Chapter 9 : Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817466/9781555817459_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817466/9781555817459_Chap09-2.gif


The ability of bacterial cells to adhere to and interact with surfaces to eventually form a biofilm is a crucial trait for the survival of any microorganism in a complex environment. As a result, different strategies aimed at providing specific or nonspecific interactions between the bacterial cell and the surface have evolved. While adhesion to abiotic surfaces is usually mediated by nonspecific interactions, adhesion to biotic surfaces typically requires a specific receptor-ligand interaction ( ). In both cases, these interactions usually originate from the same fundamental physicochemical forces: covalent bonds, Van der Waals forces, electrostatic forces, and acid-base interactions ( ). Strong adhesion occurs if a bacterium and a surface are capable of forming either covalent, ionic, or metallic bonds, but weaker forces, such as polar, hydrogen bonding, or Van der Waals interactions, can also strengthen or achieve strong interactions when a high number of contacts are involved ( ). Due the net negative charge of their cell envelopes, bacteria are subjected to repulsive electrostatic forces when approaching surfaces. Bacterial cells also encounter repulsive hydrodynamic forces near the surface in a liquid environment. To overcome these two repulsive barriers, bacteria typically use organelles, such as flagella or pili, which act either as an active propeller or a grappling hook ( ). Once on the surface, the cell can enhance attachment to the surface via specific and/or nonspecific adhesins to eventually trigger irreversible attachment. This irreversible attachment is strongly influenced by environmental factors (i.e., pH, salinity, etc.) and the physicochemical properties of the surface (i.e., rugosity, hydrophobicity, charge, etc.) but also by the presence of the conditioning film, a layer of organic and inorganic contaminants adsorbed on the surface which changes its physicochemical properties ( ). To achieve permanent adhesion under such variable conditions, bacterial cells have developed a series of adhesins able to facilitate adhesion under various environmental conditions ( ). In this article, we will focus exclusively on nonspecific adhesins, which are primarily responsible for biofilm formation and bacterial adhesion to abiotic surfaces. We will review the current knowledge of fimbrial, nonfimbrial, and discrete polysaccharide adhesins involved in adhesion to abiotic surfaces and cell aggregation in Gram-negative bacteria.

Citation: Berne C, Ducret A, Hardy G, Brun Y. 2015. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, p 163-199. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0018-2015
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Assembly and secretion of fimbrial adhesins. All the assembly pathways are oriented such that the inside of the cell is at the top and the surface to which the adhesin is binding, represented by the thick black line, is at the bottom. The subunits for the three described systems are believed to be transported across the inner membrane by the Sec machinery. (A) A schematic of the CUP pathway represented by the assembly of the type I pilus. FimC (green moon) is a chaperone. FimD (blue-gray) is the outer membrane usher shown as a dimeric channel. FimA (blue bean) is the main pilus subunit. FimF (orange bean) links the tip fibrillum to the main fiber. FimG (yellow bean) is the tip fibrillum. FimH (red bean) is the mannose-specific tip fibrillum adhesin. (B) A schematic of the alternative chaperone-usher pathway using the CS1 pilus as a model. CooB (green moon) is the chaperone. CooC (blue-gray) is the outer membrane usher. CooA (blue bean) is the main pilus subunit. CooD (red circle) is the pilus tip adhesin. (C) Model of curlin assembly as a nucleation-precipitation pathway model. CsgE (green moon) is the chaperone. CsgG (blue-gray) is the outer membrane usher. CsgA (blue beans) is the main curlin subunit. CsgB (dark blue bean) is the minor curlin subunit. CsgF (red bean) is the outer membrane protein needed for curlin polymerization and CsgB localization. CsgC (red ball) may be important for CsgG localization. Abbreviations: IM, inner membrane; CW, cell wall; OM, outer membrane.

Citation: Berne C, Ducret A, Hardy G, Brun Y. 2015. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, p 163-199. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0018-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Type IV assembly and secretion pathway. Given that the type IV pili have similar elements, we are using the type IVa pilus as the model for biogenesis. Many type IVa proteins utilize the Sec machinery to translocate the inner membrane (aqua pore). PilA (blue sphere) is the main pilus subunit. FimU, PilE, PilX, PilW, and PilV are minor pilins (red, yellow, light blue, green, and purple spheres, respectively). The prepilins are processed by PilD (orange integral IM protein), the prepilin protease. PilB (red bean) is the ATPase that supplies energy for pilus assembly, and PilU/PilT (purple bean) is the ATPase for pilus retraction. PilC (green porin) is an inner membrane protein of the motor complex for assembly of the pilus. PilM, PilN, PilO, PilP, and FimV are the alignment complex. PilQ is the multimeric secretin in the outer membane that translocates the pilus outside the cell. PilF is a pilotin needed for localization of the PilQ in the OM. FimV is a peptidoglycan binding protein needed for multimerization of PilQ. Abbreviations: IM, inner membrane; CW, cell wall; OM, outer membrane.

Citation: Berne C, Ducret A, Hardy G, Brun Y. 2015. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, p 163-199. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0018-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Schematic overview of the various secretion systems of nonfimbrial adhesins. The type 1 secretion system (T1SS) and three classes of type 5 secretion system (T5SS) (onomeric utotransporter dhesins [MAA], rimeric utotransporter dhesins [TAA], and two-partner secretion [TPS] systems) are represented. In T1SS, the adhesin is exported directly from the cytoplasm to the extracellular milieu via a pore comprised of three proteins. In T5SS, the adhesin is translocated from the cytoplasm to the periplasm by the Sec machinery and auto-assembled in the outer membrane. See text for more details. Abbreviations: IM, inner membrane; CW, cell wall; OM, outer membrane.

Citation: Berne C, Ducret A, Hardy G, Brun Y. 2015. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, p 163-199. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0018-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Nonfimbrial adhesin organization. See text for details. Green, signal sequence for proper localization and processing; turquoise, core domain; orange, glycine-rich repeated domain (brackets depict the variable number of repeats); magenta, serine-rich C-terminal region; navy blue, passenger domain; red, translocator domain.

Citation: Berne C, Ducret A, Hardy G, Brun Y. 2015. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, p 163-199. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0018-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Polysaccharide biosynthesis pathways. Overview of the Wzx/Wzy-, ABC-transporter-, and synthase-dependent exopolysaccharide biosynthesis pathways. Only the key components for each pathway are indicated on the diagram. In the Wzx/Wzy-dependent pathway, the polysaccharide repeat unit assembly is initiated on an undecaprenyl phosphate acceptor moiety located in the inner leaflet of the inner membrane, which is then transported across the inner membrane by the flippase, Wzx. The polymerization into high–molecular weight polysaccharide occurs in the periplasm by the action of the polymerase Wzy. The export and secretion of the polysaccharide through the outer membrane are facilitated by the uter membrane olysaccharide eport (OPX) and the olysaccharide oolymerase (PCP) protein families. Depending on the polysaccharide being synthesized, the nascent polymer could be anchored to the outer membrane via a specific protein, such as Wzi. In the ABC transporter–dependent pathway, the entire polysaccharide chain is assembled into the cytoplasm on a lipid acceptor that is then transported across the inner membrane by the ABC transporter. As observed for the Wzx/Wzy-dependant pathway, the export and secretion of the polysaccharide through the outer membrane also involve the OPX and PCP protein families. In the synthase-dependent pathway, both the polymerization and the transport of the polymer across the inner membrane are carried out by the same membrane-embedded glycosyl transferase. The export and secretion of the polysaccharide through the outer membrane are facilitated by a molecular chaperone and a β-barrel porin. Abbreviations: IM, inner membrane; CW, cell wall; OM, outer membrane.

