Chapter 12 : The Biology of the Extracellular Matrix

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Biology of the Extracellular Matrix, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817466/9781555817459_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817466/9781555817459_Chap12-2.gif


The bacterial family includes a variety of intestinal symbionts as well as notable pathogens such as , , , and ( ). Also included among the family is the most well-documented bacterial species on Earth, . is a fascinatingly diverse bug, featuring a cadre of different strains that have adapted to diverse environmental conditions and lifestyles. While the typical genome contains roughly 4,800 genes, only approximately 1,700 are shared by every strain ( ). In total, there are over 15,000 genes that make up the pangenome ( ). The genomic plasticity of various isolates provides the ability to proliferate and survive in an array of environments ( ).

Citation: Hufnagel D, Depas W, Chapman M. 2015. The Biology of the Extracellular Matrix, p 249-267. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0014-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Laboratory biofilm models. (A) Ring biofilm stained by crystal violet (CV). Cultures were grown in LB media in glass tubes at 26°C for 48 hours. Liquid culture was removed and the tube was stained with 0.1% (w/v) CV for 5 minutes. Tubes were subsequently washed with water. The top image is a WT strain, and the lower image is a flagella mutant (::kan). (B) Pellicle biofilms grown in a 24-well plate for 48 hours at 26°C. Liquid media was removed followed by 5 minutes of staining with 0.1% CV. Stained pellicles were washed three times with water prior to imaging. The top image is a CV-stained WT UTI89 pellicle, whereas the lower picture is a culture of a mutant that did not produce a pellicle. (C) Pellicle biofilms grown in 1:7500 (Congo red:YESCA) media in a 24-well dish for 48 hours at 26°C. The top image shows a WT UTI89 culture that produced a pellicle, whereas the lower image is a culture of a mutant that did not form a pellicle. (D) 4-µL spots of 1-OD were grown at 26°C for 48 hours on YESCA CR plates. The colony on the left is UTI89 WT; on the right is a mutant colony.

Citation: Hufnagel D, Depas W, Chapman M. 2015. The Biology of the Extracellular Matrix, p 249-267. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

ECM production model. CsgD is the master regulator of the biofilm extracellular matrix. CsgD transcriptionally upregulates the and genes, which encode the minor and major curli fiber subunits, respectively. CsgA and CsgB are secreted through an outer membrane pore formed by CsgG. CsgE is thought to facilitate translocation of curli subunits across the outer membrane by capping the periplasmic side of the secretion vestibule so that movement in the channel is unidirectional. CsgB associates with the cell surface and templates amyloid polymerization of CsgA. CsgD also transcriptionally upregulates . AdrA is an inner membrane diguanylate cyclase, which produces the secondary messenger, c-di-GMP. c-di-GMP binds and activates BcsA, which then produces cellulose fibers via the building block UDP-glucose. C-di-GMP that activates BcsA can also be produced via YedQ and YfiN.

Citation: Hufnagel D, Depas W, Chapman M. 2015. The Biology of the Extracellular Matrix, p 249-267. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0014-2014
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Farmer JJ,, Davis BR,, Hickmanbrenner FW,, McWhorter A,, Huntleycarter GP,, Asbury MA,, Riddle C,, Wathen-Grady HG,, Elias C,, Fanning GR . 1985. Biochemical-identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol 21 : 46 76.[PubMed]
2. Kaas RS,, Friis C,, Ussery DW,, Aarestrup FM . 2012. Estimating variation within the genes and inferring the phylogeny of 186 sequenced diverse Escherichia coli genomes. BMC Genomics 13 : 577. [PubMed] [CrossRef]
3. Touchon M,, Hoede C,, Tenaillon O,, Barbe V,, Baeriswyl S,, Bidet P,, Bingen E,, Bonacorsi S,, Bouchier C,, Bouvet O,, Calteau A,, Chiapello H,, Clermont O,, Cruveiller S,, Danchin A,, Diard M,, Dossat C,, Karoui ME,, Frapy E,, Garry L,, Ghigo JM,, Gilles AM,, Johnson J,, Le Bouguénec C,, Lescat M,, Mangenot S,, Martinez-Jéhanne V,, Matic I,, Nassif X,, Oztas S,, Petit MA,, Pichon C,, Rouy Z,, Ruf CS,, Schneider D,, Tourret J,, Vacherie B,, Vallenet D,, Médigue C,, Rocha EP,, Denamur E . 2009. Organised genome dynamics in the Escherichia coli species results in highly diverse adaptive paths. PLoS Genet 5 : e1000344. doi:10.1371/journal.pgen.1000344. [CrossRef]
4. Kaper JB,, Nataro JP,, Mobley HL . 2004. Pathogenic Escherichia coli . Nat Rev Microbiol 2 : 123 140.[PubMed] [CrossRef]
