Chapter 12 : Culture Techniques

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Culture Techniques , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap12-2.gif


This chapter talks about the main culture techniques for microbial growth. It first describes the solid, semisolid, biphasic, membrane surface, and immobilized culture techniques. This is followed by laboratory scale liquid culture techniques including specialized liquid cultures such as synchronous and dialysis cultures. Solid media are also used in mass culture, bioautography, and physiological studies of bacterial cells. Solid culture is one of the most useful techniques in the isolation and cultivation from single cells. The solid surface usually is that of an agar or otherwise solidified medium. Semisolid media are also useful in chemotaxis studies. For example, a semisolid medium containing an oxidizable carbon and energy source can be used to investigate positive chemotaxis in , , , and many other species. Laboratory scale liquid cultures provide one of the most common techniques to grow and study the behavior of microorganisms. The section on energetics and stoichiometry describes the theoretical aspects of microbial growth focusing on the electron acceptor and donor and the carbon and nitrogen sources. There are two basic principles underlying dialysis culture. First, it provides a means for achieving substrate limited growth. Second, dialysis culture provides a means for lowering the concentration of a diffusible metabolite product inhibitory to growth; the product in the culture chamber diffuses through the membrane and is diluted in the larger dialysate reservoir, thus relieving the feedback inhibition by the product that normally regulates its production.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Thick glass culture tube with butyl rubber stoppers and aluminum crimp caps useful in isolation and culturing of anaerobic microorganisms.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic of an anaerobic continuous stirred tank reactor with separate pumps for supplying substrate and nutrients, effluent pump with water seal, and gas collection line. For smaller systems with multiple reactors, syringe pumps with multiple ports can be used.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abe, C. 1997. Rapid diagnosis of tuberculosis. Kekkaku 72: 659 672. (In Japanese.)
2. Adler, J. 1966. Chemotaxis in bacteria. Science 153: 708 716.
3. Babbar, S. B.,, and N. Jain. 1998. ‘Isubgol’ as an alternative gelling agent in plant tissue culture media. Plant Cell Rep. 17: 318 322.
4. Balch, W. E.,, and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781 791.
5. Banik, R. M.,, B. Kanari,, and S. N. Upadhyay. 2000. Exopolysaccharide of the gellan family: prospects and potential. World J. Microbiol. Biotechnol. 16: 407 414.
6. Bannur, M.,, R. P. Fule,, A. M. Saoji,, and V. L. Jahagirdar. 1995. Study of bacteraemia using conventional and biphasic culture methods. Indian J. Pathol. Microbiol. 38: 147 151.
7. Bhattacharya, P.,, S. Dey,, and B. C. Bhattacharyya. 1994. Use of low-cost gelling agents and support matrices for industrial-scale plant-tissue culture. Plant Cell Tissue Organ Cult. 37: 15 23.
8. Boin, M. A.,, M. J. Austin,, and C. C. Hase. 2004. Chemotaxis in Vibrio cholerae. FEMS Microbiol. Lett. 239: 1 8.
9. Bridson, E. Y.,, and A. Brecker,. 1970. Design and formulation of culture media, p. 229 295. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 3A. Academic Press, Inc., New York, NY.
10. Bromke, B. J.,, and M. Furiga. 1991. Carrageenan is a desirable substitute for agar in media growing Trichomonas vaginalis. J. Microbiol. Methods 13: 61 65.
11. Bryant, J., 1970. Anti foam agents, p. 187 203. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
12. Chan, E. C. S.,, A. DeCiccio,, R. McLaughlin,, A. Klitorinos,, and R. Siboo. 1997. An inexpensive solid medium for obtaining colony-forming units of oral spirochetes. Oral Microbiol. Immunol. 12: 372 376.
13. Chang, H. N.,, I. K. Yoo,, and B. S. Kim. 1994. Highdensity cell-culture by membrane-based cell recycle. Biotechnol. Adv. 12: 467 487.
14. Chiovitti, A.,, G. T. Kraft,, A. Bacic,, D. J. Craik,, S. L. A. Munro,, and M. L. Liao. 1998. Carrageenans from Australian representatives of the family Cystocloniaceae (Gigartinales, Rhodophyta), with description of Calliblepharis celatospora sp. nov., and transfer of Austroclonium to the family Areschougiaceae. J. Phycol. 34: 515 535.