Citation: Berne C, Ducret A, Hardy G, Brun Y. 2015. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, p 163-199. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0018-2015
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Selected examples of discrete polysaccharides. AF488-conjugated wheat germ agglutinin lectin labelling of the holdfast in (A) , (B) (courtesy of Chao Jiang), (C) (courtesy of Chao Jiang), and (D) (courtesy of Ellen Quardokus). (E) AF488-conjugated wheat germ agglutinin lectin labelling of the UPP in . (F) FITC-conjugated ConA lectin labelling of the slime in .

Citation: Berne C, Ducret A, Hardy G, Brun Y. 2015. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria, p 163-199. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0018-2015
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Dunne WM . 2002. Bacterial adhesion: seen any good biofilms lately? Clin Microbiol Rev 15 : 155 166.[PubMed] [CrossRef]
2. van Oss CJ . 2003. Long-range and short-range mechanisms of hydrophobic attraction and hydrophilic repulsion in specific and aspecific interactions. J Mol Recognit 16 : 177 190.[PubMed] [CrossRef]
3. Stewart RJ . 2011. Protein-based underwater adhesives and the prospects for their biotechnological production. Appl Microbiol Biotechnol 89 : 27 33.[PubMed] [CrossRef]
4. O’Toole G,, Kaplan HB,, Kolter R . 2000. Biofilm formation as microbial development. Annu Rev Microbiol 54 : 49 79.[PubMed] [CrossRef]
5. Monds RD,, O’Toole GA . 2009. The developmental model of microbial biofilms: ten years of a paradigm up for review. Trends Microbiol 17 : 73 87.[PubMed] [CrossRef]
6. Donlan RM . 2002. Biofilms: microbial life on surfaces. Emerg Infect Dis 8 : 881 890.[PubMed] [CrossRef]
7. Geng J,, Henry N, . 2011. Short time-scale bacterial adhesion dynamics, p 315 331. In Link D,, Goldman A (ed), Bacterial Adhesion. Springer, Dordrecht, The Netherlands. [CrossRef]
8. Beloin C,, Roux A,, Ghigo J-M, . 2008. Escherichia coli biofilms, p 249 289. In Romeo T (ed), Bacterial Biofilms. Springer, Dordrecht, The Netherlands. [PubMed] [CrossRef]
9. Karatan E,, Watnick P . 2009. Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73 : 310 347.[PubMed] [CrossRef]
10. Pratt LA,, Kolter R . 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30 : 285 293.[CrossRef]
11. Entcheva-Dimitrov P,, Spormann AM . 2004. Dynamics and control of biofilms of the oligotrophic bacterium Caulobacter crescentus . J Bacteriol 186 : 8254 8266.[PubMed] [CrossRef]
12. Van Houdt R,, Michiels CW . 2005. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res Microbiol 156 : 626 633.[PubMed] [CrossRef]
13. Proft T,, Baker EN . 2009. Pili in Gram-negative and Gram-positive bacteria: structure, assembly and their role in disease. Cell Mol Life Sci 66 : 613 635.[PubMed] [CrossRef]
14. Burrows LL . 2012. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu Rev Microbiol 66 : 493 520.[PubMed] [CrossRef]
15. St Geme JW,, Pinkner JS 3rd,, Krasan GP,, Heuser J,, Bullitt E,, Smith AL,, Hultgren SJ . 1996. Haemophilus influenzae pili are composite structures assembled via the HifB chaperone. Proc Natl Acad Sci USA 93 : 11913 11918.[PubMed] [CrossRef]
16. Gohl O,, Friedrich A,, Hoppert M,, Averhoff B . 2006. The thin pili of Acinetobacter sp. strain BD413 mediate adhesion to biotic and abiotic surfaces. Appl Environ Microbiol 72 : 1394 1401.[PubMed] [CrossRef]
17. Inhulsen S,, Aguilar C,, Schmid N,, Suppiger A,, Riedel K,, Eberl L . 2012. Identification of functions linking quorum sensing with biofilm formation in Burkholderia cenocepacia H111. Microbiologyopen 1 : 225 242.[PubMed] [CrossRef]
18. Ormeno-Orrillo E,, Menna P,, Almeida LG,, Ollero FJ,, Nicolas MF,, Pains Rodrigues E,, Shigueyoshi Nakatani A,, Silva Batista JS,, Oliveira Chueire LM,, Souza RC,, Ribeiro Vasconcelos AT,, Megias M,, Hungria M,, Martinez-Romero E . 2012. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean ( Phaseolus vulgaris L.). BMC Genomics 13 : 735. [PubMed] [CrossRef]
19. Nuccio SP,, Baumler AJ . 2007. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71 : 551 575.[PubMed] [CrossRef]
20. Wurpel DJ,, Beatson SA,, Totsika M,, Petty NK,, Schembri MA . 2013. Chaperone-usher fimbriae of Escherichia coli . PLoS One 8 : e52835. [PubMed] [CrossRef]
21. Busch A,, Waksman G . 2012. Chaperone-usher pathways: diversity and pilus assembly mechanism. Philos Trans R Soc Lond B Biol Sci 367 : 1112 1122.[PubMed] [CrossRef]
22. Waksman G,, Hultgren SJ . 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7 : 765 774.[PubMed] [CrossRef]
23. Han Z,, Pinkner JS,, Ford B,, Obermann R,, Nolan W,, Wildman SA,, Hobbs D,, Ellenberger T,, Cusumano CK,, Hultgren SJ,, Janetka JW . 2010. Structure-based drug design and optimization of mannoside bacterial FimH antagonists. J Med Chem 53 : 4779 4792.[PubMed] [CrossRef]
24. Hertig S,, Vogel V . 2012. Catch bonds. Curr Biol 22 : R823 R825.[PubMed] [CrossRef]
25. Rakshit S,, Sivasankar S . 2014. Biomechanics of cell adhesion: how force regulates the lifetime of adhesive bonds at the single molecule level. Phys Chem Chem Phys 16 : 2211 2223.[PubMed] [CrossRef]
26. Liaqat I,, Sakellaris H . 2012. Biofilm formation and binding specificities of CFA/I, CFA/II and CS2 adhesions of enterotoxigenic Escherichia coli and Cfae-R181A mutant. Braz J Microbiol 43 : 969 980.[PubMed] [CrossRef]
27. Ammendolia MG,, Bertuccini L,, Iosi F,, Minelli F,, Berlutti F,, Valenti P,, Superti F . 2010. Bovine lactoferrin interacts with cable pili of Burkholderia cenocepacia . Biometals 23 : 531 542.[PubMed] [CrossRef]
28. Sakellaris H,, Scott JR . 1998. New tools in an old trade: CS1 pilus morphogenesis. Mol Microbiol 30 : 681 687.[PubMed] [CrossRef]
29. Starks AM,, Froehlich BJ,, Jones TN,, Scott JR . 2006. Assembly of CS1 pili: the role of specific residues of the major pilin, CooA. J Bacteriol 188 : 231 239.[PubMed] [CrossRef]
