Chapter 16 : General Methods To Investigate Microbial Symbioses

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

General Methods To Investigate Microbial Symbioses, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap16-2.gif


This chapter presents methods that highlight two general areas of symbiosis research: (i) the detection and characterization of environmental symbioses and (ii) elucidation of the molecular and cellular mechanisms of symbiosis in model systems. The methods are described to demonstrate that an organism is symbiotic and examples of techniques used to elucidate the molecular, physiological, cellular, and evolutionary basis of symbiosis. Many symbioses, however, present additional challenges to fulfilling Koch’s postulates. The study of bacteria-phage symbioses is important for our understanding of bacterial evolution and emergence of disease as well as providing powerful experimental models for the study of symbiosis in a test tube. The study of presently uncultured symbioses, for which either cultivation of the symbiont or live maintenance of the host is intractable or has not been attempted, can be accomplished using many recent advances in molecular biology and biochemistry, as well as more traditional methodologies. Molecular characterization of the phallodrine oligochaete symbiosis, using 16S rRNA (PCR) characterization and fluorescence in situ hybridization (FISH) microscopy, determined that the primary symbiont was a unique member of the and clustered with other known chemoautotrophic symbionts. Two established models for symbioses are the legume-rhizobia and light organ-, which share all of the above attributes. The chapter describes a few of the many potential monoxenic symbiotic models that contribute greatly to our understanding of the conserved and diverse mechanisms in which symbioses are initiated, maintained, and evolved.

Citation: Ciche T, Goffredi S. 2007. General Methods To Investigate Microbial Symbioses, p 394-420. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch16
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Labeling bacteria with mini-TnKSGFP. (A) pURR25 (D. Lies and D. Newman, Caltech) containing the mini-TnKSGFP where GFP expression is driven from the constitutive Plac promoter (PA1/04/03) on a mobilizable ( ) suicide plasmid ( ). (B) pUX-BF13 containing the genes () encoding the Tntransposase on a mobilizable suicide plasmid similar to pURR25. (C) Triparental mating introduces pURR25 (mini-TnKSGFP) and pUX-BF13 (Tntransposase) into the recipient cells, which allows the mini-TnKSGFP to transpose, usually in an site, downstream of , of the recipient's genome. (D) Because pURR25 and pUX-BF13 cannot replicate in recipient cells and BW29427 donor cells require DAP for growth, plating on kanamycin- and streptomycin-containing media selects for recipient cells containing the mini-TnKSGFP.

Citation: Ciche T, Goffredi S. 2007. General Methods To Investigate Microbial Symbioses, p 394-420. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Transposon mutagenesis of symbiotic bacteria. (A) pURE10 is a mobilizable suicide plasmid as described in Fig. 1 and contains a hyperactive transposon (HiGm) similar to pSC189 ( ) with replacing of pSC189. (B) BW29427 containing pURE10 is mated with symbiont recipient cells. Transconjugants containing the HiGm are selected for on media containing Gm and lacking DAP.

Citation: Ciche T, Goffredi S. 2007. General Methods To Investigate Microbial Symbioses, p 394-420. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Creating unmarked deletions using SOE PCR and allelic exchange. (A) Two fragments (∼0.75 to 1.5 kb) are amplified by PCR using primers that are complementary (Arev/Bfor) and that have EagI sequences attached (Afor/Brev). The PCR fragments are purified by agarose gel electrophoresis (AGE). (B) Each fragment is then combined and fused by SOEing ( ). (C) The fused PCR products are then digested with EagI and then cloned into the NotI site of the suicide plasmid pWM91 creating pWM91Δ, which is transformed into BW29427 and mated with symbiotic bacteria. Transconjugants containing pWM91Δinserted into are selected based on their resistance to ampicillin, creating a merodiploid strain. Strains that have excised pWM91 are selected for by plating on media containing 5% sucrose. A portion of the sucrose-resistant strains have only the deleted . These are screened by PCR. The presence of the wt can be determined by using one primer for the deleted sequence and another flanking it. Afor and Bfor can also be used to verify the presence of the deletion.

