Zimmerman J,, Chen A,, Lewis M,, Meister G,, Gillum K,, Sanford D,, Mott J,, Bolmer SD . 2009. Raxibacumab for the treatment of inhalational anthrax. N Engl J Med 361 : 135 144.[PubMed] [CrossRef]
95. Pelat T,, Hust M,, Laffly E,, Condemine F,, Bottex C,, Vidal D,, Lefranc MP,, Dübel S,, Thullier P . 2007. High-affinity, human antibody-like antibody fragment (single-chain variable fragment) neutralizing the lethal factor (LF) of Bacillus anthracis by inhibiting protective antigen-LF complex formation. Antimicrob Agents Chemother 51 : 2758 2764.[PubMed] [CrossRef]
96. Chen Z,, Moayeri M,, Zhao H,, Crown D,, Leppla SH,, Purcell RH . 2009. Potent neutralization of anthrax edema toxin by a humanized monoclonal antibody that competes with calmodulin for edema factor binding. Proc Natl Acad Sci USA 106 : 13487 13492.[PubMed] [CrossRef]
97. Deng XK,, Nesbit LA,, Morrow KJ Jr . 2003. Recombinant single-chain variable fragment antibodies directed against Clostridium difficile toxin B produced by use of an optimized phage display system. Clin Diagn Lab Immunol 10 : 587 595.[PubMed]
98. Neelakantam B,, Sridevi NV,, Shukra AM,, Sugumar P,, Samuel S,, Rajendra L . 2014. Recombinant human antibody fragment against tetanus toxoid produced by phage display. Eur J Microbiol Immunol (Bp) 4 : 45 55.[PubMed] [CrossRef]
99. Burnie JP,, Matthews RC,, Carter T,, Beaulieu E,, Donohoe M,, Chapman C,, Williamson P,, Hodgetts SJ . 2000. Identification of an immunodominant ABC transporter in methicillin-resistant Staphylococcus aureus infections. Infect Immun 68 : 3200 3209.[PubMed] [CrossRef]
100. Gera N,, Hussain M,, Rao BM . 2013. Protein selection using yeast surface display. Methods 60 : 15 26.[PubMed] [CrossRef]
101. Lipke PN,, Kurjan J . 2000. Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56 : 180 194.[PubMed]
102. Boder ET,, Raeeszadeh-Sarmazdeh M,, Price JV . 2012. Engineering antibodies by yeast display. Arch Biochem Biophys 526 : 99 106.[PubMed] [CrossRef]
103. Chao G,, Lau WL,, Hackel BJ,, Sazinsky SL,, Lippow SM,, Wittrup KD . 2006. Isolating and engineering human antibodies using yeast surface display. Nat Protoc 1 : 755 768.[PubMed] [CrossRef]
104. Benatuil L,, Perez JM,, Belk J,, Hsieh CM . 2010. An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23 : 155 159.[PubMed] [CrossRef]
105. Ferrara F,, Naranjo LA,, Kumar S,, Gaiotto T,, Mukundan H,, Swanson B,, Bradbury AR . 2012. Using phage and yeast display to select hundreds of monoclonal antibodies: application to antigen 85, a tuberculosis marker. PLoS One 7 : e49535. doi:10.1371/journal.pone.0049535. [PubMed] [CrossRef]
106. Bowley DR,, Labrijn AF,, Zwick MB,, Burton DR . 2007. Antigen selection from an HIV-1 immune antibody library displayed on yeast yields many novel antibodies compared to selection from the same library displayed on phage. Protein Eng Des Sel 20 : 81 90.[PubMed] [CrossRef]
107. Oliphant T,, Engle M,, Nybakken GE,, Doane C,, Johnson S,, Huang L,, Gorlatov S,, Mehlhop E,, Marri A,, Chung KM,, Ebel GD,, Kramer LD,, Fremont DH,, Diamond MS . 2005. Development of a humanized monoclonal antibody with therapeutic potential against West Nile virus. Nat Med 11 : 522 530.[PubMed] [CrossRef]
108. Shrestha B,, Brien JD,, Sukupolvi-Petty S,, Austin SK,, Edeling MA,, Kim T,, O’Brien KM,, Nelson CA,, Johnson S,, Fremont DH,, Diamond MS . 2010. The development of therapeutic antibodies that neutralize homologous and heterologous genotypes of dengue virus type 1. PLoS Pathog 6 : e1000823. doi:10.1371/journal.ppat.1000823. [PubMed] [CrossRef]