30. Galkin VE,, Kolappan S,, Ng D,, Zong Z,, Li J,, Yu X,, Egelman EH,, Craig L . 2013. The structure of the CS1 pilus of enterotoxigenic Escherichia coli reveals structural polymorphism. J Bacteriol 195 : 1360 1370.[PubMed] [CrossRef]
31. Perez-Casal J,, Swartley JS,, Scott JR . 1990. Gene encoding the major subunit of CS1 pili of human enterotoxigenic Escherichia coli . Infect Immun 58 : 3594 3600.[PubMed]
32. Voegele K,, Sakellaris H,, Scott JR . 1997. CooB plays a chaperone-like role for the proteins involved in formation of CS1 pili of enterotoxigenic Escherichia coli . Proc Natl Acad Sci USA 94 : 13257 13261.[PubMed] [CrossRef]
33. Sakellaris H,, Balding DP,, Scott JR . 1996. Assembly proteins of CS1 pili of enterotoxigenic Escherichia coli . Mol Microbiol 21 : 529 541.[PubMed] [CrossRef]
34. Froehlich BJ,, Karakashian A,, Melsen LR,, Wakefield JC,, Scott JR . 1994. CooC and CooD are required for assembly of CS1 pili. Mol Microbiol 12 : 387 401.[PubMed] [CrossRef]
35. Macfarlane S,, Dillon JF . 2007. Microbial biofilms in the human gastrointestinal tract. J Appl Microbiol 102 : 1187 1196.[PubMed] [CrossRef]
36. Tomich M,, Mohr CD . 2003. Adherence and autoaggregation phenotypes of a Burkholderia cenocepacia cable pilus mutant. FEMS Microbiol Lett 228 : 287 297.[PubMed] [CrossRef]
37. Giltner CL,, Nguyen Y,, Burrows LL . 2012. Type IV pilin proteins: versatile molecular modules. Microbiol Mol Biol Rev 76 : 740 772.[PubMed] [CrossRef]
38. Giltner CL,, Habash M,, Burrows LL . 2010. Pseudomonas aeruginosa minor pilins are incorporated into type IV pili. J Mol Biol 398 : 444 461.[PubMed] [CrossRef]
39. Kuchma SL,, Griffin EF,, O’Toole GA . 2012. Minor pilins of the type IV pilus system participate in the negative regulation of swarming motility. J Bacteriol 194 : 5388 5403.[PubMed] [CrossRef]
40. Johnson MD,, Garrett CK,, Bond JE,, Coggan KA,, Wolfgang MC,, Redinbo MR . 2011. Pseudomonas aeruginosa PilY1 binds integrin in an RGD- and calcium-dependent manner. PLoS One 6 : e29629. doi:10.1371/journal.pone.0029629. [PubMed] [CrossRef]
41. Takhar HK,, Kemp K,, Kim M,, Howell PL,, Burrows LL . 2013. The platform protein is essential for type IV pilus biogenesis. J Biol Chem 288 : 9721 9728.[PubMed] [CrossRef]
42. Tammam S,, Sampaleanu LM,, Koo J,, Manoharan K,, Daubaras M,, Burrows LL,, Howell PL . 2013. PilMNOPQ from the Pseudomonas aeruginosa type IV pilus system form a transenvelope protein interaction network that interacts with PilA. J Bacteriol 195 : 2126 2135.[PubMed] [CrossRef]
43. Wehbi H,, Portillo E,, Harvey H,, Shimkoff AE,, Scheurwater EM,, Howell PL,, Burrows LL . 2011. The peptidoglycan-binding protein FimV promotes assembly of the Pseudomonas aeruginosa type IV pilus secretin. J Bacteriol 193 : 540 550.[PubMed] [CrossRef]
44. Koo J,, Tang T,, Harvey H,, Tammam S,, Sampaleanu L,, Burrows LL,, Howell PL . 2013. Functional mapping of PilF and PilQ in the Pseudomonas aeruginosa type IV pilus system. Biochemistry 52 : 2914 2923.[PubMed] [CrossRef]
45. O’Toole GA,, Kolter R . 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 : 295 304.[PubMed] [CrossRef]
46. Klausen M,, Aaes-Jorgensen A,, Molin S,, Tolker-Nielsen T . 2003. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50 : 61 68.[PubMed] [CrossRef]
47. Chiang P,, Burrows LL . 2003. Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa . J Bacteriol 185 : 2374 2378.[PubMed] [CrossRef]
48. Watnick PI,, Fullner KJ,, Kolter R . 1999. A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor. J Bacteriol 181 : 3606 3609.[PubMed]
49. Shime-Hattori A,, Iida T,, Arita M,, Park KS,, Kodama T,, Honda T . 2006. Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation. FEMS Microbiol Lett 264 : 89 97.[PubMed] [CrossRef]
50. Reguera G,, Kolter R . 2005. Virulence and the environment: a novel role for Vibrio cholerae toxin-coregulated pili in biofilm formation on chitin. J Bacteriol 187 : 3551 3555.[PubMed] [CrossRef]
51. Lutz C,, Erken M,, Noorian P,, Sun S,, McDougald D . 2013. Environmental reservoirs and mechanisms of persistence of Vibrio cholerae . Front Microbiol 4 : 375. [PubMed] [CrossRef]
52. Manning PA . 1997. The tcp gene cluster of Vibrio cholerae . Gene 192 : 63 70.[CrossRef]
53. Bose N,, Taylor RK . 2005. Identification of a TcpC-TcpQ outer membrane complex involved in the biogenesis of the toxin-coregulated pilus of Vibrio cholerae . J Bacteriol 187 : 2225 2232.[PubMed] [CrossRef]
54. LaPointe CF,, Taylor RK . 2000. The type 4 prepilin peptidases comprise a novel family of aspartic acid proteases. J Biol Chem 275 : 1502 1510.[PubMed] [CrossRef]
55. Tripathi SA,, Taylor RK . 2007. Membrane association and multimerization of TcpT, the cognate ATPase ortholog of the Vibrio cholerae toxin-coregulated-pilus biogenesis apparatus. J Bacteriol 189 : 4401 4409.[PubMed] [CrossRef]
56. Tomich M,, Planet PJ,, Figurski DH . 2007. The tad locus: postcards from the widespread colonization island. Nat Rev Microbiol 5 : 363 375.[PubMed] [CrossRef]
57. Inoue T,, Tanimoto I,, Ohta H,, Kato K,, Murayama Y,, Fukui K . 1998. Molecular characterization of low-molecular-weight component protein, Flp, in Actinobacillus actinomycetemcomitans fimbriae. Microbiol Immunol 42 : 253 258.[PubMed] [CrossRef]
58. Kachlany SC,, Planet PJ,, DeSalle R,, Fine DH,, Figurski DH . 2001. Genes for tight adherence of Actinobacillus actinomycetemcomitans: from plaque to plague to pond scum. Trends Microbiol 9 : 429 437.[PubMed] [CrossRef]
59. Tomich M,, Fine DH,, Figurski DH . 2006. The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J Bacteriol 188 : 6899 6914.[PubMed] [CrossRef]
60. Bhattacharjee MK,, Kachlany SC,, Fine DH,, Figurski DH . 2001. Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase. J Bacteriol 183 : 5927 5936.[PubMed] [CrossRef]