5. Tenaillon O,, Skurnik D,, Picard B,, Denamur E . 2010. The population genetics of commensal Escherichia coli . Nat Rev Microbiol 8 : 207 217.[PubMed] [CrossRef]
6. Smith HW . 2965. Observations on the flora of the alimentary tract of animals and factors affecting its composition. J Pathol Bacteriol 89 : 95 122.[PubMed] [CrossRef]
7. Shulman ST,, Friedmann HC,, Sims RH . 2007. Theodor Escherich: the first pediatric infectious diseases physician? Clin Infect Dis 45 : 1025 1029.[PubMed] [CrossRef]
8. Mitsuoka T,, Hayakawa K,, Kimura N . 1975. The fecal flora of man. III. Communication: the composition of Lactobacillus flora of different age groups (author’s transl). Zentralbl Bakteriol Orig A 232 : 499 511.[PubMed]
9. Savageau MA . 1983. Escherichia-coli habitats, cell-types, and molecular mechanisms of gene-control. Am Nat 122 : 732 744.[CrossRef]
10. Unden G,, Bongaerts J . 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim Biophys Acta 1320 : 217 234.[PubMed] [CrossRef]
11. Jones SA,, Chowdhury FZ,, Fabich AJ,, Anderson A,, Schreiner DM,, House AL,, Autieri SM,, Leatham MP,, Lins JJ,, Jorgensen M,, Cohen PS,, Conway T . 2007. Respiration of Escherichia coli in the mouse intestine. Infect Immun 75 : 4891 4899.[PubMed] [CrossRef]
12. Jones SA,, Gibson T,, Maltby RC,, Chowdhury FZ,, Stewart V,, Cohen PS,, Conway T . 2100. Anaerobic respiration of Escherichia coli in the mouse intestine. Infect Immun 79 : 4218 4226.[PubMed] [CrossRef]
13. Winfield MD,, Groisman EA . 2003. Role of nonhost environments in the lifestyles of Salmonella and Escherichia coli . Appl Environ Microbiol 69 : 3687 3694.[CrossRef]
14. Ishii S,, Ksoll WB,, Hicks RE,, Sadowsky MJ . 2006. Presence and growth of naturalized Escherichia coli in temperate soils from Lake Superior watersheds. Appl Environ Microbiol 72 : 612 621.[PubMed] [CrossRef]
15. Ferens WA,, Hovde CJ . Escherichia coli O157:H7: animal reservoir and sources of human infection. Foodborne Pathog Dis 8 : 465 487.[PubMed] [CrossRef]
16. Orth D,, Grif K,, Zimmerhackl LB,, Wurzner R . 2008. Prevention and treatment of enterohemorrhagic Escherichia coli infections in humans. Expert Rev Anti Infect Theor 6 : 101 108.[PubMed] [CrossRef]
17. Gyles CL . 2007. Shiga toxin-producing Escherichia coli: an overview. J Anim Sci 85( Suppl) : E45 E62.[PubMed] [CrossRef]
18. Laven RA,, Ashmore A,, Stewart CS . 2003. Escherichia coli in the rumen and colon of slaughter cattle, with particular reference to E. coli O157. Vet J 165 : 78 83.[PubMed] [CrossRef]
19. Widiasih DA,, Ido N,, Omoe K,, Sugii S,, Shinagawa K . 2004. Duration and magnitude of faecal shedding of Shiga toxin-producing Escherichia coli from naturally infected cattle. Epidemiol Infect 132 : 67 75.[PubMed] [CrossRef]
20. Fegan N,, Vanderlinde P,, Higgs G,, Desmarchelier P . 2004. The prevalence and concentration of Escherichia coli O157 in faeces of cattle from different production systems at slaughter. J Appl Microbiol 97 : 362 370.[PubMed] [CrossRef]
21. Kudva IT,, Blanch K,, Hovde CJ . 1998. Analysis of Escherichia coli O157:H7 survival in ovine or bovine manure and manure slurry. Appl Environ Microbiol 64 : 3166 3174.[PubMed]
22. Locking ME,, O’Brien SJ,, Reilly WJ,, Wright EM,, Campbell DM,, Coia JE,, Browning LM,, Ramsay CN . 2001. Risk factors for sporadic cases of Escherichia coli O157 infection: the importance of contact with animal excreta. Epidemiol Infect 127 : 215 220.[PubMed] [CrossRef]
23. Solomon EB,, Yaron S,, Matthews KR . 2002. Transmission of Escherichia coli O157:H7 from contaminated manure and irrigation water to lettuce plant tissue and its subsequent internalization. Appl Environ Microbiol 68 : 397 400.[PubMed] [CrossRef]
24. Islam M,, Doyle MP,, Phatak SC,, Millner P,, Jiang X . 2004. Persistence of enterohemorrhagic Escherichia coli O157:H7 in soil and on leaf lettuce and parsley grown in fields treated with contaminated manure composts or irrigation water. J Food Prot 67 : 1365 1370.[PubMed]
25. Jablasone J,, Warriner K,, Griffiths M . 2005. Interactions of Escherichia coli O157:H7, Salmonella typhimurium and Listeria monocytogenes plants cultivated in a gnotobiotic system. Int J Food Microbiol 99 : 7 18.[PubMed] [CrossRef]
26. Sivick KE,, Mobley HL . 2010. Waging war against uropathogenic Escherichia coli: winning back the urinary tract. Infect Immun 78 : 568 585.[PubMed] [CrossRef]
27. Chen SL,, Wu M,, Henderson JP,, Hooton TM,, Hibbing ME,, Hultgren SJ,, Gordon JI . 2013. Genomic diversity and fitness of E. coli strains recovered from the intestinal and urinary tracts of women with recurrent urinary tract infection. Sci Transl Med 5 : 184ra60. [PubMed] [CrossRef]
28. Manges AR,, Johnson JR . 2012. Food-borne origins of Escherichia coli causing extraintestinal infections. Clin Infect Dis 55 : 712 719.[PubMed] [CrossRef]