Citation: Ciche T, Goffredi S. 2007. General Methods To Investigate Microbial Symbioses, p 394-420. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Allison, G. E.,, and N. K. Verma. 2000. Serotypeconverting bacteriophages and O-antigen modification in Shigella flexneri. Trends Microbiol. 8: 17 23.
2. Andersen, J. B.,, C. Sternberg,, L. K. Poulsen,, S. P. Bjorn,, M. Givskov,, and S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64: 2240 2246.
3. Ane, J. M.,, G. B. Kiss,, B. K. Riely,, R. V. Penmetsa,, G. E. Oldroyd,, C. Ayax,, J. Levy,, F. Debelle,, J. M. Baek,, P. Kalo,, C. Rosenberg,, B. A. Roe,, S. R. Long,, J. Denarie,, and D. R. Cook. 2004. Medicago truncatula DMI1 required for bacterial and fungal symbioses in legumes. Science 303: 1364 1367.
4. Backhed, F.,, H. Ding,, T. Wang,, L. V. Hooper,, G. Y. Koh,, A. Nagy,, C. F. Semenkovich,, and J. I. Gordon. 2004. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 101: 15718 15723.
5. Bao, Y.,, D. P. Lies,, H. Fu,, and G. P. Roberts. 1991. An improved Tn7-based system for the single-copy insertion of cloned genes into chromosomes of Gram-negative bacteria. Gene 109: 167 168.
6. Barnett, M. J.,, C. J. Toman,, R. F. Fisher,, and S. R. Long. 2004. A dual-genome symbiosis chip for coordinate study of signal exchange and development in a prokaryote-host interaction. Proc. Natl. Acad. Sci. USA 101: 16636 16641.
7. Baron, C.,, and P. C. Zambryski. 1995. The plant response in pathogenesis, symbiosis, and wounding: variations on a common theme? Annu. Rev. Genet. 29: 107 129.
8. Baumann, L.,, P. Baumann,, and M. L. Thao. 1999. Detection of messenger RNA transcribed from genes encoding enzymes of amino acid biosynthesis in Buchnera aphidicola (endosymbiont of aphids). Curr. Microbiol. 38: 135 136.
9. Baumann, P.,, L. Baumann,, C. Y. Lai,, D. Rouhbakhsh,, N. A. Moran,, and M. A. Clark. 1995. Genetics, physiology, and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annu. Rev. Microbiol. 49: 55 94.
10. Behrens, S.,, B. M. Fuchs,, F. Mueller,, and R. Amann. 2003. Is the in situ accessibility of the 16S rRNA of Escherichia coli for Cy3-labeled oligonucleotide probes predicted by a three-dimensional structure model of the 30S ribosomal subunit? Appl. Environ. Microbiol. 69: 4935 4941.
11. Belkin, S.,, D. C. Nelson,, and H. W. Jannasch. 1986. Symbiotic assimilation of CO2 in two hydrothermal vent animals, the mussel Bathymodiolus thermophilus and the tube worm Riftia pachyptila. Biol. Bull. 170: 110 121.
12. Blazejak, A.,, C. Erseus,, R. Amann,, and N. Dubilier. 2005. Coexistence of bacterial sulfide oxidizers, sulfate reducers, and spirochetes in a gutless worm (Oligochaeta) from the Peru margin. Appl. Environ. Microbiol. 71: 1553 1561.
13. Boetius, A.,, K. Ravenschlag,, C. J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jorgensen,, U. Witte,, and O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407: 623 626.
14. Breznak, J. A. 1982. Intestinal microbiota of termites and other xylophagous insects. Annu. Rev. Microbiol. 36: 323 343.
15. Bright, M.,, H. Keckeis,, and C. R. Fisher. 2000. An autoradiographic examination of carbon fixation, transfer and utilization in the Riftia pachyptila symbiosis. Mar. Biol. 136: 621 632.
16. Broderick, N. A.,, K. F. Raffa,, R. M. Goodman,, and J. Handelsman. 2004. Census of the bacterial community of the gypsy moth larval midgut by using culturing and culture- independent methods. Appl. Environ. Microbiol. 70: 293 300.