61. Perez-Cheeks BA,, Planet PJ,, Sarkar IN,, Clock SA,, Xu Q,, Figurski DH . 2012. The product of tadZ, a new member of the parA/minD superfamily, localizes to a pole in Aggregatibacter actinomycetemcomitans . Mol Microbiol 83 : 694 711.[PubMed] [CrossRef]
62. Haase EM,, Zmuda JL,, Scannapieco FA . 1999. Identification and molecular analysis of rough-colony-specific outer membrane proteins of Actinobacillus actinomycetemcomitans . Infect Immun 67 : 2901 2908.[PubMed]
63. Clock SA,, Planet PJ,, Perez BA,, Figurski DH . 2008. Outer membrane components of the Tad (tight adherence) secreton of Aggregatibacter actinomycetemcomitans . J Bacteriol 190 : 980 990.[PubMed] [CrossRef]
64. Inoue T,, Shingaki R,, Sogawa N,, Sogawa CA,, Asaumi J,, Kokeguchi S,, Fukui K . 2003. Biofilm formation by a fimbriae-deficient mutant of Actinobacillus actinomycetemcomitans . Microbiol Immunol 47 : 877 881.[PubMed] [CrossRef]
65. Saito T,, Ishihara K,, Ryu M,, Okuda K,, Sakurai K . 2010. Fimbriae-associated genes are biofilm-forming factors in Aggregatibacter actinomycetemcomitans strains. Bull Tokyo Dent Coll 51 : 145 150.[PubMed] [CrossRef]
66. Skerker JM,, Shapiro L . 2000. Identification and cell cycle control of a novel pilus system in Caulobacter crescentus . EMBO J 19 : 3223 3234.[PubMed] [CrossRef]
67. Bodenmiller D,, Toh E,, Brun YV . 2004. Development of surface adhesion in Caulobacter crescentus . J Bacteriol 186 : 1438 1447.[PubMed] [CrossRef]
68. Li G,, Brown PJ,, Tang JX,, Xu J,, Quardokus EM,, Fuqua C,, Brun YV . 2012. Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol Microbiol 83 : 41 51.[PubMed] [CrossRef]
69. Ruer S,, Stender S,, Filloux A,, de Bentzmann S . 2007. Assembly of fimbrial structures in Pseudomonas aeruginosa: functionality and specificity of chaperone-usher machineries. J Bacteriol 189 : 3547 3555.[PubMed] [CrossRef]
70. Bednarska NG,, Schymkowitz J,, Rousseau F,, Van Eldere J . 2013. Protein aggregation in bacteria: the thin boundary between functionality and toxicity. Microbiology 159 : 1795 1806.[PubMed] [CrossRef]
71. Dueholm MS,, Albertsen M,, Otzen D,, Nielsen PH . 2012. Curli functional amyloid systems are phylogenetically widespread and display large diversity in operon and protein structure. PLoS One 7 : e51274. doi:10.1371/journal.pone.0051274. [PubMed] [CrossRef]
72. Chapman MR,, Robinson LS,, Pinkner JS,, Roth R,, Heuser J,, Hammar M,, Normark S,, Hultgren SJ . 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295 : 851 855.[PubMed] [CrossRef]
73. Evans ML,, Chapman MR . 2013. Curli biogenesis: order out of disorder. Biochim Biophys Acta [Epub ahead of print.] doi:10.1016/j.bbamcr.2013.09.010. [PubMed] [CrossRef]
74. Cookson AL,, Cooley WA,, Woodward MJ . 2002. The role of type 1 and curli fimbriae of Shiga toxin-producing Escherichia coli in adherence to abiotic surfaces. Int J Med Microbiol 292 : 195 205.[PubMed] [CrossRef]
75. Bokranz W,, Wang X,, Tschape H,, Romling U . 2005. Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54 : 1171 1182.[PubMed] [CrossRef]
76. Saldana Z,, Xicohtencatl-Cortes J,, Avelino F,, Phillips AD,, Kaper JB,, Puente JL,, Giron JA . 2009. Synergistic role of curli and cellulose in cell adherence and biofilm formation of attaching and effacing Escherichia coli and identification of Fis as a negative regulator of curli. Environ Microbiol 11 : 992 1006.[PubMed] [CrossRef]
77. Zhou Y,, Smith D,, Leong BJ,, Brannstrom K,, Almqvist F,, Chapman MR . 2012. Promiscuous cross-seeding between bacterial amyloids promotes interspecies biofilms. J Biol Chem 287 : 35092 35103.[PubMed] [CrossRef]
78. Gerlach RG,, Hensel M . 2007. Protein secretion systems and adhesins: the molecular armory of Gram-negative pathogens. Int J Med Microbiol 297 : 401 415.[PubMed] [CrossRef]
79. Chagnot C,, Zorgani MA,, Astruc T,, Desvaux M . 2013. Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 4 : 303. [PubMed] [CrossRef]
80. Delepelaire P . 2004. Type I secretion in Gram-negative bacteria. Biochim Biophys Acta 1694 : 149 161.[PubMed] [CrossRef]
81. Cucarella C,, Solano C,, Valle J,, Amorena B,, Lasa I,, Penades JR . 2001. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol 183 : 2888 2896.[PubMed] [CrossRef]
82. Lasa I,, Penades JR . 2006. Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157 : 99 107.[PubMed] [CrossRef]
83. Yousef F,, Espinosa-Urgel M . 2007. In silico analysis of large microbial surface proteins. Res Microbiol 158 : 545 550.[PubMed] [CrossRef]
84. Espinosa-Urgel M,, Salido A,, Ramos JL . 2000. Genetic analysis of functions involved in adhesion of Pseudomonas putida to seeds. J Bacteriol 182 : 2363 2369.[PubMed] [CrossRef]
85. Hinsa SM,, Espinosa-Urgel M,, Ramos JL,, O’Toole GA . 2003. Transition from reversible to irreversible attachment during biofilm formation by Pseudomonas fluorescens WCS365 requires an ABC transporter and a large secreted protein. Mol Microbiol 49 : 905 918.[PubMed] [CrossRef]
86. Fuqua C . 2010. Passing the baton between laps: adhesion and cohesion in Pseudomonas putida biofilms. Mol Microbiol 77 : 533 536.[PubMed] [CrossRef]
87. El-Kirat-Chatel S,, Beaussart A,, Boyd CD,, O’Toole GA,, Dufrêne YF . 2013. Single-cell and single-molecule analysis deciphers the localization, adhesion, and mechanics of the biofilm adhesin LapA. ACS Chem Biol 9 : 485 494.[PubMed] [CrossRef]
88. El-Kirat-Chatel S,, Boyd CD,, O’Toole GA,, Dufrêne YF . 2014. Single-molecule analysis of Pseudomonas fluorescens footprints. ACS Nano 8 : 1690 1698.[PubMed] [CrossRef]
89. Martinez-Gil M,, Yousef-Coronado F,, Espinosa-Urgel M . 2010. LapF, the second largest Pseudomonas putida protein, contributes to plant root colonization and determines biofilm architecture. Mol Microbiol 77 : 549 561.[PubMed] [CrossRef]