15. Deming, J. W.,, and J. A. Baross. 1986. Solid medium for culturing black smoker bacteria at temperatures to 120°C. Appl. Environ. Microbiol. 51: 238 243.
16. Diaz, E.,, R. Amils,, and J. Sanz. 2003. Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci. Technol. 48: 57 64.
17. Dickson, J. S.,, T. R. Manke,, I. V. Wesley,, and A. L. Baetz. 1996. Biphasic culture of Arcobacter spp. Lett. Appl. Microbiol. 22: 195 198.
18. Dunn, I. J.,, and J. R. Mor. 1975. Variable volume continuous culture. Biotechnol. Bioeng. 17: 1805 1822.
19. Elsworth, R. 1972. The value and use of dissolved oxygen measurement in deep culture. Chem. Eng. 258: 63 71.
20. Epifanio, E. C.,, R. L. Veroy,, F. Uyenco,, G. J. B. Cajipe,, and E. C. Laserna. 1981. Carrageenan from Eucheuma striatum (Schmitz) in bacteriological media. Appl. Environ. Microbiol. 41: 155 158.
21. Evans, J. B. 1975. Preparation of synchronous cultures of Escherichia coli by continuous flow size selection. J. Gen. Microbiol. 91: 188 190.
22. Fass, R.,, T. R. Clem,, and J. Shiloach. 1989. Use of a novel air separation system in a fed batch fermentative culture of Escherichia coli. Appl. Environ. Microbiol. 55: 1305 1307.
23. Finn, R. K. 1954. Agitation aeration in the laboratory and in industry. Bacteriol. Rev. 18: 254 274.
24. Freedman, D., 1970. The shaker in bioengineering, p. 175 185. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
25. Funk, H. B.,, and T. A. Krulwich. 1964. Preparation of clear silica gels that can be streaked. J. Bacteriol. 88: 1200 1201.
26. Gallup, D. M.,, and P. Gerhardt. 1963. Dialysis fermentor systems for concentrated culture of microorganisms. Appl. Microbiol. 11: 506 512.
27. Gardener, S.,, and J. G. Jones. 1984. A new solidifying agent for culture media which liquefies on cooling. J. Gen. Microbiol. 130: 731 733.
28. Gerhardt, P.,, and C. G. Hedn. 1960. Concentrated culture of gonococci in clear liquid medium. Proc. Soc. Exp. Biol. Med. 105: 49 51.
29. Gerhardt, P.,, J. M. Quarles,, T. C. Beaman,, and R. C. Belding. 1977. Ex vivo hemodialysis culture of microbial and mammalian cells. J. Infect. Dis. 135: 42 50.
30. Giavasis, I.,, L. M. Harvey,, and B. McNeil. 2000. Gellan gum. Crit. Rev. Biotechnol. 20: 177 211.
31. Gibb, A. P.,, and S. Wong. 1998. Inhibition of PCR by agar from bacteriological transport media. J. Clin. Microbiol. 36: 275 276.
32. Harshey, R. M. 2003. Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57: 249 273.
33. Hongo, M.,, Y. Nomura,, and M. Iwahara. 1986. Novel method of lactic acid production by electrodialysis fermentation. Appl. Environ. Microbiol. 52: 314 319.
34. Hoshino, K.,, M. Yuzuriha,, S. Morohashi,, S. Kagaya,, and M. Taniguchi. 2002. Production of laccase by membranesurface liquid culture with nonwoven fabric of Coriolus versicolor. Biol. Syst. Eng. 830: 108 120.
35. Ishizaki, A. 2003. Advanced continuous fermentation for anaerobic microorganism. Ferment. Biotechnol. 862: 21 35.
36. Jain, N.,, S. Gupta,, and S. B. Babbar. 1997. Isubgol as an alternative gelling agent for microbial culture media. J. Plant Biochem. Biotechnol. 6: 129 131.
37. Jenkins, J. A.,, and P. W. Taylor. 1995. An alternative bacteriological medium for the isolation of Aeromonas spp. J. Wildl. Dis. 31: 272 275.
38. Jin, H.,, N. K. Lee,, M. K. Shin,, S. K. Kim,, D. L. Kaplan,, and J. W. Lee. 2003. Production of gellan gum by Sphingomonas paucimobilis NK2000 with soybean pomace. Biochem. Eng. J. 16: 357 360.