29. Yamamoto S,, Tsukamoto T,, Terai A,, Kurazono H,, Takeda Y,, Yoshida O . 1997. Genetic evidence supporting the fecal-perineal-urethral hypothesis in cystitis caused by Escherichia coli . J Urol 157 : 1127 1129.[PubMed] [CrossRef]
30. Johnson JR,, Kuskowski MA,, Smith K,, O’Bryan TT,, Tatini S . 2005. Antimicrobial-resistant and extraintestinal pathogenic Escherichia coli in retail foods. J Infect Dis 191 : 1040 1049.[PubMed] [CrossRef]
31. Phillips I,, Eykyn S,, King A,, Gransden WR,, Rowe B,, Frost JA,, Gross RJ . 1988. Epidemic multiresistant Escherichia coli infection in West Lambeth Health District. Lancet 1 : 1038 1041.[PubMed] [CrossRef]
32. Manges AR,, Johnson JR,, Foxman B,, O’Bryan TT,, Fullerton KE,, Riley LW . 2001. Widespread distribution of urinary tract infections caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 345 : 1007 1013.[PubMed] [CrossRef]
33. Mulvey MA,, Schilling JD,, Hultgren SJ . 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69 : 4572 4579.[PubMed] [CrossRef]
34. Wright KJ,, Seed PC,, Hultgren SJ . 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9 : 2230 2241.[PubMed] [CrossRef]
35. Blango MG,, Mulvey MA . 2010. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 54 : 1855 1863.[PubMed] [CrossRef]
36. Jorgensen I,, Seed PC . 2012. How to make it in the urinary tract: a tutorial by Escherichia coli . PLoS Pathog 8 : e1002907. doi:10.1371/journal.ppat.1002907. [PubMed] [CrossRef]
37. Stewart PS,, Franklin MJ . 2008. Physiological heterogeneity in biofilms. Nat Rev Microbiol 6 : 199 210.[PubMed] [CrossRef]
38. Hall-Stoodley L,, Costerton JW,, Stoodley P . 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2 : 95 108.[PubMed] [CrossRef]
39. Wilson M . 2001. Bacterial biofilms and human disease. Sci Prog 84 : 235 254.[PubMed] [CrossRef]
40. Vidal O,, Longin R,, Prigent-Combaret C,, Dorel C,, Hooreman M,, Lejeune P . 1998. Isolation of an Escherichia coli K-12 mutant strain able to form biofilms on inert surfaces: involvement of a new ompR allele that increases curli expression. J Bacteriol 180 : 2442 2449.[PubMed]
41. Zogaj X,, Nimtz M,, Rohde M,, Bokranz W,, Romling U . 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39 : 1452 1463.[PubMed] [CrossRef]
42. Whitchurch CB,, Tolker-Nielsen T,, Ragas PC,, Mattick JS . 2002. Extracellular DNA required for bacterial biofilm formation. Science 295 : 1487. [PubMed] [CrossRef]
43. Beloin C,, Roux A,, Ghigo JM . 2008. Escherichia coli biofilms. Curr Top Microbiol Immunol 322 : 249 289.[PubMed] [CrossRef]
44. Bachmann BJ . 1972. Pedigrees of some mutant strains of Escherichia-coli K-12. Bacteriol Rev 36 : 525 557.[PubMed]
45. Fux CA,, Shirtliff M,, Stoodley P,, Costerton JW . 2005. Can laboratory reference strains mirror ‘real-world’ pathogenesis? Trends Microbiol 13 : 58 63.[PubMed] [CrossRef]
46. DePas WH,, Hufnagel DA,, Lee JS,, Blanco LP,, Bernstein HC,, Fisher ST,, James GA,, Stewart PS,, Chapman MR . 2013. Iron induces bimodal population development by Escherichia coli . Proc Natl Acad Sci USA 110 : 2629 2634.[PubMed] [CrossRef]
47. Hadjifrangiskou M,, Gu AP,, Pinkner JS,, Kostakioti M,, Zhang EW,, Greene SE,, Hultgren SJ . 2012. Transposon mutagenesis identifies uro pathogenic Escherichia coli biofilm factors. J Bacteriol 194 : 6195 6205.[PubMed] [CrossRef]
48. Uhlich GA,, Cooke PH,, Solomon EB . 2006. Analyses of the red-dry-rough phenotype of an Escherichia coli O157:H7 strain and its role in biofilm formation and resistance to antibacterial agents. Appl Environ Microbiol 72 : 2564 2572.[PubMed] [CrossRef]
49. Liu NT,, Nou X,, Lefcourt AM,, Shelton DR,, Lo YM . 2014. Dual-species biofilm formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing facilities. Int J Food Microbiol 171 : 15 20.[PubMed] [CrossRef]
50. Reisner A,, Krogfelt KA,, Klein BM,, Zechner EL,, Molin S . 2006. In vitro biofilm formation of commensal and pathogenic Escherichia coli strains: impact of environmental and genetic factors. J Bacteriol 188 : 3572 3581.[PubMed] [CrossRef]
51. Serra DO,, Richter AM,, Klauck G,, Mika F,, Hengge R . 2013. Microanatomy at cellular resolution and spatial order of physiological differentiation in a bacterial biofilm. mBio 4 : e00103-13. doi:10.1128/mBio.00103-13. [PubMed] [CrossRef]
52. Boles BR,, Singh PK . 2008. Endogenous oxidative stress produces diversity and adaptability in biofilm communities. Proc Natl Acad Sci USA 105 : 12503 12508.[PubMed] [CrossRef]
53. Chai Y,, Chu F,, Kolter R,, Losick R . 2008. Bistability and biofilm formation in Bacillus subtilis . Mol Microbiol 67 : 254 263.[PubMed] [CrossRef]
54. Boles BR,, Thoendel M,, Singh PK . 2004. Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101 : 16630 16635.[PubMed] [CrossRef]
55. Xu KD,, Stewart PS,, Xia F,, Huang CT,, McFeters GA . 1998. Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64 : 4035 4039.[PubMed]