17. Brummel, T.,, A. Ching,, L. Seroude,, A. F. Simon,, and S. Benzer. 2004. Drosophila lifespan enhancement by exogenous bacteria. Proc. Natl. Acad. Sci. USA 101: 12974 12979.
18. Brune, A.,, and M. Friedrich. 2000. Microecology of the termite gut: structure and function on a microscale. Curr. Opin. Microbiol. 3: 263 269.
19. Brussow, H.,, C. Canchaya,, and W.-D. Hardt. 2004. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68: 560 602.
20. Buchner, P. 1965. Endosymbiosis of Animals with Plant Microorganisms. Interscience, New York, NY.
21. Campbell, B. J.,, J. L. Stein,, and S. C. Cary. 2003. Evidence of chemolithoautotrophy in the bacterial community associated with Alvinella pompejana, a hydrothermal vent polychaete. Appl. Environ. Microbiol. 69: 5070 5078.
22. Cary, S. C.,, M. T. Cottrell,, J. L. Stein,, F. Camacho,, and D. Desbruyeres. 1997. Molecular identification and localization of filamentous symbiotic bacteria associated with the hydrothermal vent annelid Alvinella pompejana. Appl. Environ. Microbiol. 63: 1124 1130.
23. Cavanaugh, C. M. 1985. Symbiosis of chemoautotrophic bacteria and marine invertebrates from hydrothermal vents and reducing sediments. Bull. Biol. Soc. Wash. 6: 373 388.
24. Cavanaugh, C. M. 1983. Symbiotic chemoautotrophic bacteria in marine invertebrates from sulphide-rich habitats. Nature 302: 58 61.
25. Cavanaugh, C. M.,, M. Abbott,, and M. Veenhuis. 1988. Immunochemical localization of ribulose-1,5-bisphos- phate-carboxylase in the symbiont-containing gills of Solemya velum (Bivalvia: Mollusca). Proc. Natl. Acad. Sci. USA 85: 7786 7789.
26. Cavanaugh, C. M.,, S. L. Gardiner,, M. L. Jones,, H. W. Jannasch,, and J. B. Waterbury. 1981. Procaryotic cells in the hydrothermal vent tube worm Riftia pachyptila Jones: possible chemoautotrophic symbionts. Science 213: 340 342.
27. Chalfie, M.,, Y. Tu,, G. Euskirchen,, W. W. Ward,, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802 805.
28. Chan, J. W. Y. F.,, and P. H. Goodwin. 1995. Extraction of genomic DNA from extracellular polysaccharide synthesizing Gram-negative bacteria. BioTechniques 18: 419 422.
29. Chiang, S. L.,, and E. J. Rubin. 2002. Construction of a mariner-based transposon for epitope-tagging and genomic targeting. Gene 296: 179 185.
30. Childress, J. J.,, C. R. Fisher,, J. A. Favuzzi,, R. E. Kochevar,, N. K. Sanders,, and A. M. Alayse. 1991. Sulfide-driven autotrophic balance in the bacterial symbiont- containing hydrothermal vent tubeworm Riftia pachyptila Jones. Biol. Bull. 180: 135 153.
31. Choi, K. H.,, J. B. Gaynor,, K. G. White,, C. Lopez,, C. M. Bosio,, R. R. Karkhoff-Schweizer,, and H. P. Schweizer. 2005. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2: 443 448.
32. Ciche, T. A.,, S. B. Bintrim,, A. R. Horswill,, and J. C. Ensign. 2001. A phosphopantetheinyl transferase homolog is essential for Photorhabdus luminescens to support growth and reproduction of the entomopathogenic nematode Heterorhabditis bacteriophora. J. Bacteriol. 183: 3117 3126.
33. Ciche, T. A.,, and J. C. Ensign. 2003. For the insect pathogen Photorhabdus luminescens, which end of a nematode is out? Appl. Environ. Microbiol. 69: 1890 1897.
34. Cleveland, L. R.,, and A. V. Grimstone. 1964. The fine structure of the flagellate Mixotricha paradoxa and its associate micro-organisms. Proc. R. Soc. Lond. B 159: 668 686.
