1887

Chapter 8 : Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817411/9781555817350_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817411/9781555817350_Chap08-2.gif

Abstract:

Monoclonal antibodies (mAbs) have revolutionized the conduct of science since their first description in 1975 ( ). The use of these specific reagents also has made possible improved clinical diagnostics in the medical arena, and many antibodies have found their way to clinical use as prophylactic or therapeutic agents. Nevertheless, the potential of mAbs derived specifically from technology based on human hybridomas remains largely unfulfilled. The principal reason for the lack of a large number of hybridoma-derived mAb therapeutics has simply been the technical difficulty in generating stable hybridomas that secrete human mAbs of high affinity and functional activity. This chapter reviews recent efforts to develop and employ novel methods for the efficient generation of human hybridomas secreting human mAbs for clinical use.

Citation: Smith S, Crowe J. 2015. Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies, p 141-156. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0027-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Lymphoblastoid cell formation from PBMCs.

Citation: Smith S, Crowe J. 2015. Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies, p 141-156. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0027-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) Pre- and (B) post-pearl chain formation.

Citation: Smith S, Crowe J. 2015. Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies, p 141-156. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0027-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Cloning in (A) semi-solid medium and (B) final human hybridoma.

Citation: Smith S, Crowe J. 2015. Use of Human Hybridoma Technology To Isolate Human Monoclonal Antibodies, p 141-156. In Crowe J, Boraschi D, Rappuoli R (ed), Antibodies for Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.AID-0027-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817411.chap8
1. Kohler G,, Milstein C . 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256 : 495 497.[PubMed] [CrossRef]
2. Schwaber J,, Cohen EP . 1973. Human x mouse somatic cell hybrid clone secreting immunoglobulins of both parental types. Nature 244 : 444 447.[PubMed] [CrossRef]
3. Bloom AD,, Nakamura FT . 1974. Establishment of a tetraploid, immunoglobulin producing cell line from the hybridization of two human lymphocyte lines. Proc Natl Acad Sci USA 71 : 2689 2692.[PubMed] [CrossRef]
4. Olsson L,, Kaplan HS . 1980. Human–human hybridomas producing monoclonal antibodies of predefined antigenic specificity. Proc Natl Acad Sci USA 77 : 5429 5431.[PubMed] [CrossRef]
5. Stevens RH,, Macy E,, Morrow C,, Saxon A . 1979. Characterization of a circulating subpopulation of spontaneous anti-tetanus toxoid antibody producing B cells following in vivo booster immunization. J Immunol 122 : 2498 2504.[PubMed]
6. Casali P,, Inghirami G,, Nakamura M,, Davies TF,, Notkins AL . 1986. Human monoclonals from antigen-specific selection of B lymphocytes and transformation by EBV. Science 234 : 476 479.[PubMed] [CrossRef]
7. Kozbor D,, Roder JC . 1981. Requirements for the establishment of high titered human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique. J Immunol 127 : 1275 1280.[PubMed]
8. Crawford DH,, Ando I . 1986. EB virus induction is associated with B-cell maturation. Immunology 59 : 405 409.[PubMed]