56. Williamson KS,, Richards LA,, Perez-Osorio AC,, Pitts B,, McInnerney K,, Stewart PS,, Franklin MJ . 2012. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194 : 2062 2073.[PubMed] [CrossRef]
57. Lewis K . 2008. Multidrug tolerance of biofilms and persister cells. Curr Top Microbiol Immunol 322 : 107 131.[PubMed] [CrossRef]
58. Pratt LA,, Kolter R . 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30 : 285 293.[PubMed] [CrossRef]
59. Hung C,, Zhou YZ,, Pinkner JS,, Dodson KW,, Crowley JR,, Heuser J,, Chapman MR,, Hadjifrangiskou M,, Henderson JP,, Hultgren SJ . 2013. Escherichia coli biofilms have an organized and complex extracellular matrix structure. mBio 4( 5) : e00645-13. doi:10.1128/mBio.00645-13. [PubMed] [CrossRef]
60. Wang X,, Preston JF 3rd,, Romeo T . 2004. The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 186 : 2724 2734.[PubMed] [CrossRef]
61. Cegelski L,, Pinkner JS,, Hammer ND,, Cusumano CK,, Hung CS,, Chorell E,, Åberg V,, Walker JN,, Seed PC,, Almqvist F,, Chapman MR,, Hultgren SJ . 2009. Small-molecule inhibitors target Escherichia coli amyloid biogenesis and biofilm formation. Nat Chem Biol 5 : 913 919.[PubMed] [CrossRef]
62. Bokranz W,, Wang X,, Tschape H,, Romling U . 2005. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54 : 1171 1182.[PubMed] [CrossRef]
63. Zhou Y,, Smith DR,, Hufnagel DA,, Chapman MR . 2013. Experimental manipulation of the microbial functional amyloid called curli. Methods Mol Biol 966 : 53 75.[PubMed] [CrossRef]
64. Hammar M,, Arnqvist A,, Bian Z,, Olsen A,, Normark S . 1995. Expression of two csg operons is required for production of fibronectin- and Congo red-binding curli polymers in Escherichia coli K-12. Mol Microbiol 18 : 661 670.[PubMed] [CrossRef]
65. Jubelin G,, Vianney A,, Beloin C,, Ghigo JM,, Lazzaroni JC,, Lejeune P,, Dorel C . 2005. CpxR/OmpR interplay regulates curli gene expression in response to osmolarity in Escherichia coli . J Bacteriol 187 : 2038 2049.[PubMed] [CrossRef]
66. Zheng D,, Constantinidou C,, Hobman JL,, Minchin SD . 2004. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling. Nucleic Acids Res 32 : 5874 5893.[PubMed] [CrossRef]
67. Olsen A,, Arnqvist A,, Hammar M,, Sukupolvi S,, Normark S . 1993. The RpoS sigma factor relieves H-NS-mediated transcriptional repression of csgA, the subunit gene of fibronectin-binding curli in Escherichia coli . Mol Microbiol 7 : 523 536.[PubMed] [CrossRef]
68. Hufnagel DA,, DePas WH,, Chapman MR . 2014. The disulfide bonding system suppresses CsgD-independent cellulose production in E. coli . J Bacteriol [Epub ahead of print.] doi:10.1128/JB.02019-14. [CrossRef]
69. Wu C,, Lim JY,, Fuller GG,, Cegelski L . 2012. Quantitative analysis of amyloid-integrated biofilms formed by uropathogenic Escherichia coli at the air-liquid interface. Biophys J 103 : 464 471.[PubMed] [CrossRef]
70. Wai SN,, Mizunoe Y,, Takade A,, Kawabata SI,, Yoshida SI . Vibrio cholerae O1 strain TSI-4 produces the exopolysaccharide materials that determine colony morphology, stress resistance, and biofilm formation. Appl Environ Microbiol 64 : 3648 3655.[PubMed]
71. Yildiz FH,, Dolganov NA,, Schoolnik GK . 2001. VpsR, a member of the response regulators of the two-component regulatory systems, is required for expression of vps biosynthesis genes and EPS(ETr)-associated phenotypes in Vibrio cholerae O1 El Tor. J Bacteriol 183 : 1716 1726.[PubMed] [CrossRef]
72. Yildiz FH,, Liu XS,, Heydorn A,, Schoolnik GK . 2004. Molecular analysis of rugosity in a Vibrio cholerae O1 El Tor phase variant. Mol Microbiol 53 : 497 515.[PubMed] [CrossRef]
73. Asally M,, Kittisopikul M,, Rue P,, Du Y,, Hu Z,, Cagatay T,, Robinson AB,, Lu H,, Garcia-Ojalvo J,, Süel GM . 2012. Localized cell death focuses mechanical forces during 3D patterning in a biofilm. Proc Natl Acad Sci USA 109 : 18891 18896.[PubMed] [CrossRef]
74. Dietrich LE,, Okegbe C,, Price-Whelan A,, Sakhtah H,, Hunter RC,, Newman DK . 2013. Bacterial community morphogenesis is intimately linked to the intracellular redox state. J Bacteriol 195 : 1371 1380.[PubMed] [CrossRef]
75. Epstein AK,, Pokroy B,, Seminara A,, Aizenberg J . 2011. Bacterial biofilm shows persistent resistance to liquid wetting and gas penetration. Proc Natl Acad Sci USA 108 : 995 1000.[PubMed] [CrossRef]
76. Kolodkin-Gal I,, Elsholz AK,, Muth C,, Girguis PR,, Kolter R,, Losick R . 2013. Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase. Gene Dev 27 : 887 899.[PubMed] [CrossRef]
77. Romling U,, Sierralta WD,, Eriksson K,, Normark S . 1998. Multicellular and aggregative behaviour of Salmonella typhimurium strains is controlled by mutations in the agfD promoter. Mol Microbiol 28 : 249 264.[PubMed] [CrossRef]