35. Craig, N. L. 1991. Tn7: a target site-specific transposon. Mol. Microbiol. 5: 2569 2573.
36. Currie, C. R.,, J. A. Scott,, R. C. Summerbell,, and D. Malloch. 1999. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. Nature 398: 701 704.
37. Davidson, S. K.,, T. A. Koropatnick,, R. Kossmehl,, L. Sycuro,, and M. J. McFall-Ngai. 2004. NO means ‘yes’ in the squid-vibrio symbiosis: nitric oxide (NO) during the initial stages of a beneficial association. Cell. Microbiol. 6: 1139 1151.
38. de Bary, A. 1879. Die Erscheinung der Symbiose. Trubner, Strasbourg, France.
39. Desbruyères, D.,, F. Gaill,, L. Laubier,, and Y. Fouquet. 1985. Polychaetous annelids from hydrothermal vent ecosystems: an ecological overview. Bull. Biol. Soc. Wash. 6: 103 116.
40. Distel, D. L.,, and H. Felbeck. 1988. Pathways of inorganic carbon fixation in the endosymbiont bearing lucinid clam Lucinoma aequizonata. Part 1. Purification and characterization of the endosymbiotic bacteria. J. Exp. Zool. 247: 11 22.
41. Doino Lemus, J.,, and M. J. McFall-Ngai. 2000. Alterations in the proteome of the Euprymna scolopes light organ in response to symbiotic Vibrio fischeri. Appl. Environ. Microbiol. 66: 4091 4097.
42. Douglas, A. E. 1998. Nutritional interactions in insectmicrobial symbioses: aphids and their symbiotic bacteria Buchnera. Annu. Rev. Entomol. 43: 17 37.
43. Douglas, A. E.,, L. B. Minto,, and T. L. Wilkinson. 2001. Quantifying nutrient production by the microbial symbionts in an aphid. J. Exp. Biol. 204: 349 358.
44. Dubilier, N.,, O. Giere,, D. L. Distel,, and C. M. Cavanaugh. 1995. Characterization of chemoautotrophic bacterial symbionts in a gutless marine worm (Oligochaeta, Annelida) by phylogenetic 16S rRNA sequence analysis and in situ hybridization. Appl. Environ. Microbiol. 61: 2346 2350.
45. Dubilier, N.,, C. Mulders,, T. Ferdelman,, D. de Beer,, A. Pernthaler,, M. Klein,, M. Wagner,, C. Erséus,, F. Thiermann,, J. Krieger,, O. Giere,, and R. Amann. 2001. Endosymbiotic sulphate-reducing and sulphide-oxidizing bacteria in an oligochaete worm. Nature 411: 298 302.
46. Duchaud, E.,, C. Rusniok,, L. Frangeul,, C. Buchrieser,, A. Givaudan,, S. Taourit,, S. Bocs,, C. Boursaux-Eude,, M. Chandler,, J. F. Charles,, E. Dassa,, R. Derose,, S. Derzelle,, G. Freyssinet,, S. Gaudriault,, C. Medigue,, A. Lanois,, K. Powell,, P. Siguier,, R. Vincent,, V. Wingate,, M. Zouine,, P. Glaser,, N. Boemare,, A. Danchin,, and F. Kunst. 2003. The genome sequence of the entomopathogenic bacterium Photorhabdus luminescens. Nat. Biotechnol. 21: 1307 1313.
47. Ehrhardt, D. W.,, R. Wais,, and S. R. Long. 1996. Calcium spiking in plant root hairs responding to Rhizobium nodulation signals. Cell 85: 673 681.
48. Engebrecht, J.,, M. Simon,, and M. Silverman. 1985. Measuring gene expression with light. Science 227: 1345 1347.
49. Erséus, C. 1984. Taxonomy and phylogeny of the gutless phallodrilinae (Oligochaeta, Tubificidae), with descriptions of one new Genus and twenty-two new species. Zool. Scripta 13: 239 272.