39. Kelly, D. J. 2001. The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori. J. Appl. Microbiol. 90: 16S 24S.
40. Krieg, N. R.,, and P. S. Hoffman. 1986. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40: 107 130.
41. Kriukov, V. R. 1981. Development of hydrogen bacteria on hard surfaces. Mikrobiologiia 50: 299 304.
42. Kubitschek, H. E. 1987. Buoyant density variation during the cell cycle in microorganisms. Crit. Rev. Microbiol. 14: 73 97.
43. Landwall, P.,, and T. Holme. 1977. Removal of inhibitors of bacterial growth by dialysis culture. J. Gen. Microbiol. 103: 345 352.
44. Laserna, E. C.,, F. Uyenco,, E. Epifanio,, R. L. Veroy,, and G. J. B. Cajipe. 1981. Carrageenan from Eucheuma striatum (Schmitz) in media for fungal and yeast cultures. Appl. Environ. Microbiol. 42: 174 175.
45. Lim, H. C.,, B. J. Chen,, and C. C. Creagan. 1977. An analysis of extended and exponentially fed batch cultures. Biotechnol. Bioeng. 19: 425 433.
46. Lin, C. C.,, and J. L. E. Casida. 1984. Gelrite as a gelling agent in media for growth of thermophilic microorganisms. Appl. Environ. Microbiol. 47: 427 429.
47. Lines, A. D. 1977. Value of the K + salt of carrageenan as an agar substitute in routine bacteriological media. Appl. Environ. Microbiol. 34: 637 639.
48. Lloyd, D. L.,, J. C. Edwards,, and A. H. Chagla. 1975. Synchronous cultures of micro organisms: large scale preparation by continuous flow size selection. J. Gen. Microbiol. 88: 153 158.
49. Lux, R.,, and W. Shi. 2004. Chemotaxis-guided movements in bacteria. Crit. Rev. Oral. Biol. Med. 15: 207 220.
50. Markx, G. H.,, C. L. Davey,, and D. B. Kell. 1991. The permittistat: a novel type of turbidostat. J. Gen. Microbiol. 137: 735 743.
51. Mattiasson, B.,, and O. Holst (ed.). 1991. Extractive Bioconversions. Marcel Dekker, Inc., New York, NY.
52. McBride, M. J. 2004. Cytophaga flavobacterium gliding motility. J. Mol. Microbiol. Biotechnol. 7: 63 71.
53. Miller, C. W.,, M. H. Nguyen,, M. Rooney,, and K. Kailasapathy. 2003. Novel apparatus to measure diffusion in gel type foods. Food Australia 9: 432 435.
54. Mitchison, J. W.,, and W. S. Vincent. 1965. Preparation of synchronous cell cultures by sedimentation. Nature 205: 987 989.
55. Munson, R. J., 1970. Turbidostats, p. 349 376. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
56. Nipkow, A.,, J. G. Zeikus,, and P. Gerhardt. 1989. Microfiltration cell recycle pilot system for continuous thermoanaerobic production of exoamylase. Biotechnol. Bioeng. 34: 1075 1084.
57. Nordbring Hertz, B.,, M. Veenhuis,, and W. Harder. 1984. Dialysis membrane technique for ultrastructural studies of microbial interactions. Appl. Environ. Microbiol. 47: 195 197.
58. Norton, S.,, and J. C. Vuillemard. 1994. Food bioconversions and metabolite production using immobilized cell technology. Crit. Rev. Biotechnol. 14: 193 224.
59. Okon, Y.,, S. L. Albrecht,, and R. H. Burris. 1976. Carbon and ammonia metabolism of Spirillum lipoferum. J. Bacteriol. 128: 592 597.
60. Olson, M. S.,, R. M. Ford,, J. A. Smith,, and E. J. Fernandez. 2004. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ. Sci. Technol. 38: 3864 3870.
61. Papapetropoulou, M.,, G. Rodopoulou,, and E. Giannoulaki. 1995. Improved glutaminate-starch-penicillin agar for the isolation and enumeration of Aeromonas hydrophila from seawater by membrane filtration. Pathol. Biol. (Paris) 43: 622 627.
62. Parkinson, S. M.,, M. Wainwright,, and K. Killham. 1989. Observations on oligotrophic growth of fungi on silica-gel. Mycol. Res. 93: 529 534.