78. Romling U . 2005. Characterization of the rdar morphotype, a multicellular behaviour in Enterobacteriaceae . Cell Mol Life Sci 62 : 1234 1246.[PubMed] [CrossRef]
79. Lim JY,, May JM,, Cegelski L . 2012. Dimethyl sulfoxide and ethanol elicit increased amyloid biogenesis and amyloid-integrated biofilm formation in Escherichia coli . Appl Environ Microbiol 78 : 3369 3378.[PubMed] [CrossRef]
80. McCrate OA,, Zhou X,, Reichhardt C,, Cegelski L . 2013. Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol 425 : 4286 4294.[PubMed] [CrossRef]
81. Serra DO,, Richter AM,, Hengge R . 2013. Cellulose as an architectural element in spatially structured Escherichia coli biofilms. J Bacteriol 195 : 5540 5554.[PubMed] [CrossRef]
82. Weiss-Muszkat M,, Shakh D,, Zhou Y,, Pinto R,, Belausov E,, Chapman MR,, Sela S . 2010. Biofilm formation by and multicellular behavior of Escherichia coli O55:H7, an atypical enteropathogenic strain. Appl Environ Microbiol 76 : 1545 1554.[PubMed] [CrossRef]
83. Lim JY,, Pinkner JS,, Cegelski L . 2014. Community behavior and amyloid-associated phenotypes among a panel of uropathogenic E. coli . Biochem Biophys Res Commun 443 : 345 350.[PubMed] [CrossRef]
84. Zogaj X,, Bokranz W,, Nimtz M,, Romling U . 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect Immun 71 : 4151 4158.[PubMed] [CrossRef]
85. Romling U,, Rohde M,, Olsen A,, Normark S,, Reinkoster J . 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol Microbiol 36 : 10 23.[PubMed] [CrossRef]
86. Gao R,, Mack TR,, Stock AM . 2007. Bacterial response regulators: versatile regulatory strategies from common domains. Trends Biochem Sci 32 : 225 234.[PubMed] [CrossRef]
87. Skerker JM,, Perchuk BS,, Siryaporn A,, Lubin EA,, Ashenberg O,, Goulian M,, Laub MT . 2008. Rewiring the specificity of two-component signal transduction systems. Cell 133 : 1043 1054.[PubMed] [CrossRef]
88. Stock AM,, Robinson VL,, Goudreau PN . 2000. Two-component signal transduction. Annu Rev Biochem 69 : 183 215.[PubMed] [CrossRef]
89. Zakikhany K,, Harrington CR,, Nimtz M,, Hinton JCD,, Romling U . 2010. Unphosphorylated CsgD controls biofilm formation in Salmonella enterica serovar Typhimurium. Mol Microbiol 77 : 771 786.[PubMed] [CrossRef]
90. Wang L,, Tian X,, Wang J,, Yang H,, Fan K,, Xu G,, Yang K,, Tan H . 2009. Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci USA 106 : 8617 8622.[PubMed] [CrossRef]
91. Sitnikov DM,, Schineller JB,, Baldwin TO . 1995. Transcriptional regulation of bioluminesence genes from Vibrio fischeri . Mol Microbiol 17 : 801 812.[PubMed] [CrossRef]
92. Evans ML,, Chapman MR . 2013. Curli biogenesis: order out of disorder. Biochim Biophys Acta 1843 : 1551 1558.[PubMed] [CrossRef]
93. Mika F,, Hengge R . Small regulatory RNAs in the control of motility and biofilm formation in E. coli and Salmonella . Int J Mol Sci 14 : 4560 4579.[PubMed] [CrossRef]
94. Olsen A,, Jonsson A,, Normark S . 1989. Fibronectin binding mediated by a novel class of surface organelles on Escherichia coli . Nature 338 : 652 655.[PubMed] [CrossRef]
95. Romling U,, Bian Z,, Hammar M,, Sierralta WD,, Normark S . 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J Bacteriol 180 : 722 731.[PubMed]
96. Romling U,, Gomelsky M,, Galperin MY . 2005. C-di-GMP: the dawning of a novel bacterial signalling system. Mol Microbiol 57 : 629 639.[PubMed] [CrossRef]
97. Simm R,, Morr M,, Kader A,, Nimtz M,, Romling U . 2004. GGDEF and EAL domains inversely regulate cyclic di-GMP levels and transition from sessility to motility. Mol Microbiol 53 : 1123 1134.[PubMed] [CrossRef]
98. Sommerfeldt N,, Possling A,, Becker G,, Pesavento C,, Tschowri N,, Hengge R . 2009. Gene expression patterns and differential input into curli fimbriae regulation of all GGDEF/EAL domain proteins in Escherichia coli . Microbiology 155 : 1318 1331.[PubMed] [CrossRef]
99. Weber H,, Pesavento C,, Possling A,, Tischendorf G,, Hengge R . 2006. Cyclic-di-GMP-mediated signalling within the sigma network of Escherichia coli . Mol Microbiol 62 : 1014 1034.[PubMed] [CrossRef]
100. Hengge R . 2009. Principles of c-di-GMP signalling in bacteria. Nat Rev Microbiol 7 : 263 273.[PubMed] [CrossRef]
101. Brombacher E,, Dorel C,, Zehnder AJ,, Landini P . 2003. The curli biosynthesis regulator CsgD co-ordinates the expression of both positive and negative determinants for biofilm formation in Escherichia coli . Microbiology 149 : 2847 2857.[PubMed] [CrossRef]
102. Gualdi L,, Tagliabue L,, Landini P . 2007. Biofilm formation-gene expression relay system in Escherichia coli: modulation of sigmaS-dependent gene expression by the CsgD regulatory protein via sigmaS protein stabilization. J Bacteriol 189 : 8034 8043.[PubMed] [CrossRef]
103. Ogasawara H,, Yamamoto K,, Ishihama A . 2011. Role of the biofilm master regulator CsgD in cross-regulation between biofilm formation and flagellar synthesis. J Bacteriol 193 : 2587 2597.[PubMed] [CrossRef]