9. Roder JC,, Cole SP,, Kozbor D . 1986. The EBV-hybridoma technique. Methods Enzymol 121 : 140 167.[PubMed] [CrossRef]
10. Steinitz M,, Koskimies S,, Klein G,, Makela O . 1978. Establishment of specific antibody producing human lines by antigen preselection and EBV transformation. Curr Top Microbiol Immunol 81 : 156 163.[PubMed]
11. Bernasconi NL,, Traggiai E,, Lanzavecchia A . 2002. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298 : 2199 2202.[PubMed] [CrossRef]
12. Hartmann G,, Krieg AM . 2000. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J Immunol 164 : 944 953.[PubMed] [CrossRef]
13. Traggiai E,, Becker S,, Subbarao K,, Kolesnikova L,, Uematsu Y,, Gismondo MR,, Murphy BR,, Rappuoli R,, Lanzavecchia A . 2004. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10 : 871 875.[PubMed] [CrossRef]
14. Kozbor D,, Roder JC,, Chang TH,, Steplewski Z,, Koprowski H . 1982. Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma. Hybridoma 1 : 323 328.[PubMed] [CrossRef]
15. Foung SK,, Perkins S,, Raubitschek A,, Larrick J,, Lizak G,, Fishwild D,, Engleman EG,, Grumet FC . 1984. Rescue of human monoclonal antibody production from an EBV-transformed B cell line by fusion to a human-mouse hybridoma. J Immunol Methods 70 : 83 90.[PubMed] [CrossRef]
16. Chiorazzi N,, Wasserman RL,, Kunkel HG . 1982. Use of Epstein-Barr virus-transformed B cell lines for the generation of immunoglobulin-producing human B cell hybridomas. J Exp Med 156 : 930 935.[PubMed] [CrossRef]
17. Emanuel D,, Gold J,, Colacino J,, Lopez C,, Hammerling U . 1984. A human monoclonal antibody to cytomegalovirus (CMV). J Immunol 133 : 2202 2205.[PubMed]
18. Lagerkvist AC,, Furebring C,, Borrebaeck CA . 1995. Single, antigen-specific B cells used to generate Fab fragments using CD40-mediated amplification or direct PCR cloning. Biotechniques 18 : 862 869.[PubMed]
19. Ding BB,, Bi E,, Chen H,, Yu JJ,, Ye BH . 2013. IL-21 and CD40L synergistically promote plasma cell differentiation through upregulation of Blimp-1 in human B cells. J Immunol 190 : 1827 1836.[PubMed] [CrossRef]
20. Cocks BG,, de Waal Malefyt R,, Galizzi JP,, de Vries JE,, Aversa G . 1993. IL-13 induces proliferation and differentiation of human B cells activated by the CD40 ligand. Int Immunol 5 : 657 663.[PubMed] [CrossRef]
21. Orscheschek K,, Merz H,, Schlegelberger B,, Feller AC . 1994. An immortalized cell line with features of human follicular dendritic cells. Antigen and cytokine expression analysis. Eur J Immunol 24 : 2682 2690.[PubMed] [CrossRef]
22. Nilsson K,, Sundström C . 1974. Establishment and characteristics of two unique cell lines from patients with lymphosarcoma. Int J Cancer 13 : 808 823.[PubMed] [CrossRef]
23. Zubler RH,, Erard F,, Lees RK,, Van Laer M,, Mingari C,, Moretta L,, MacDonald HR . 1985. Mutant EL-4 thymoma cells polyclonally activate murine and human B cells via direct cell interaction. J Immunol 134 : 3662 3668.[PubMed]
24. Moore PA,, Belvedere O,, Orr A,, Pieri K,, LaFleur DW,, Feng P,, Soppet D,, Charters M,, Gentz R,, Parmelee D,, Li Y,, Galperina O,, Giri J,, Roschke V,, Nardelli B,, Carrell J,, Sosnovtseva S,, Greenfield W,, Ruben SM,, Olsen HS,, Fikes J,, Hilbert DM . 1999. BLyS: member of the tumor necrosis factor family and B lymphocyte stimulator. Science 285 : 260 263.[PubMed] [CrossRef]
25. Gorny MK, . 1994. Production of human monoclonal antibodies via fusion of Epstein-Barr virus-transformed lymphocytes with heteromyeloma, p 276 281. In Celis JE (ed), Cell Biology: A Laboratory Handbook, 2nd ed. Academic Press, San Diego, CA.