109. Sukupolvi-Petty S,, Austin SK,, Engle M,, Brien JD,, Dowd KA,, Williams KL,, Johnson S,, Rico-Hesse R,, Harris E,, Pierson TC,, Fremont DH,, Diamond MS . 2010. Structure and function analysis of therapeutic monoclonal antibodies against dengue virus type 2. J Virol 84 : 9227 9239.[PubMed] [CrossRef]
110. Brien JD,, Austin SK,, Sukupolvi-Petty S,, O’Brien KM,, Johnson S,, Fremont DH,, Diamond MS . 2010. Genotype-specific neutralization and protection by antibodies against dengue virus type 3. J Virol 84 : 10630 10643.[PubMed] [CrossRef]
111. Sukupolvi-Petty S,, Brien JD,, Austin SK,, Shrestha B,, Swayne S,, Kahle K,, Doranz BJ,, Johnson S,, Pierson TC,, Fremont DH,, Diamond MS . 2013. Functional analysis of antibodies against dengue virus type 4 reveals strain-dependent epitope exposure that impacts neutralization and protection. J Virol 87 : 8826 8842.[PubMed] [CrossRef]
112. Puri V,, Streaker E,, Prabakaran P,, Zhu Z,, Dimitrov DS . 2013. Highly efficient selection of epitope specific antibody through competitive yeast display library sorting. MAbs 5 : 533 539.[PubMed] [CrossRef]
113. Han T,, Sui J,, Bennett AS,, Liddington RC,, Donis RO,, Zhu Q,, Marasco WA . 2011. Fine epitope mapping of monoclonal antibodies against hemagglutinin of a highly pathogenic H5N1 influenza virus using yeast surface display. Biochem Biophys Res Commun 409 : 253 259.[PubMed] [CrossRef]
114. Hu H,, Voss J,, Zhang G,, Buchy P,, Zuo T,, Wang L,, Wang F,, Zhou F,, Wang G,, Tsai C,, Calder L,, Gamblin SJ,, Zhang L,, Deubel V,, Zhou B,, Skehel JJ,, Zhou P . 2012. A human antibody recognizing a conserved epitope of H5 hemagglutinin broadly neutralizes highly pathogenic avian influenza. J Virol 86 : 2978 2989.[PubMed] [CrossRef]
115. Gray SA,, Barr JR,, Kalb SR,, Marks JD,, Baird CL,, Cangelosi GA,, Miller KD,, Feldhaus MJ . 2011. Synergistic capture of Clostridium botulinum type A neurotoxin by scFv antibodies to novel epitopes. Biotechnol Bioeng 108 : 2456 2467.[PubMed] [CrossRef]
116. Garcia-Rodriguez C,, Geren IN,, Lou J,, Conrad F,, Forsyth C,, Wen W,, Chakraborti S,, Zao H,, Manzanarez G,, Smith TJ,, Brown J,, Tepp WH,, Liu N,, Wijesuriya S,, Tomic MT,, Johnson EA,, Smith LA,, Marks JD . 2011. Neutralizing human monoclonal antibodies binding multiple serotypes of botulinum neutrotoxin. Protein Eng Des Sel 24 : 321 331.[PubMed] [CrossRef]
117. Lou J,, Geren I,, Garcia-Rodriguez C,, Forsyth CM,, Wen W,, Knopp K,, Brown J,, Smith T,, Smith LA,, Marks JD . 2010. Affinity maturation of human botulinum neurotoxin antibodies by light chain shuffling via yeast mating. Protein Eng Des Sel 23 : 311 319.[PubMed] [CrossRef]
118. Makiya M,, Dolan M,, Agulto L,, Purcell R,, Chen Z . 2012. Structural basis of anthrax edema factor neutralization by a neutralizing antibody. Biochem Biophys Res Commun 417 : 324 329.[PubMed] [CrossRef]
119. Reason D,, Liberato J,, Sun J,, Camacho J,, Zhou J . 2011. Mechanism of lethal toxin neutralization by a human monoclonal antibody specific for the PA(20) region of Bacillus anthracis protective antigen. Toxins (Basel) 3 : 979 990.[PubMed] [CrossRef]


Generic image for table

Summary of antiviral antibodies discovered using phage display

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014
Generic image for table

Summary of antibacterial antibodies discovered using phage display

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014
Generic image for table

Summary of antiviral antibodies discovered using yeast display

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014
Generic image for table

Summary of antibacterial antibodies discovered using yeast display

Citation: Sheehan J, Marasco W. 2015. Phage and Yeast Display, p 105-127. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0028-2014

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error