50. Faruque, S. M.,, and J. J. Mekalanos. 2003. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol. 11: 505 510.
51. Felbeck, H.,, J. J. Childress,, and G. N. Somero. 1981. Calvin-Benson cycle and sulphide oxidation enzymes in animals from sulphide-rich habitats. Nature 293: 291 293.
52. Felbeck, H.,, and J. Jarchow. 1998. Carbon release from purified chemoautotrophic bacterial symbionts of the hydrothermal vent tubeworm Riftia pachyptila. Physiol. Zool. 71: 294 302.
53. Felbeck, H.,, G. Liebezeit,, R. Dawson,, and O. Giere. 1983. CO2 fixation in tissues of marine oligochaetes ( Phallodrilus leukodermatus and P. planus) containing symbiotic, chemoautotrophic bacteria. Mar. Biol 75: 187 191.
54. Forst, S.,, B. Dowds,, N. Boemare,, and E. Stackebrandt. 1997. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51: 47 72.
55. Foster, J. S.,, M. A. Apicella,, and M. J. McFall-Ngai. 2000. Vibrio fischeri lipopolysaccharide induces developmental apoptosis, but not complete morphogenesis, of the Euprymna scolopes symbiotic light organ. Dev. Biol. 226: 242 254.
56. Foster, J. S.,, and M. J. McFall-Ngai. 1998. Induction of apoptosis by cooperative bacteria in the morphogenesis of host epithelial tissues. Dev. Genes Evol. 208: 295 303.
57. Fraysse, N.,, F. Couderc,, and V. Poinsot. 2003. Surface polysaccharide involvement in establishing the rhizobiumlegume symbiosis. Eur. J. Biochem. 270: 1365 1380.
58. Fredericks, D.,, and D. Relman. 1996. Sequence-based identification of microbial pathogens: a reconsideration of Koch’s postulates. Clin. Microbiol. Rev. 9: 18 33.
59. Frostl, J. M.,, and J. Overmann. 2002. Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch. Microbiol. 174: 50 58.
60. Frostl, J. M.,, and J. Overmann. 1998. Physiology and tactic response of the phototrophic consortium “ Chlorochromatium aggregatum. Arch. Microbiol. 169: 129 135.
61. Gage, D. J. 2002. Analysis of infection thread development using Gfp- and DsRed-expressing Sinorhizobium meliloti. J. Bacteriol. 184: 7042 7046.
62. Gage, D. J. 2004. Infection and invasion of roots by symbiotic, nitrogen-fixing rhizobia during nodulation of temperate legumes. Microbiol. Mol. Biol. Rev. 68: 280 300.
63. Giere, O. 1981. The gutless marine oligochaete Phallodrilus leukodermatus. Structural studies on an aberrant tubificid associated with bacteria. Mar. Ecol. Prog. Ser. 5: 353 357.
64. Giere, O. 1979. Studies on marine oligochaeta from Bermuda, with emphasis on new Phallodrilus-species (Tubificidae). Cah. Biol. Mar. 20: 301 314.
65. Giere, O.,, N. M. Conway,, G. Gastrock,, and C. Schmidt. 1991. “Regulation” of gutless annelid ecology by endosymbiotic bacteria. Mar. Ecol. Prog. Ser. 68: 287 299.
66. Giere, O.,, and C. Langheld. 1987. Structural organization, transfer and biological fate of endosymbiotic bacteria in gutless oligochaetes. Mar. Biol. 93: 641 650.
67. Giere, O.,, R. Windoffer,, and E. C. Southward. 1995. The bacterial endosymbiosis of the gutless nematode, Astomonema southwardorum: ultrastructural aspects. J. Mar. Biol. Assoc. 75: 153 164.
68. Gillan, D. C.,, and N. Dubilier. 2004. Novel epibiotic thiothrix bacterium on a marine amphipod. Appl. Environ. Microbiol. 70: 3772 3775.
69. Girguis, P. R.,, J. J. Childress,, J. K. Freytag,, K. Klose,, and R. Stuber. 2002. Effects of metabolite uptake on proton- equivalent elimination by two species of deep-sea vestimentiferan tubeworm, Riftia pachyptila and Lamellibrachia cf. luymesi: proton elimination is a necessary adaptation to sulfide-oxidizing chemoautotrophic symbionts. J. Exp. Biol. 205: 3055 3066.