26. Miller G,, Lipman M . 1973. Release of infectious Epstein-Barr virus by transformed marmoset leukocytes. Proc Natl Acad Sci USA 70 : 190 194.[PubMed] [CrossRef]
27. Wallace LE,, Young LS,, Rowe M,, Rowe D,, Rickinson AB . 1987. Epstein-Barr virus-specific T-cell recognition of B-cell transformants expressing different EBNA 2 antigens. Int J Cancer 39 : 373 379.[PubMed] [CrossRef]
28. Nikitin PA,, Yan CM,, Forte E,, Bocedi A,, Tourigny JP,, White RE,, Allday MJ,, Patel A,, Dave SS,, Kim W,, Hu K,, Guo J,, Tainter D,, Rusyn E,, Luftig MA . 2010. An ATM/Chk2-mediated DNA damage-responsive signaling pathway suppresses Epstein-Barr virus transformation of primary human B cells. Cell Host Microbe 8 : 510 522.[PubMed] [CrossRef]
29. Smith SA,, Zhou Y,, Olivarez NP,, Broadwater AH,, de Silva AM,, Crowe JE Jr . 2012. Persistence of circulating memory B cell clones with potential for dengue virus disease enhancement for decades following infection. J Virol 86 : 2665 2675.[PubMed] [CrossRef]
30. Okada Y . 1962. Analysis of giant polynuclear cell formation caused by HVJ virus from Ehrlich’s ascites tumor cells. I. Microscopic observation of giant polynuclear cell formation. Exp Cell Res 26 : 98 128.[CrossRef]
31. Morgan C,, Howe C . 1968. Structure and development of viruses as observed in the electron microscope. IX. Entry of parainfluenza I (Sendai) virus. J Virol 2 : 1122 1132.[PubMed]
32. Okada Y . 1993. Sendai virus-induced cell fusion. Methods Enzymol 221 : 18 41.[PubMed] [CrossRef]
33. Nagata S,, Yamamoto K,, Ueno Y,, Kurata T,, Chiba J . 1991. Production of monoclonal antibodies by the use of pH-dependent vesicular stomatitis virus-mediated cell fusion. Hybridoma 10 : 317 322.[PubMed] [CrossRef]
34. Nagata S,, Yamamoto K,, Ueno Y,, Kurata T,, Chiba J . 1991. Preferential generation of monoclonal IgG-producing hybridomas by use of vesicular stomatitis virus-mediated cell fusion. Hybridoma 10 : 369 378.[PubMed] [CrossRef]
35. Kao KN,, Michayluk MR . 1974. A method for high-frequency intergeneric fusion of plant protoplasts. Planta 115 : 355 367.[PubMed] [CrossRef]
36. Lentz BR . 2007. PEG as a tool to gain insight into membrane fusion. Eur Biophys J 36 : 315 326.[PubMed] [CrossRef]
37. Kerkis AY,, Zhdanova NS . 1992. Formation and ultrastructure of somatic cell hybrids. Electron Microsc Rev 5 : 1 24.[PubMed] [CrossRef]
38. Lane RD,, Crissman RS,, Lachman MF . 1984. Comparison of polyethylene glycols as fusogens for producing lymphocyte-myeloma hybrids. J Immunol Methods 72 : 71 76.[PubMed] [CrossRef]
39. Yu X,, McGraw PA,, House FS,, Crowe JE Jr . 2008. An optimized electrofusion-based protocol for generating virus-specific human monoclonal antibodies. J Immunol Methods 336 : 142 151.[PubMed] [CrossRef]
40. Rols MP,, Teissie J . 1990. Electropermeabilization of mammalian cells. Quantitative analysis of the phenomenon. Biophys J 58 : 1089 1098.[PubMed] [CrossRef]
41. Lo MM,, Tsong TY,, Conrad MK,, Strittmatter SM,, Hester LD,, Snyder SH . 1984. Monoclonal antibody production by receptor-mediated electrically induced cell fusion. Nature 310 : 792 794.[PubMed] [CrossRef]