104. Collinson SK,, Emody L,, Muller KH,, Trust TJ,, Kay WW . 1991. Purification and characterization of thin, aggregative fimbriae from Salmonella enteritidis . J Bacteriol 173 : 4773 4781.[PubMed]
105. Arnqvist A,, Olsen A,, Pfeifer J,, Russell DG,, Normark S . 1992. The Crl protein activates cryptic genes for curli formation and fibronectin binding in Escherichia coli HB101. Mol Microbiol 6 : 2443 2452.[PubMed] [CrossRef]
106. Hammar M,, Bian Z,, Normark S . Nucleator-dependent intercellular assembly of adhesive curli organelles in Escherichia coli . Proc Natl Acad Sci USA 93 : 6562 6566.[PubMed] [CrossRef]
107. Bian Z,, Normark S . 1997. Nucleator function of CsgB for the assembly of adhesive surface organelles in Escherichia coli . EMBO J 16 : 5827 5836.[PubMed] [CrossRef]
108. Chapman MR,, Robinson LS,, Pinkner JS,, Roth R,, Heuser J,, Hammar M,, Normark S,, Hultgren SJ . 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295 : 851 855.[PubMed] [CrossRef]
109. Abdallah AM,, Van Pittius NCG,, Champion PAD,, Cox J,, Luirink J,, Vandenbroucke-Grauls CMJE,, Appelmelk BJ,, Bitter W . 2007. Type VII secretion: mycobacteria show the way. Nat Rev Microbiol 5 : 883 891.[PubMed] [CrossRef]
110. Desvaux M,, Hebraud M,, Talon R,, Henderson IR . 2009. Secretion and subcellular localizations of bacterial proteins: a semantic awareness issue. Trends Microbiol 17 : 139 145.[PubMed] [CrossRef]
111. Hammer ND,, Schmidt JC,, Chapman MR . 2007. The curli nucleator protein, CsgB, contains an amyloidogenic domain that directs CsgA polymerization. Proc Natl Acad Sci USA. 104 : 12494 12499.[PubMed] [CrossRef]
112. Epstein EA,, Reizian MA,, Chapman MR . 2009. Spatial clustering of the curlin secretion lipoprotein requires curli fiber assembly. J Bacteriol 191 : 608 615.[PubMed] [CrossRef]
113. Zhou Y,, Smith D,, Leong BJ,, Brannstrom K,, Almqvist F,, Chapman MR . 2012. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287 : 35092 35103.[PubMed] [CrossRef]
114. Robinson LS,, Ashman EM,, Hultgren SJ,, Chapman MR . 2006. Secretion of curli fibre subunits is mediated by the outer membrane-localized CsgG protein. Mol Microbiol 59 : 870 881.[PubMed] [CrossRef]
115. Loferer H,, Hammar M,, Normark S . 1997. Availability of the fibre subunit CsgA and the nucleator protein CsgB during assembly of fibronectin-binding curli is limited by the intracellular concentration of the novel lipoprotein CsgG. Mol Microbiol 26 : 11 23.[PubMed] [CrossRef]
116. Goyal G,, Van Gerven N,, Gubellini F,, Van den Broeck I,, Troupoiotis-Tsailaki A,, Jonkheere W,, Pejau-Arnaudet G,, Pinkner JS,, Chapman MR,, Hultgren SJ,, Howorka S,, Fronzes R,, Remaut H . 2014. Structural and mechanistic insights into the bacterial amyloid secretion channel CsgG. Nature 516 : 250 253.[PubMed] [CrossRef]
117. Nenninger AA,, Robinson LS,, Hammer ND,, Epstein EA,, Badtke MP,, Hultgren SJ,, Chaman MR . 2011. CsgE is a curli secretion specificity factor that prevents amyloid fibre aggregation. Mol Microbiol 81 : 486 499.[CrossRef]
118. Andersson EK,, Bengtsson C,, Evans ML,, Chorell E,, Sellstedt M,, Lindgren AE,, Hufnagel DA,, Bhattacharya M,, Tessier PM,, Wittung-Stafshede P,, Almqvist F,, Chapman MR . 2013. Modulation of curli assembly and pellicle biofilm formation by chemical and protein chaperones. Chem Biol 20 : 1245 1254.[PubMed] [CrossRef]
119. Fowler DM,, Koulov AV,, Balch WE,, Kelly JW . 2007. Functional amyloid: from bacteria to humans. Trends Biochem Sci 32 : 217 224.[PubMed] [CrossRef]
120. Horvath I,, Weise CF,, Andersson EK,, Chorell E,, Sellstedt M,, Bengtsson C,, Olofsson A,, Hultgren SJ,, Chapman M,, Wolf-Watz M,, Almqvist F,, Wittung-Stafshede P . 2012. Mechanisms of protein oligomerization: inhibitor of functional amyloids templates alpha-synuclein fibrillation. J Am Chem Soc 134 : 3439 3444.[PubMed] [CrossRef]
121. Kuner P,, Bohrmann B,, Tjernberg LO,, Naslund J,, Huber G,, Celenk S,, Grüninger-Leitch F,, Richards JG,, Jakob-Roetne R,, Kemp JA,, Nordstedt C . 2000. Controlling polymerization of beta-amyloid and prion-derived peptides with synthetic small molecule ligands. J Biol Chem 275 : 1673 1678.[PubMed] [CrossRef]
122. Pinkner JS,, Remaut H,, Buelens F,, Miller E,, Aberg V,, Pemberton N,, Hedenström M,, Larsson A,, Seed P,, Waksman G,, Hultgren SJ,, Almqvist F . 2006. Rationally designed small compounds inhibit pilus biogenesis in uropathogenic bacteria. Proc Natl Acad Sci USA 103 : 17897 17902.[PubMed] [CrossRef]
123. Aberg V,, Norman F,, Chorell E,, Westermark A,, Olofsson A,, Sauer-Eriksson AE,, Almqvist F . 2005. Microwave-assisted decarboxylation of bicyclic 2-pyridone scaffolds and identification of Abeta-peptide aggregation inhibitors. Org Biomol Chem 3 : 2817 2823.[PubMed] [CrossRef]