90. Duque E,, de la Torre J,, Bernal P,, Molina-Henares MA,, Alaminos M,, Espinosa-Urgel M,, Roca A,, Fernandez M,, de Bentzmann S,, Ramos JL . 2013. Identification of reciprocal adhesion genes in pathogenic and non-pathogenic Pseudomonas . Environ Microbiol 15 : 36 48.[PubMed] [CrossRef]
91. Valle J,, Latasa C,, Gil C,, Toledo-Arana A,, Solano C,, Penades JR,, Lasa I . 2012. Bap, a biofilm matrix protein of Staphylococcus aureus prevents cellular internalization through binding to GP96 host receptor. PLoS Pathog 8 : e1002843. doi:10.1371/journal.ppat.1002843. [PubMed] [CrossRef]
92. Wagner C,, Hensel M . 2011. Adhesive mechanisms of Salmonella enterica . Adv Exp Med Biol 715 : 17 34.[PubMed] [CrossRef]
93. Wagner C,, Polke M,, Gerlach RG,, Linke D,, Stierhof YD,, Schwarz H,, Hensel M . 2011. Functional dissection of SiiE, a giant non-fimbrial adhesin of Salmonella enterica . Cell Microbiol 13 : 1286 1301.[PubMed] [CrossRef]
94. Gjermansen M,, Nilsson M,, Yang L,, Tolker-Nielsen T . 2010. Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75 : 815 826.[PubMed] [CrossRef]
95. Martinez-Gil M,, Quesada JM,, Ramos-Gonzalez MI,, Soriano MI,, de Cristobal RE,, Espinosa-Urgel M . 2013. Interplay between extracellular matrix components of Pseudomonas putida biofilms. Res Microbiol 164 : 382 389.[PubMed] [CrossRef]
96. Martínez-Gil M,, Ramos-González MI,, Espinosa-Urgel M . 2014. Role of c-di-GMP and the Gac system in the transcriptional control of the genes coding for the Pseudomonas putida adhesins LapA and LapF. J Bacteriol 196 : 1484 1495.[PubMed] [CrossRef]
97. Desvaux M,, Parham NJ,, Henderson IR . 2004. Type V protein secretion: simplicity gone awry? Curr Issues Mol Biol 6 : 111 124.[PubMed]
98. Bernstein HD . 2007. Are bacterial ‘autotransporters’ really transporters? Trends Microbiol 15 : 441 447.[PubMed] [CrossRef]
99. Leyton DL,, Rossiter AE,, Henderson IR . 2012. From self-sufficiency to dependence: mechanisms and factors important for autotransporter biogenesis. Nat Rev Microbiol 10 : 213 225.[PubMed] [CrossRef]
100. Leo JC,, Grin I,, Linke D . 2012. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Philos Trans R Soc B Biol Sci 367 : 1088 1101.[PubMed] [CrossRef]
101. Klemm P,, Vejborg RM,, Sherlock O . 2006. Self-associating autotransporters, SAATs: functional and structural similarities. Int J Med Microbiol 296 : 187 195.[PubMed] [CrossRef]
102. Roux A,, Beloin C,, Ghigo JM . 2005. Combined inactivation and expression strategy to study gene function under physiological conditions: application to identification of new Escherichia coli adhesins. J Bacteriol 187 : 1001 1013.[PubMed] [CrossRef]
103. Owen P,, Meehan M,, de Loughry-Doherty H,, Henderson I . 1996. Phase-variable outer membrane proteins in Escherichia coli . FEMS Immunol Med Microbiol 16 : 63 76.[PubMed] [CrossRef]
104. Hasman H,, Chakraborty T,, Klemm P . 1999. Antigen-43-mediated autoaggregation of Escherichia coli is blocked by fimbriation. J Bacteriol 181 : 4834 4841.[PubMed]
105. Danese PN,, Pratt LA,, Dove SL,, Kolter R . 2000. The outer membrane protein, antigen 43, mediates cell-to-cell interactions within Escherichia coli biofilms. Mol Microbiol 37 : 424 432.[PubMed] [CrossRef]
106. Grijpstra J,, Arenas J,, Rutten L,, Tommassen J . 2013. Autotransporter secretion: varying on a theme. Res Microbiol 164 : 562 582.[PubMed] [CrossRef]
107. Sherlock O,, Schembri MA,, Reisner A,, Klemm P . 2004. Novel roles for the AIDA adhesin from diarrheagenic Escherichia coli: cell aggregation and biofilm formation. J Bacteriol 186 : 8058 8065.[PubMed] [CrossRef]
108. Benz I,, Schmidt MA . 2001. Glycosylation with heptose residues mediated by the aah gene product is essential for adherence of the AIDA-I adhesin. Mol Microbiol 40 : 1403 1413.[PubMed] [CrossRef]
109. Sherlock O,, Dobrindt U,, Jensen JB,, Vejborg RM,, Klemm P . 2006. Glycosylation of the self-recognizing Escherichia coli Ag43 autotransporter protein. J Bacteriol 188 : 1798 1807.[PubMed] [CrossRef]
110. Lindenthal C,, Elsinghorst EA . 1999. Identification of a glycoprotein produced by enterotoxigenic Escherichia coli . Infect Immun 67 : 4084 4091.[PubMed]
111. Côté J-P,, Charbonneau M-È,, Mourez M . 2013. Glycosylation of the Escherichia coli TibA self-associating autotransporter influences the conformation and the functionality of the protein. PloS One 8 : e80739. doi:10.1371/journal.pone.0080739. [PubMed] [CrossRef]
112. Wallecha A,, Munster V,, Correnti J,, Chan T,, van der Woude M . 2002. Dam- and OxyR-dependent phase variation of agn43: essential elements and evidence for a new role of DNA methylation. J Bacteriol 184 : 3338 3347.[PubMed] [CrossRef]
113. Chauhan A,, Sakamoto C,, Ghigo JM,, Beloin C . 2013. Did I pick the right colony? Pitfalls in the study of regulation of the phase variable antigen 43 adhesin. PLoS One 8 : e73568. doi:10.1371/journal.pone.0073568. [CrossRef]
114. Meng G,, Spahich N,, Kenjale R,, Waksman G,, St Geme JW . 2011. Crystal structure of the Haemophilus influenzae Hap adhesin reveals an intercellular oligomerization mechanism for bacterial aggregation. EMBO J 30 : 3864 3874.[PubMed] [CrossRef]
115. Heras B,, Totsika M,, Peters KM,, Paxman JJ,, Gee CL,, Jarrott RJ,, Perugini MA,, Whitten AE,, Schembri MA . 2014. The antigen 43 structure reveals a molecular Velcro-like mechanism of autotransporter-mediated bacterial clumping. Proc Natl Acad Sci USA 111 : 457 462.[PubMed] [CrossRef]
116. Henderson IR,, Navarro-Garcia F,, Desvaux M,, Fernandez RC,, Ala’Aldeen D . 2004. Type V protein secretion pathway: the autotransporter story. Microbiol Mol Biol Rev 68 : 692 744.[PubMed] [CrossRef]
117. Lyskowski A,, Leo JC,, Goldman A . 2011. Structure and biology of trimeric autotransporter adhesins. Adv Exp Med Biol 715 : 143 158.[PubMed] [CrossRef]
118. El Tahir Y,, Skurnik M . 2001. YadA, the multifaceted Yersinia adhesin. Int J Med Microbiol 291 : 209 218.[PubMed] [CrossRef]