42. Wojchowski DM,, Sytkowski AJ . 1986. Hybridoma production by simplified avidin-mediated electrofusion. J Immunol Methods 90 : 173 177.[PubMed] [CrossRef]
43. Hewish DR,, Werkmeister JA . 1989. The use of an electroporation apparatus for the production of murine hybridomas. J Immunol Methods 120 : 285 289.[CrossRef]
44. Bakker Schut TC,, Kraan YM,, Barlag W,, de Leij L,, de Grooth BG,, Greve J . 1993. Selective electrofusion of conjugated cells in flow. Biophys J 65 : 568 572.[PubMed] [CrossRef]
45. Teissie J,, Rols MP . 1986. Fusion of mammalian cells in culture is obtained by creating the contact between cells after their electropermeabilization. Biochem Biophys Res Commun 140 : 258 266.[PubMed] [CrossRef]
46. Bardsley DW,, Liddell JE,, Coakley WT,, Clarke DJ . 1990. Electroacoustic production of murine hybridomas. J Immunol Methods 129 : 41 47.[PubMed] [CrossRef]
47. Neil GA,, Zimmermann U . 1993. Electrofusion. Methods Enzymol 220 : 174 196.[PubMed] [CrossRef]
48. Nilsson K,, Bennich H,, Johansson SG,, Pontén J . 1970. Established immunoglobulin producing myeloma (IgE) and lymphoblastoid (IgG) cell lines from an IgE myeloma patient. Clin Exp Immunol 7 : 477 489.[PubMed]
49. Olsson L,, Kaplan HS . 1983. Human–human monoclonal antibody-producing hybridomas: technical aspects. Methods Enzymol 92 : 3 16.[PubMed] [CrossRef]
50. Brodin T,, Olsson L,, Sjögren HO . 1983. Cloning of human hybridoma, myeloma and lymphoma cell lines using enriched human monocytes as feeder layer. J Immunol Methods 60 : 1 7.[PubMed] [CrossRef]
51. Cote RJ,, Morrissey DM,, Houghton AN,, Beattie EJ Jr,, Oettgen HF,, Old LJ . 1983. Generation of human monoclonal antibodies reactive with cellular antigens. Proc Natl Acad Sci USA 80 : 2026 2030.[PubMed] [CrossRef]
52. Olsson L . 1983. Monoclonal antibodies in clinical immunobiology. Derivation, potential, and limitations. Allergy 38 : 145 154.[PubMed] [CrossRef]
53. Sikora K,, Alderson T,, Ellis J,, Phillips J,, Watson J . 1983. Human hybridomas from patients with malignant disease. Br J Cancer 47 : 135 145.[PubMed] [CrossRef]
54. Hibi N,, Arii S,, Iizumi T,, Nemoto T,, Chu TM . 1986. Human monoclonal antibody recognizing liver-type aldolase B. Biochem J 240 : 847 856.[PubMed]
55. Matsuoka Y,, Moore GE,, Yagi Y,, Pressman D . 1967. Production of free light chains of immunoglobulin by a hematopoietic cell line derived from a patient with multiple myeloma. Proc Soc Exp Biol Med 125 : 1246 1250.[PubMed] [CrossRef]
56. Pickering JW,, Gelder FB . 1982. A human myeloma cell line that does not express immunoglobulin but yields a high frequency of antibody-secreting hybridomas. J Immunol 129 : 406 412.[PubMed]
57. Kozbor D,, Tripputi P,, Roder JC,, Croce CM . 1984. A human hybrid myeloma for production of human monoclonal antibodies. J Immunol 133 : 3001 3005.[PubMed]
58. Karpas A,, Dremucheva A,, Czepulkowski BH . 2001. A human myeloma cell line suitable for the generation of human monoclonal antibodies. Proc Natl Acad Sci USA 98 : 1799 1804.[PubMed] [CrossRef]