124. Haass C,, Selkoe DJ . 2007. Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8 : 101 112.[PubMed] [CrossRef]
125. Brown AJ . 1887. Note on the cellulose formed by Bacterium xylinum . J Chem Soc 51 : 643.
126. Romling U . 2002. Molecular biology of cellulose production in bacteria. Res Microbiol 153 : 205 212.[PubMed] [CrossRef]
127. Ross P,, Mayer R,, Benziman M . 1991. Cellulose biosynthesis and function in bacteria. Microbiol Rev 55 : 35 58.[PubMed]
128. Da Re S,, Ghigo JM . 2006. A CsgD-independent pathway for cellulose production and biofilm formation in Escherichia coli . J Bacteriol 188 : 3073 3087.[PubMed] [CrossRef]
129. Ryjenkov DA,, Simm R,, Romling U,, Gomelsky M . 2006. The PilZ domain is a receptor for the second messenger c-di-GMP: the PilZ domain protein YcgR controls motility in enterobacteria. J Biol Chem 281 : 30310 30314.[PubMed] [CrossRef]
130. Amikam D,, Galperin MY . 2006. PilZ domain is part of the bacterial c-di-GMP binding protein. Bioinformatics 22 : 3 6.[PubMed] [CrossRef]
131. Omadjela O,, Narahari A,, Strumillo J,, Melida H,, Mazur O,, Bulone V,, Zimmer J . 2013. BcsA and BcsB form the catalytically active core of bacterial cellulose synthase sufficient for in vitro cellulose synthesis. Proc Natl Acad Sci USA 110 : 17856 17861.[PubMed] [CrossRef]
132. Malone JG,, Jaeger T,, Spangler C,, Ritz D,, Spang A,, Arrieumerlou C,, Kaever V,, Landmann R,, Jenal U . 2010. YfiBNR mediates cyclic di-GMP dependent small colony variant formation and persistence in Pseudomonas aeruginosa . PLoS Pathog 6 : e1000804. doi:10.1371/journal.ppat.1000804. [CrossRef]
133. Morgan JLW,, Strumillo J,, Zimmer J . 2013. Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493 : 181 186.[PubMed] [CrossRef]
134. Morgan JL,, McNamara JT,, Zimmer J . 2014. Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21 : 489 496.[PubMed] [CrossRef]
135. Kai-Larsen Y,, Luthje P,, Chromek M,, Peters V,, Wang X,, Holm A,, Kádas L,, Hedlund KO,, Johansson J,, Chapman MR,, Jacobson SH,, Römling U,, Agerberth B,, Brauner A . 2010. Uropathogenic Escherichia coli modulates immune responses and its curli fimbriae interact with the antimicrobial peptide LL-37. PLoS Pathog 6 : e1001010. doi:10.1371/journal.ppat.1001010. [CrossRef]
136. Al-Hasan MN,, Eckel-Passow JE,, Baddour LM . 2010. Bacteremia complicating Gram-negative urinary tract infections: a population-based study. J Infect 60 : 278 285.[PubMed] [CrossRef]
137. Hung C,, Marschall J,, Burnham CAD,, Byun AS,, Henderson JP . 2014. The bacterial amyloid curli is associated with urinary source bloodstream infection. PloS One 9 : e86009. doi:10.1371/journal.pone.0086009. [PubMed] [CrossRef]
138. Bian Z,, Brauner A,, Li Y,, Normark S . 2000. Expression of and cytokine activation by Escherichia coli curli fibers in human sepsis. J Infect Dis 181 : 602 612.[PubMed] [CrossRef]
139. Danese PN,, Pratt LA,, Dove SL,, Kolter R . 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37 : 424 432.[PubMed] [CrossRef]
140. Kjaergaard K,, Schembri MA,, Ramos C,, Molin S,, Klemm P . 2000. Antigen 43 facilitates formation of multispecies biofilms. Environ Microbiol 2 : 695 702.[PubMed] [CrossRef]
141. Anderson GG,, Goller CC,, Justice S,, Hultgren SJ,, Seed PC . 2010. Polysaccharide capsule and sialic acid-mediated regulation promote biofilm-like intracellular bacterial communities during cystitis. Infect Immun 78 : 963 975.[PubMed] [CrossRef]
142. Saldana Z,, Xicohtencatl-Cortes J,, Avelino F,, Phillips AD,, Kaper JB,, Puente JL,, Girón JA . 2009. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol 11 : 992 1006.[PubMed] [CrossRef]
143. Wang X,, Rochon M,, Lamprokostopoulou A,, Lunsdorf H,, Nimtz M,, Romling U . 2006. Impact of biofilm matrix components on interaction of commensal Escherichia coli with the gastrointestinal cell line HT-29. Cell Mol Life Sci 63 : 2352 2363.[PubMed] [CrossRef]
144. Rapsinski GJ,, Newman TN,, Oppong GO,, van Putten JP,, Tukel C . 2013. CD14 protein acts as an adaptor molecule for the immune recognition of Salmonella curli fibers. J Biol Chem 288 : 14178 14188.[PubMed] [CrossRef]
145. Tukel C,, Nishimori JH,, Wilson RP,, Winter MG,, Keestra AM,, van Putten JP,, Bäumler AJ . 2010. Toll-like receptors 1 and 2 cooperatively mediate immune responses to curli, a common amyloid from enterobacterial biofilms. Cell Microbiol 12 : 1495 1505.[PubMed] [CrossRef]