63. Pirt, J. S. 1975. Principles of Microbe and Cell Cultivation. John Wiley & Sons, Inc., New York, NY.
64. Pol, L. W. H.,, S. I. D. Lopes,, G. Lettinga,, and P. N. L. Lens. 2004. Anaerobic sludge granulation. Water Res. 38: 1376 1389.
65. Poole, R. K. 1977. Fluctuations in buoyant density during the cell cycle of Escherichia coli K12: significance for the preparation of synchronous cultures by age selection. J. Gen. Microbiol. 98: 177 186.
66. Portner, R.,, and I. H. Mark. 1998. Dialysis cultures. Appl. Microbiol. Biotechnol. 50: 403 414.
67. Quarles, J. M.,, R. C. Belding,, T. C. Beaman,, and P. Gerhardt. 1974. Hemodialysis culture of Serratia marcescens in a goat artificial kidney fermentor system. Infect. Immun. 9: 550 558.
68. Rabe, L. K.,, and S. L. Hillier. 2003. Optimization of media for detection of hydrogen peroxide production by Lactobacillus species. J. Clin. Microbiol. 41: 3260 3264.
69. Ramirez, A.,, R. Gutierrez,, G. Diaz,, C. Gonzalez,, N. Perez,, S. Vega,, and M. Noa. 2003. High-performance thin-layer chromatography-bioautography for multiple antibiotic residues in cow’s milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 784: 315 322.
70. Rath, P. M.,, and D. Schmidt. 2001. Gellan gum as a suitable gelling agent in microbiological media for PCR applications. J. Med. Microbiol. 50: 108 109.
71. Reeslev, M.,, and A. Kjoller. 1995. Comparison of biomass dry weights and radial growth-rates of fungal colonies on media solidified with different gelling compounds. Appl. Environ. Microbiol. 61: 4236 4239.
72. Roehrig, K. L. 1984. Carbohydrate Biochemistry and Metabolism. The AVI Publishing Company, Westport, CT.
73. Rule, P. L.,, and A. D. Alexander. 1986. Gellan gum as a substitute for agar in leptospiral media. J. Clin. Microbiol. 23: 500 504.
74. Sahay, S. 1999. The use of psyllium (isubgol) as an alternative gelling agent for microbial culture media. World J. Microbiol. Biotechnol. 15: 733 735.
75. Schiraldi, C.,, V. Adduci,, V. Valli,, C. Maresca,, M. Giuliano,, M. Lamberti,, M. Carteni,, and M. De Rosa. 2003. High cell density cultivation of probiotics and lactic acid production. Biotechnol. Bioeng. 82: 213 222.
76. Schmidt, D.,, and P. M. Rath. 2003. Faster genetic identification of medically important aspergilli by using gellan gum as gelling agent in mycological media. J. Med. Microbiol. 52: 653 655.
77. Schultz, J. S.,, and P. Gerhardt. 1969. Dialysis culture of microorganisms: design, theory, and results. Bacteriol. Rev. 33: 1 47.
78. Segerer, A. H.,, and K. O. Stetter,. 1992. The genus Thermoplasma, p. 712 718. In A. Balows,, H. G. Thiper,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer Verlag KG, Berlin, Germany.
79. Segerer, A. H.,, and K. O. Stetter,. 1992. The order Sulfolobales, p. 684 701. In A. Balows,, H. G. Thiper,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer Verlag KG, Berlin, Germany.
80. Shadowen, R. D.,, and C. V. Sciortino. 1989. Improved growth of Campylobacter pylori in a biphasic system. J. Clin. Microbiol. 27: 1744 1747.
81. Shiloach, J.,, and S. Bauer. 1975. High yield growth of E. coli at different temperatures in a bench scale fermentor. Biotechnol. Bioeng. 17: 227 239.
82. Shiloach, J.,, M. V. d. Walle,, J. B. Kaufman,, and R. Fass,. 1991. High density growth of microorganisms for protein production, p. 33 46. In M. D. White,, S. Reuveny,, and A. Shafferman (ed.), Biologicals from Recombinant Microorganisms and Animal Cells. VCH Publishers, New York, NY.
83. Shungu, D.,, M. Valiant,, V. Tutlane,, E. Weinberg,, B. Weissberger,, L. Koupal,, H. Gadebusch,, and E. Stapley. 1983. Gelrite as an agar substitute in bacteriological media. Appl. Environ. Microbiol. 46: 840 845.