59. Ostberg L,, Pursch E . 1983. Human X (mouse X human) hybridomas stably producing human antibodies. Hybridoma 2 : 361 367.[PubMed] [CrossRef]
60. Goldstein NI,, Nagle R,, Villar H,, Hersh E,, Fisher PB . 1990. Isolation and characterization of a human monoclonal antibody which reacts with breast and colorectal carcinoma. Anticancer Res 10 : 1491 1500.[PubMed]
61. Freedman RS,, Ioannides CG,, Tomasovic B,, Patenia R,, Zhang HZ,, Liang JC,, Edwards CL . 1991. Development of a cell surface reacting human monoclonal antibody recognizing ovarian and certain other malignancies. Hybridoma 10 : 21 33.[PubMed] [CrossRef]
62. Teng NN,, Lam KS,, Calvo Riera F,, Kaplan HS . 1983. Construction and testing of mouse–human heteromyelomas for human monoclonal antibody production. Proc Natl Acad Sci USA 80 : 7308 7312.[PubMed] [CrossRef]
63. Gorny MK,, Xu JY,, Karwowska S,, Buchbinder A,, Zolla-Pazner S . 1993. Repertoire of neutralizing human monoclonal antibodies specific for the V3 domain of HIV-1 gp 120. J Immunol 150 : 635 643.[PubMed]
64. Gorny MK,, Wang XH,, Williams C,, Volsky B,, Revesz K,, Witover B,, Burda S,, Urbanski M,, Nyambi P,, Krachmarov C,, Pinter A,, Zolla-Pazner S,, Nadas A . 2009. Preferential use of the VH5-51 gene segment by the human immune response to code for antibodies against the V3 domain of HIV-1. Mol Immunol 46 : 917 926.[PubMed] [CrossRef]
65. Gorny MK . 2012. Human hybridoma technology. Antibody Technol J 2 : 1 5.[CrossRef]
66. Posner MR,, Elboim H,, Santos D . 1987. The construction and use of a human–mouse myeloma analogue suitable for the routine production of hybridomas secreting human monoclonal antibodies. Hybridoma 6 : 611 625.[PubMed] [CrossRef]
67. Yu X,, Tsibane T,, McGraw PA,, House FS,, Keefer CJ,, Hicar MD,, Tumpey TM,, Pappas C,, Perrone LA,, Martinez O,, Stevens J,, Wilson IA,, Aguilar PV,, Altschuler EL,, Basler CF,, Crowe JE Jr . 2008. Neutralizing antibodies derived from the B cells of 1918 influenza pandemic survivors. Nature 455 : 532 536.[PubMed] [CrossRef]
68. Smith SA,, de Alwis R,, Kose N,, Durbin AP,, Whitehead SS,, de Silva AM,, Crowe JE Jr . 2013. Human monoclonal antibodies derived from memory B cells following live attenuated dengue virus vaccination or natural infection exhibit similar characteristics. J Infect Dis 207 : 1898 1908.[PubMed] [CrossRef]
69. Smith SA,, de Alwis AR,, Kose N,, Harris E,, Ibarra KD,, Kahle KM,, Pfaff JM,, Xiang X,, Doranz BJ,, de Silva AM,, Austin SK,, Sukupolvi-Petty S,, Diamond MS,, Crowe JE Jr . 2013. The potent and broadly neutralizing human dengue virus-specific monoclonal antibody 1C19 reveals a unique cross-reactive epitope on the bc loop of domain II of the envelope protein. MBio 4 : e00873–913. doi:10.1128/mBio.00873-13. [CrossRef]
70. Carroll WL,, Thielemans K,, Dilley J,, Levy R . 1986. Mouse x human heterohybridomas as fusion partners with human B cell tumors. J Immunol Methods 89 : 61 72.[PubMed] [CrossRef]