119. Heise T,, Dersch P . 2006. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proc Natl Acad Sci USA 103 : 3375 3380.[PubMed] [CrossRef]
120. Valle J,, Mabbett AN,, Ulett GC,, Toledo-Arana A,, Wecker K,, Totsika M,, Schembri MA,, Ghigo JM,, Beloin C . 2008. UpaG, a new member of the trimeric autotransporter family of adhesins in uropathogenic Escherichia coli . J Bacteriol 190 : 4147 4161.[PubMed] [CrossRef]
121. Raghunathan D,, Wells TJ,, Morris FC,, Shaw RK,, Bobat S,, Peters SE,, Paterson GK,, Jensen KT,, Leyton DL,, Blair JM,, Browning DF,, Pravin J,, Flores-Langarica A,, Hitchcock JR,, Moraes CT,, Piazza RM,, Maskell DJ,, Webber MA,, May RC,, MacLennan CA,, Piddock LJ,, Cunningham AF,, Henderson IR . 2011. SadA, a trimeric autotransporter from Salmonella enterica serovar Typhimurium, can promote biofilm formation and provides limited protection against infection. Infect Immun 79 : 4342 4352.[PubMed] [CrossRef]
122. Lazar Adler NR,, Dean RE,, Saint RJ,, Stevens MP,, Prior JL,, Atkins TP,, Galyov EE . 2013. Identification of a predicted trimeric autotransporter adhesin required for biofilm formation of Burkholderia pseudomallei . PLoS One 8 : e79461. doi:10.1371/journal.pone.0079461. [CrossRef]
123. Mazar J,, Cotter PA . 2007. New insight into the molecular mechanisms of two-partner secretion. Trends Microbiol 15 : 508 515.[PubMed] [CrossRef]
124. Darsonval A,, Darrasse A,, Durand K,, Bureau C,, Cesbron S,, Jacques MA . 2009. Adhesion and fitness in the bean phyllosphere and transmission to seed of Xanthomonas fuscans subsp. fuscans. Mol Plant Microbe Interact 22 : 747 757.[PubMed] [CrossRef]
125. Feil H,, Feil WS,, Lindow SE . 2007. Contribution of fimbrial and afimbrial adhesins of Xylella fastidiosa to attachment to surfaces and virulence to grape. Phytopathology 97 : 318 324.[PubMed] [CrossRef]
126. Ryan RP,, Vorholter FJ,, Potnis N,, Jones JB,, Van Sluys MA,, Bogdanove AJ,, Dow JM . 2011. Pathogenomics of Xanthomonas: understanding bacterium-plant interactions. Nat Rev Microbiol 9 : 344 355.[PubMed] [CrossRef]
127. Webster P,, Wu S,, Gomez G,, Apicella M,, Plaut AG,, St Geme JW 3rd . 2006. Distribution of bacterial proteins in biofilms formed by non-typeable Haemophilus influenzae . J Histochem Cytochem 54 : 829 842.[PubMed] [CrossRef]
128. Serra DO,, Conover MS,, Arnal L,, Sloan GP,, Rodriguez ME,, Yantorno OM,, Deora R . 2011. FHA-mediated cell-substrate and cell-cell adhesions are critical for Bordetella pertussis biofilm formation on abiotic surfaces and in the mouse nose and the trachea. PLoS One 6 : e28811. doi:10.1371/journal.pone.0028811. [PubMed] [CrossRef]
129. Borlee BR,, Goldman AD,, Murakami K,, Samudrala R,, Wozniak DJ,, Parsek MR . 2010. Pseudomonas aeruginosa uses a cyclic-di-GMP-regulated adhesin to reinforce the biofilm extracellular matrix. Mol Microbiol 75 : 827 842.[PubMed] [CrossRef]
130. Guo H,, Yi W,, Song JK,, Wang PG . 2008. Current understanding on biosynthesis of microbial polysaccharides. Curr Top Med Chem 8 : 141 151.[PubMed] [CrossRef]
131. Whitney JC,, Howell PL . 2013. Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21 : 63 72.[PubMed] [CrossRef]
132. Ahimou F,, Semmens MJ,, Haugstad G,, Novak PJ . 2007. Effect of protein, polysaccharide, and oxygen concentration profiles on biofilm cohesiveness. Appl Environ Microbiol 73 : 2905 2910.[PubMed] [CrossRef]
133. Davey ME,, O’Toole GA . 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64 : 847 867.[PubMed] [CrossRef]
134. Sutherland I . 2001. Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147 : 3 9.[PubMed]
135. Haag AP, . 2006. Mechanical properties of bacterial exopolymeric adhesives and their commercial development, p 1 19. In Smith AM,, Callow JA (ed), Biological Adhesives. Springer-Verlag, Berlin. [CrossRef]
136. Korstgens V,, Flemming HC,, Wingender J,, Borchard W . 2001. Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa . Water Sci Technol 43 : 49 57.[PubMed]
137. Franklin MJ,, Ohman DE . 1993. Identification of algF in the alginate biosynthetic gene cluster of Pseudomonas aeruginosa which is required for alginate acetylation. J Bacteriol 175 : 5057 5065.[PubMed]
138. Rinaudo M . 2004. Role of substituents on the properties of some polysaccharides. Biomacromolecules 5 : 1155 1165.[PubMed] [CrossRef]
139. Tielen P,, Strathmann M,, Jaeger KE,, Flemming HC,, Wingender J . 2005. Alginate acetylation influences initial surface colonization by mucoid Pseudomonas aeruginosa . Microbiol Res 160 : 165 176.[PubMed] [CrossRef]
140. Villain-Simonnet A,, Milas M,, Rinaudo M . 2000. A new bacterial polysaccharide (YAS34). I. Characterization of the conformations and conformational transition. Int J Biol Macromol 27 : 65 75.[PubMed] [CrossRef]
141. Wan Z,, Brown PJ,, Elliott EN,, Brun YV . 2013. The adhesive and cohesive properties of a bacterial polysaccharide adhesin are modulated by a deacetylase. Mol Microbiol 88 : 486 500.[PubMed] [CrossRef]
142. Cerca N,, Jefferson KK,, Maira-Litran T,, Pier DB,, Kelly-Quintos C,, Goldmann DA,, Azeredo J,, Pier GB . 2007. Molecular basis for preferential protective efficacy of antibodies directed to the poorly acetylated form of staphylococcal poly-N-acetyl-beta-(1-6)-glucosamine. Infect Immun 75 : 3406 3413.[PubMed] [CrossRef]
143. Itoh Y,, Rice JD,, Goller C,, Pannuri A,, Taylor J,, Meisner J,, Beveridge TJ,, Preston JF 3rd,, Romeo T . 2008. Roles of pgaABCD genes in synthesis, modification, and export of the Escherichia coli biofilm adhesin poly-beta-1,6-N-acetyl-D-glucosamine. J Bacteriol 190 : 3670 3680.[PubMed] [CrossRef]
144. Vuong C,, Kocianova S,, Voyich JM,, Yao Y,, Fischer ER,, DeLeo FR,, Otto M . 2004. A crucial role for exopolysaccharide modification in bacterial biofilm formation, immune evasion, and virulence. J Biol Chem 279 : 54881 54886.[PubMed] [CrossRef]