146. Oppong GO,, Rapsinski GJ,, Newman TN,, Nishimori JH,, Biesecker SG,, Tukel C . 2013. Epithelial cells augment barrier function via activation of the Toll-like receptor 2/phosphatidylinositol 3-kinase pathway upon recognition of Salmonella enterica serovar Typhimurium curli fibrils in the gut. Infect Immun 81 : 478 486.[PubMed] [CrossRef]
147. Gerstel U,, Romling U . 2001. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ Microbiol 3 : 638 648.[PubMed] [CrossRef]
148. Olsen A,, Arnqvist A,, Hammar M,, Normark S . 1993. Environmental regulation of curli production in Escherichia coli . Infect Agents Dis 2 : 272 274.[PubMed]
149. Reshamwala SM,, Noronha SB . 2011. Biofilm formation in Escherichia coli cra mutants is impaired due to down-regulation of curli biosynthesis. Arch Microbiol 193 : 711 722.[PubMed] [CrossRef]
150. White AP,, Gibson DL,, Kim W,, Kay WW,, Surette MG . 2006. Thin aggregative fimbriae and cellulose enhance long-term survival and persistence of Salmonella . J Bacteriol 188 : 3219 3227.[PubMed] [CrossRef]
151. Cookson AL,, Cooley WA,, Woodward MJ . 2002. The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292 : 195 205.[PubMed] [CrossRef]
152. Macarisin D,, Patel J,, Bauchan G,, Giron JA,, Sharma VK . 2012. Role of curli and cellulose expression in adherence of Escherichia coli O157:H7 to spinach leaves. Foodborne Pathog Dis 9 : 160 167.[PubMed] [CrossRef]
153. Pawar DM,, Rossman ML,, Chen J . 2005. Role of curli fimbriae in mediating the cells of enterohaemorrhagic Escherichia coli to attach to abiotic surfaces. J Appl Microbiol 99 : 418 425.[PubMed] [CrossRef]
154. Jeter C,, Matthysse AG . 2005. Characterization of the binding of diarrheagenic strains of E. coli to plant surfaces and the role of curli in the interaction of the bacteria with alfalfa sprouts. Mol Plant Microbe Interact 18 : 1235 1242.[PubMed] [CrossRef]
155. Patel J,, Sharma M,, Ravishakar S . 2011. Effect of curli expression and hydrophobicity of Escherichia coli O157:H7 on attachment to fresh produce surfaces. J Appl Microbiol 110 : 737 745.[PubMed] [CrossRef]
156. Hou Z,, Fink RC,, Black EP,, Sugawara M,, Zhang Z,, Diez-Gonzalez F,, Sadowdky MJ . 2012. Gene expression profiling of Escherichia coli in response to interactions with the lettuce rhizosphere. J Appl Microbiol 113 : 1076 1086.[PubMed] [CrossRef]
157. Gottesman S,, Stout V . 1991. Regulation of capsular polysaccharide synthesis in Escherichia coli K12. Mol Microbiol 5 : 1599 1606.[PubMed] [CrossRef]
158. Hanna A,, Berg M,, Stout V,, Razatos A . 2003. Role of capsular colanic acid in adhesion of uropathogenic Escherichia coli . Appl Environ Microbiol 69 : 4474 4481.[PubMed] [CrossRef]
159. Danese PN,, Pratt LA,, Kolter R . 2000. Exopolysaccharide production is required for development of Escherichia coli K-12 biofilm architecture. J Bacteriol 182 : 3593 3596.[PubMed] [CrossRef]
160. Matthysse AG,, Deora R,, Mishra M,, Torres AG . 2008. Polysaccharides cellulose, poly-beta-1,6-N-acetyl-D-glucosamine, and colanic acid are required for optimal binding of Escherichia coli O157:H7 strains to alfalfa sprouts and K-12 strains to plastic but not for binding to epithelial cells. Appl Environ Microbiol 74 : 2384 2390.[PubMed] [CrossRef]
161. Larsen P,, Nielsen JL,, Dueholm MS,, Wetzel R,, Otzen D,, Nielsen PH . 2007. Amyloid adhesins are abundant in natural biofilms. Environ Microbiol 9 : 3077 3090.[PubMed] [CrossRef]
162. Dueholm MS,, Albertsen M,, Otzen D,, Nielsen PH . 2012. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PloS One 7( 12) : e51274. doi:10.1371/journal.pone.0051274. [PubMed] [CrossRef]
163. Evans ML,, Chorell E,, Taylor JD,, Aden J,, Gotheson A,, Li F . 2015. The bacterial curli system possesses a potent and selective inhibitor of amyloid formation. Molec Cell 57 : 445 455.[PubMed] [CrossRef]
164. Pontes MH,, Lee EJ,, Choi J,, Groisman EA . 2015. Salmonella promotes virulence by repressing cellulose production. Proc Natl Acad Sci USA 112 : 5183 5188.[PubMed] [CrossRef]
165. DePas WH,, Syed AK,, Sifuentes M,, Lee JS,, Warshaw D,, Saggar V . 2014. Biofilm formation protects Escherichia coli against killing by Caenorhabditis elegans and Myxococcus xanthus . Appl Environ Microbiol 80 : 7079 7087.[PubMed] [CrossRef]

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error