71. Carroll WL,, Lowder JN,, Streifer R,, Warnke R,, Levy S,, Levy R . 1986. Idiotype variant cell populations in patients with B cell lymphoma. J Exp Med 164 : 1566 1580.[PubMed] [CrossRef]
72. Brown S,, Dilley J,, Levy R . 1980. Immunoglobulin secretion by mouse X human hybridomas: an approach for the production of anti-idiotype reagents useful in monitoring patients with B cell lymphoma. J Immunol 125 : 1037 1043.[PubMed]
73. da Silva Cardoso M,, Siemoneit K,, Sturm D,, Krone C,, Moradpour D,, Kubanek B . 1998. Isolation and characterization of human monoclonal antibodies against hepatitis C virus envelope glycoproteins. J Med Virol 55 : 28 34.[PubMed] [CrossRef]
74. Ogura M,, Morishima Y,, Ohno R,, Kato Y,, Hirabayashi N,, Nagura H,, Saito H . 1985. Establishment of a novel human megakaryoblastic leukemia cell line, MEG-01, with positive Philadelphia chromosome. Blood 66 : 1384 1392.[PubMed]
75. Kubota-Koketsu R,, Mizuta H,, Oshita M,, Ideno S,, Yunoki M,, Kuhara M,, Yamamoto N,, Okuno Y,, Ikuta K . 2009. Broad neutralizing human monoclonal antibodies against influenza virus from vaccinated healthy donors. Biochem Biophys Res Commun 387 : 180 185.[PubMed] [CrossRef]
76. Pan Y,, Sasaki T,, Kubota-Koketsu R,, Inoue Y,, Yasugi M,, Yamashita A,, Ramadhany R,, Arai Y,, Du A,, Boonsathorn N,, Ibrahim MS,, Daidoji T,, Nakaya T,, Ono K,, Okuno Y,, Ikuta K,, Watanabe Y . 2014. Human monoclonal antibodies derived from a patient infected with 2009 pandemic influenza A virus broadly cross-neutralize group 1 influenza viruses. Biochem Biophys Res Commun 450 : 42 48.[PubMed] [CrossRef]
77. Akapirat S,, Avihingsanon A,, Ananworanich J,, Schuetz A,, Ramasoota P,, Luplertlop N,, Ono K,, Ikuta K,, Utachee P,, Kameoka M,, Leaungwutiwong P . 2013. Variables influencing anti-human immunodeficiency virus type 1 neutralizing human monoclonal antibody (NhMAb) production among infected Thais. Southeast Asian J Trop Med Public Health 44 : 825 841.[PubMed]
78. Kalantarov GF,, Rudchenko SA,, Lobel L,, Trakht I . 2002. Development of a fusion partner cell line for efficient production of human monoclonal antibodies from peripheral blood lymphocytes. Hum Antibodies 11 : 85 96.[PubMed]
79. Kirman I,, Kalantarov GF,, Lobel LI,, Hibshoosh H,, Estabrook A,, Canfield R,, Trakht I . 2002. Isolation of native human monoclonal autoantibodies to breast cancer. Hybrid Hybridomics 21 : 405 414.[PubMed] [CrossRef]
80. Calvert AE,, Kalantarov GF,, Chang GJ,, Trakht I,, Blair CD,, Roehrig JT . 2011. Human monoclonal antibodies to West Nile virus identify epitopes on the prM protein. Virology 410 : 30 37.[PubMed] [CrossRef]
81. Dessain SK,, Adekar SP,, Stevens JB,, Carpenter KA,, Skorski ML,, Barnoski BL,, Goldsby RA,, Weinberg RA . 2004. High efficiency creation of human monoclonal antibody-producing hybridomas. J Immunol Methods 291 : 109 122.[PubMed] [CrossRef]
82. Kromenaker SJ,, Srienc F . 1994. Stability of producer hybridoma cell lines after cell sorting: a case study. Biotechnol Prog 10 : 299 307.[PubMed] [CrossRef]