145. Pokrovskaya V,, Poloczek J,, Little DJ,, Griffiths H,, Howell PL,, Nitz M . 2013. Functional characterization of Staphylococcus epidermidis IcaB, a de-N-acetylase important for biofilm formation. Biochemistry 52 : 5463 5471.[PubMed] [CrossRef]
146. Riley LM,, Weadge JT,, Baker P,, Robinson H,, Codee JD,, Tipton PA,, Ohman DE,, Howell PL . 2013. Structural and functional characterization of Pseudomonas aeruginosa AlgX: role of AlgX in alginate acetylation. J Biol Chem 288 : 22299 22314.[PubMed] [CrossRef]
147. Whitney JC,, Hay ID,, Li C,, Eckford PD,, Robinson H,, Amaya MF,, Wood LF,, Ohman DE,, Bear CE,, Rehm BH,, Howell PL . 2011. Structural basis for alginate secretion across the bacterial outer membrane. Proc Natl Acad Sci USA 108 : 13083 13088.[PubMed] [CrossRef]
148. Willis LM,, Stupak J,, Richards MR,, Lowary TL,, Li J,, Whitfield C . 2013. Conserved glycolipid termini in capsular polysaccharides synthesized by ATP-binding cassette transporter-dependent pathways in Gram-negative pathogens. Proc Natl Acad Sci USA 110 : 7868 7873.[PubMed] [CrossRef]
149. Jimenez N,, Senchenkova SN,, Knirel YA,, Pieretti G,, Corsaro MM,, Aquilini E,, Regue M,, Merino S,, Tomas JM . 2012. Effects of lipopolysaccharide biosynthesis mutations on K1 polysaccharide association with the Escherichia coli cell surface. J Bacteriol 194 : 3356 3367.[PubMed] [CrossRef]
150. Gaastra W,, De Graaf FK . 1982. Host-specific fimbrial adhesins of noninvasive enterotoxigenic Escherichia coli strains. Microbiol Rev 46 : 129. [PubMed]
151. Franco AV,, Liu D,, Reeves PR . 1996. A Wzz (Cld) protein determines the chain length of K lipopolysaccharide in Escherichia coli O8 and O9 strains. J Bacteriol 178 : 1903 1907.[PubMed]
152. Jann K,, Dengler T,, Jann B . 1992. Core-lipid A on the K40 polysaccharide of Escherichia coli O8:K40:H9, a representative of group I capsular polysaccharides. Zentralbl Bakteriol 276 : 196 204.[CrossRef]
153. Bushell SR,, Mainprize IL,, Wear MA,, Lou H,, Whitfield C,, Naismith JH . 2013. Wzi is an outer membrane lectin that underpins group 1 capsule assembly in Escherichia coli . Structure 21 : 844 853.[PubMed] [CrossRef]
154. Hardy GG,, Allen RC,, Toh E,, Long M,, Brown PJ,, Cole-Tobian JL,, Brun YV . 2010. A localized multimeric anchor attaches the Caulobacter holdfast to the cell pole. Mol Microbiol 76 : 409 427.[PubMed] [CrossRef]
155. Rahn A,, Beis K,, Naismith JH,, Whitfield C . 2003. A novel outer membrane protein, Wzi, is involved in surface assembly of the Escherichia coli K30 group 1 capsule. J Bacteriol 185 : 5882 5890.[PubMed] [CrossRef]
156. Iwashkiw JA,, Vozza NF,, Kinsella RL,, Feldman MF . 2013. Pour some sugar on it: the expanding world of bacterial protein O-linked glycosylation. Mol Microbiol 89 : 14 28.[PubMed] [CrossRef]
157. Song MC,, Kim E,, Ban YH,, Yoo YJ,, Kim EJ,, Park SR,, Pandey RP,, Sohng JK,, Yoon YJ . 2013. Achievements and impacts of glycosylation reactions involved in natural product biosynthesis in prokaryotes. Appl Microbiol Biotechnol 97 : 5691 5704.[PubMed] [CrossRef]
158. Quintero EJ,, Busch K,, Weiner RM . 1998. Spatial and temporal deposition of adhesive extracellular polysaccharide capsule and fimbriae by hyphomonas strain MHS-3. Appl Environ Microbiol 64 : 1246 1255.[PubMed]
159. Ong CJ,, Wong ML,, Smit J . 1990. Attachment of the adhesive holdfast organelle to the cellular stalk of Caulobacter crescentus . J Bacteriol 172 : 1448 1456.[PubMed]
160. Smith CS,, Hinz A,, Bodenmiller D,, Larson DE,, Brun YV . 2003. Identification of genes required for synthesis of the adhesive holdfast in Caulobacter crescentus . J Bacteriol 185 : 1432 1442.[PubMed] [CrossRef]
161. Poindexter JS, . 2006. Dimorphic prosthecate bacteria: the genera Caulobacter, Asticcacaulis, Hyphomicrobium, Pedomicrobium, Hyphomonas and Thiodendron , p 72 90. In Rosenberg E,, DeLong EF (ed), The Prokaryotes, vol. 5. Springer, New York. [CrossRef]
162. Poindexter JS . 1964. Biological properties and classification of the Caulobacter group. Bacteriol Rev 28 : 231 295.[PubMed]
163. Merker RI,, Smit J . 1988. Characterization of the adhesive holdfast of marine and freshwater caulobacters. Appl Environ Microbiol 54 : 2078 2085.[PubMed]
164. Fiebig A,, Herrou J,, Fumeaux C,, Radhakrishnan SK,, Viollier PH,, Crosson S . 2014. A cell cycle and nutritional checkpoint controlling bacterial surface adhesion. PLoS Genet 10 : e1004101. doi:10.1371/journal.pgen.1004101. [CrossRef]
165. Toh E,, Kurtz HD Jr,, Brun YV . 2008. Characterization of the Caulobacter crescentus holdfast polysaccharide biosynthesis pathway reveals significant redundancy in the initiating glycosyltransferase and polymerase steps. J Bacteriol 190 : 7219 7231.[PubMed] [CrossRef]
166. Li G,, Smith CS,, Brun YV,, Tang JX . 2005. The elastic properties of the Caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J Bacteriol 187 : 257 265.[PubMed] [CrossRef]
167. Tsang PH,, Li G,, Brun YV,, Freund LB,, Tang JX . 2006. Adhesion of single bacterial cells in the micronewton range. Proc Natl Acad Sci USA 103 : 5764 5768.[PubMed] [CrossRef]
168. Berne C,, Ma X,, Licata NA,, Neves BR,, Setayeshgar S,, Brun YV,, Dragnea B . 2013. Physiochemical properties of Caulobacter crescentus holdfast: a localized bacterial adhesive. J Phys Chem B 117 : 10492 10503.[PubMed] [CrossRef]
169. Brown PJ,, Hardy GG,, Trimble MJ,, Brun YV . 2008. Complex regulatory pathways coordinate cell-cycle progression and development in Caulobacter crescentus . Adv Microbial Physiol 54 : 1 101.[PubMed] [CrossRef]
170. Rodriguez-Navarro DN,, Dardanelli MS,, Ruiz-Sainz JE . 2007. Attachment of bacteria to the roots of higher plants. FEMS Microbiol Lett 272 : 127 136.[PubMed] [CrossRef]
171. Laus MC,, Logman TJ,, Lamers GE,, Van Brussel AA,, Carlson RW,, Kijne JW . 2006. A novel polar surface polysaccharide from Rhizobium leguminosarum binds host plant lectin. Mol Microbiol 59 : 1704 1713.[PubMed] [CrossRef]