84. Sirotnak, F. M.,, G. J. Donati,, and D. J. Hutchison. 1963. Folic acid derivatives synthesized during growth of Diplococcus pneumoniae. J. Bacteriol. 85: 658 665.
85. Sneath, P. H. A. 1955. Failure of Chromobacterium violaceum to grow on nutrient agar, attributed to hydrogen peroxide. J. Gen. Microbiol. 13: i.
86. Sommers, L. E.,, and R. F. Harris. 1968. Routine preparation of silica gel media using silicate solutions of varying pH. J.Bacteriol. 95: 1174.
87. Stecher, B.,, S. Hapfelmeier,, C. Muller,, M. Kremer,, T. Stallmach,, and W. D. Hardt. 2004. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycinpretreated mice. Infect. Immun. 72: 4138 4150.
88. Stelling, J. 2004. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7: 513 518.
89. Stieber, R. W. 1979. Dialysis Continuous Processes for Microbial Fermentations: Mathematical Models, Computer Simulations, and Experimental Tests. Ph.D. thesis. Michigan State University, East Lansing.
90. Stieber, R. W.,, and P. Gerhardt. 1979. Dialysis continuous process for ammonium lactate fermentation: improved mathematical model and use of deproteinized whey. Appl. Environ. Microbiol. 37: 487 495.
91. Sutherland, I. W. 1999. Microbial polysaccharide products. Biotechnol. Genet. Eng. Rev. 16: 217 229.
92. Sworn, G.,, G. R. Sanderson,, and W. Gibson. 1995. Gellan gum fluid gels. Food Hydrocolloids 9: 265 271.
93. Szurmant, H.,, and G. W. Ordal. 2004. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68: 301 319.
94. Towle, G. A.,, and R. L. Whistler,. 1973. Hemicellulose and gums, p. 198 248. In L. R. Miller (ed.), Phytochemistry, vol. 1. Van Nostrand Reinhold Co., New York, NY.
95. Tso, W.,, and J. Adler. 1974. Negative chemotaxis in Escherichia coli. J. Bacteriol. 118: 560 576.
96. Tyrrell, E. A.,, R. E. MacDonald,, and P. Gerhardt. 1958. Biphasic system for growing bacteria in concentrated culture. J. Bacteriol. 75: 1 4.
97. VanElsas, J. D.,, J. M. Govaert,, and J. A. v. Veen. 1987. Transfer of plasmid pFT30 between bacilli in soil as influenced by bacteria population dynamics and soil conditions. Soil Biol. Biochem. 19: 639 647.
98. Wainwright, M.,, and A. Al-Talhi. 1999. Selective isolation and oligotrophic growth of Candida on nutrient-free silica gel medium. J. Med. Microbiol. 48: 1130.
99. Wakisaka, Y.,, T. Segawa,, K. Imamura,, T. Sakiyama,, and K. Nakanishi. 1998. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. J. Ferment. Bioeng. 85: 488 494.
100. Waterworth, P. M. 1969. The action of light on culture media. J. Clin. Pathol. 22: 273 277.
101. Watson, N.,, and D. Apirion. 1976. Substitute for agar in solid media for common usages in microbiology. Appl. Environ. Microbiol. 31: 509 513.
102. Weinstein, M. J.,, and G. H. Wagman (ed.). 1978. Antibiotics. Isolation, Separation and Purification. Elsevier Scientific Publishing Co., New York, NY.
103. Yamaguchi, Y.,, S. Nimbari,, H. Obata,, T. Ookawara,, H. Eguchi,, T. Kurotsu,, and K. Suzuki. 2002. Effects of agarose and LB medium on dye-terminator DNA sequencing. Yakugaku Zasshi-J. Pharm. Soc. Jpn. 122: 495 498.
104. Yamaguchi, Y.,, S. Nimbari,, T. Ookawara,, K. Oishi,, H. Eguchi,, and K. Suzuki. 2002. Inhibitory effects of agarose gel and LB medium on DNA sequencing. BioTechniques 33: 282.


Generic image for table

Electron acceptors and donors and carbon sources for selected microorganisms

TCE, trichloroethene.

PCE, tetrachloroethene.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error