83. Mann CJ . 2007. Rapid isolation of antigen-specific clones from hybridoma fusions. Nat Methods 4 : 1 2.
84. Haight FA . 1967. Handbook of the Poisson Distribution. John Wiley & Sons, New York, NY.
85. Coller HA,, Coller BS . 1986. Poisson statistical analysis of repetitive sub-cloning by the limiting dilution technique as a way of assessing hybridoma monoclonality. Methods Enzymol 121 : 412 417.[PubMed] [CrossRef]
86. Underwood PA,, Bean PA . 1987. Hazards of the limiting dilution methods of cloning hybridomas. J Immunol Methods 107 : 119 128.[PubMed] [CrossRef]
87. Brezinsky SCG,, Chiang GG,, Szilvasi A,, Mohan S,, Shapiro RI,, MacLean A,, Sisk W,, Thill G . 2003. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods 277 : 141 155.[PubMed] [CrossRef]
88. Parks DR,, Bryan VM,, Oi VT,, Herzenberg LA . 1979. Antigen-specific identification and cloning of hybridomas with a fluorescence-activated cell sorter. Proc Natl Acad Sci USA 76 : 1962 1966.[PubMed] [CrossRef]
89. Jantscheff P,, Winkler L,, Karawajew L,, Kaiser G,, Böttger V,, Micheel B . 1993. Hybrid hybridomas producing bispecific antibodies to CEA and peroxidase isolated by a combination of HAT medium selection and fluorescence activated cell sorting. J Immunol Methods 163 : 91 97.[PubMed] [CrossRef]
90. Dangl JL,, Parks DR,, Oi VT,, Herzenberg LA . 1982. Rapid isolation of cloned isotype switch variants using fluorescence activated cell sorting. Cytometry 2 : 395 401.[PubMed] [CrossRef]
91. Martel F,, Bazin R,, Verrette S,, Lemieux R . 1988. Characterization of higher avidity monoclonal antibodies produced by murine B-cell hybridoma variants selected for increased antigen binding of membrane Ig. J Immunol 141 : 1624 1629.[PubMed]
92. Manz R,, Assenmacher M,, Pflüger E,, Miltenyi S,, Radbruch A . 1995. Analysis and sorting of live cells according to secreted molecules, relocated to a cell-surface affinity matrix. Proc Natl Acad Sci USA 92 : 1921 1925.[PubMed] [CrossRef]
93. Holmes P,, Al-Rubeai M . 1999. Improved cell line development by a high throughput affinity capture surface display technique to select for high secretors. J Immunol Methods 230 : 141 147.[PubMed] [CrossRef]
94. Weaver J,, Williams G,, Klibanov A,, Demain A . 1988. Gel microdroplets: rapid detection and enumeration of individual microorganisms by their metabolic activity. Nat Biotechnol 6 : 1084 1089.[CrossRef]
95. Powell KT,, Weaver JC . 1990. Gel microdroplets and flow cytometry: rapid determination of antibody secretion by individual cells within a cell population. Nat Biotechnol 8 : 333 337.[PubMed] [CrossRef]
96. Kenney JS,, Gray F,, Ancel MH,, Dunne JF . 1995. Production of monoclonal antibodies using a secretion capture report web. Nat Biotechnol 13 : 787 790.[PubMed] [CrossRef]
97. Gray F,, Kenney JS,, Dunne JF . 1995. Secretion capture and report web: use of affinity derivatised agarose microdroplets for the selection of hybridoma cells. J Immunol Methods 182 : 155 163.[PubMed] [CrossRef]
98. Davis JM,, Pennington JE,, Kubler AM,, Conscience JF . 1982. A simple, single-step technique for selecting and cloning hybridomas for the production of monoclonal antibodies. Immunol Methods 50 : 161 171.[PubMed] [CrossRef]
99. Yokoyama WM,, Christensen M,, Dos Santos G,, Miller D,, Ho J,, Wu T,, Dziegelewski M,, Neethling FA . 2013. Production of monoclonal antibodies. Curr Protoc Immunol 102 : 1 29.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error