172. Xie F,, Williams A,, Edwards A,, Downie JA . 2012. A plant arabinogalactan-like glycoprotein promotes a novel type of polar surface attachment by Rhizobium leguminosarum . Mol Plant Microbe Interact 25 : 250 258.[PubMed] [CrossRef]
173. Ausmees N,, Jacobsson K,, Lindberg M . 2001. A unipolarly located, cell-surface-associated agglutinin, RapA, belongs to a family of Rhizobium-adhering proteins (Rap) in Rhizobium leguminosarum bv. trifolii. Microbiology 147 : 549 559.[PubMed]
174. Williams A,, Wilkinson A,, Krehenbrink M,, Russo DM,, Zorreguieta A,, Downie JA . 2008. Glucomannan-mediated attachment of Rhizobium leguminosarum to pea root hairs is required for competitive nodule infection. J Bacteriol 190 : 4706 4715.[PubMed] [CrossRef]
175. Tomlinson AD,, Fuqua C . 2009. Mechanisms and regulation of polar surface attachment in Agrobacterium tumefaciens . Curr Opin Microbiol 12 : 708 714.[PubMed] [CrossRef]
176. Loh JT,, Ho SC,, de Feijter AW,, Wang JL,, Schindler M . 1993. Carbohydrate binding activities of Bradyrhizobium japonicum: unipolar localization of the lectin BJ38 on the bacterial cell surface. Proc Natl Acad Sci USA 90 : 3033 3037.[PubMed] [CrossRef]
177. Merritt PM,, Danhorn T,, Fuqua C . 2007. Motility and chemotaxis in Agrobacterium tumefaciens surface attachment and biofilm formation. J Bacteriol 189 : 8005 8014.[PubMed] [CrossRef]
178. Xu J,, Kim J,, Danhorn T,, Merritt PM,, Fuqua C . 2012. Phosphorus limitation increases attachment in Agrobacterium tumefaciens and reveals a conditional functional redundancy in adhesin biosynthesis. Res Microbiol 163 : 674 684.[PubMed] [CrossRef]
179. Xu J,, Kim J,, Koestler BJ,, Choi JH,, Waters CM,, Fuqua C . 2013. Genetic analysis of Agrobacterium tumefaciens unipolar polysaccharide production reveals complex integrated control of the motile-to-sessile switch. Mol Microbiol 89 : 929 948.[PubMed] [CrossRef]
180. Fujishige NA,, Kapadia NN,, De Hoff PL,, Hirsch AM . 2006. Investigations of Rhizobium biofilm formation. FEMS Microbiol Ecol 56 : 195 206.[PubMed] [CrossRef]
181. Abdian PL,, Caramelo JJ,, Ausmees N,, Zorreguieta A . 2013. RapA2 is a calcium-binding lectin composed of two highly conserved cadherin-like domains that specifically recognize Rhizobium leguminosarum acidic exopolysaccharides. J Biol Chem 288 : 2893 2904.[PubMed] [CrossRef]
182. Ho SC,, Wang JL,, Schindler M,, Loh JT . 1994. Carbohydrate binding activities of Bradyrhizobium japonicum. III. Lectin expression, bacterial binding, and nodulation efficiency. Plant J 5 : 873 884.[PubMed] [CrossRef]
183. Pérez-Giménez J,, Mongiardini EJ,, Althabegoiti MJ,, Covelli J,, Quelas JI,, López-García SL,, Lodeiro AR . 2009. Soybean lectin enhances biofilm formation by Bradyrhizobium japonicum in the absence of plants. Int J Microbiol 2009 : 719367. [PubMed] [CrossRef]
184. Luciano J,, Agrebi R,, Le Gall AV,, Wartel M,, Fiegna F,, Ducret A,, Brochier-Armanet C,, Mignot T . 2011. Emergence and modular evolution of a novel motility machinery in bacteria. PLoS Genet 7 : e1002268. doi:10.1371/journal.pgen.1002268. [PubMed] [CrossRef]
185. Nan B,, Chen J,, Neu JC,, Berry RM,, Oster G,, Zusman DR . 2011. Myxobacteria gliding motility requires cytoskeleton rotation powered by proton motive force. Proc Natl Acad Sci USA 108 : 2498 2503.[PubMed] [CrossRef]
186. Nan B,, Mauriello EM,, Sun IH,, Wong A,, Zusman DR . 2010. A multi-protein complex from Myxococcus xanthus required for bacterial gliding motility. Mol Microbiol 76 : 1539 1554.[PubMed] [CrossRef]
187. Sun M,, Wartel M,, Cascales E,, Shaevitz JW,, Mignot T . 2011. Motor-driven intracellular transport powers bacterial gliding motility. Proc Natl Acad Sci USA 108 : 7559 7564.[PubMed] [CrossRef]
188. Zhang Y,, Ducret A,, Shaevitz J,, Mignot T . 2012. From individual cell motility to collective behaviors: insights from a prokaryote, Myxococcus xanthus . FEMS Microbiol Rev 36 : 149 164.[PubMed] [CrossRef]
189. Burchard RP . 1982. Trail following by gliding bacteria. J Bacteriol 152 : 495 501.[PubMed]
190. Wolgemuth C,, Hoiczyk E,, Kaiser D,, Oster G . 2002. How myxobacteria glide. Curr Biol 12 : 369 377.[PubMed] [CrossRef]
191. Ducret A,, Fleuchot B,, Bergam P,, Mignot T . 2013. Direct live imaging of cell-cell protein transfer by transient outer membrane fusion in Myxococcus xanthus . Elife 2 : e00868. doi:10.7554/eLife.00868. [PubMed] [CrossRef]
192. Ducret A,, Valignat MP,, Mouhamar F,, Mignot T,, Theodoly O . 2012. Wet-surface-enhanced ellipsometric contrast microscopy identifies slime as a major adhesion factor during bacterial surface motility. Proc Natl Acad Sci USA 109 : 10036 10041.[PubMed] [CrossRef]
193. Flemming H-C,, Wingender J . 2010. The biofilm matrix. Nat Rev Microbiol 8 : 623 633.[PubMed] [CrossRef]
194. Stoodley P,, Sauer K,, Davies D,, Costerton JW . 2002. Biofilms as complex differentiated communities. Annu Rev Microbiol 56 : 187 209.[PubMed] [CrossRef]
195. Wessel AK,, Hmelo L,, Parsek MR,, Whiteley M . 2013. Going local: technologies for exploring bacterial microenvironments. Nat Rev Microbiol 11 : 337 348.[PubMed] [CrossRef]
196. Garnett JA,, Martinez-Santos VI,, Saldana Z,, Pape T,, Hawthorne W,, Chan J,, Simpson PJ,, Cota E,, Puente JL,, Giron JA,, Matthews S . 2012. Structural insights into the biogenesis and biofilm formation by the Escherichia coli common pilus. Proc Natl Acad Sci USA 109 : 3950 3955.[PubMed] [CrossRef]
197. Kalivoda EJ,, Stella NA,, O’Dee DM,, Nau GJ,, Shanks RM . 2008. The cyclic AMP-dependent catabolite repression system of Serratia marcescens mediates biofilm formation through regulation of type 1 fimbriae. Appl Environ Microbiol 74 : 3461 3470.[PubMed] [CrossRef]
198. Koczan JM,, Lenneman BR,, McGrath MJ,, Sundin GW . 2011. Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora . Appl Environ Microbiol 77 : 7031 7039.[PubMed] [CrossRef]