70. Glaeser, J.,, and J. Overmann. 2004. Biogeography, evolution, and diversity of epibionts in phototrophic consortia. Appl. Environ. Microbiol. 70: 4821 4830.
71. Goffredi, S. K.,, J. J. Childress,, F. H. Lallier,, and N. T. Desaulniers. 1999. The internal ion composition of the hydrothermal vent tubeworm Riftia pachyptila; evidence for the elimination of SO42- and H+ and for a Cl-/HCO3- shift. Phys. Biochem. Zool. 72: 296 306.
72. Goffredi, S. K.,, V. J. Orphan,, G. W. Rouse,, L. Jahnke,, T. Embaye,, K. Turk,, R. Lee,, and R. C. Vrijenhoek. 2005. Evolutionary innovation: a bone-eating marine symbiosis. Environ. Microbiol. 7: 1369 1378.
73. Goryshin, I. Y.,, J. Jendrisak,, L. M. Hoffman,, R. Meis,, and W. S. Reznikoff. 2000. Insertional transposon mutagenesis by electroporation of released Tn5 transposition complexes. Nat. Biotechnol. 18: 97 100.
74. Graber, J. R.,, J. R. Leadbetter,, and J. A. Breznak. 2004. Description of Treponema azotonutricium sp. nov. and Treponema primitia sp. nov., the first spirochetes isolated from termite guts. Appl. Environ. Microbiol. 70: 1315 1320.
75. Graf, J. 1999. Symbiosis of Aeromonas veronii biovar sobria and Hirudo medicinalis, the medicinal leech: a novel model for digestive tract associations. Infect. Immun. 67: 1 7.
76. Haddad, A.,, F. Camacho,, P. Durand,, and S. C. Cary. 1995. Phylogenetic characterization of the epibiotic bacteria associated with the hydrothermal vent polychaete Alvinella pompejana. Appl. Environ. Microbiol. 61: 1679 1687.
77. Haygood, M. G.,, and S. K. Davidson. 1997. Smallsubunit rRNA genes and in situ hybridization with oligonucleotides specific for the bacterial symbionts in the larvae of the bryzoan Bugula nertitina and proposal of “ Candidatus Endobugula sertula.” Appl. Environ. Microbiol. 63: 4612 4616.
78. Hentschel, U.,, and M. Steinert. 2001. Symbiosis and pathogenesis: common themes, different outcomes. Trends Microbiol. 9: 585.
79. Heungens, K.,, C. E. Cowles,, and H. Goodrich-Blair. 2002. Identification of Xenorhabdus nematophila genes required for mutualistic colonization of Steinernema carpocapsae nematodes. Mol. Microbiol. 45: 1337 1353.
80. Hooper, L. V.,, and J. I. Gordon. 2001. Commensal hostbacterial relationships in the gut. Science 292: 1115 1118.
81. Hooper, L. V.,, M. H. Wong,, A. Thelin,, L. Hansson,, P. G. Falk,, and J. I. Gordon. 2001. Molecular analysis of commensal host-microbial relationships in the intestine. Science 291: 881 884.
82. Hooper, L. V.,, J. Xu,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96: 9833 9838.
83. Horton, R. M.,, Z. L. Cai,, S. N. Ho,, and L. R. Pease. 1990. Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. BioTechniques 8: 528 535.
84. Hubber, A.,, A. C. Vergunst,, J. T. Sullivan,, P. J. J. Hooykaas,, and C. W. Ronson. 2004. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol. 54: 561 574.
85. Hungate, R. E. 1939. Experiments on the nutrition of Zootermopsis. III. The anaerobic carbohydrate dissimilation by the intestinal protozoa. Ecology 20: 230 245.
86. Jahnke, L. L.,, R. E. Summons,, L. M. Dowling,, and K. D. Zahiralis. 1995. Identification of methanotrophic lipid biomarkers in cold-seep mussel gills: chemical and isotopic analysis. Appl. Environ. Microbiol. 61: 576 582.
87. Jeon, K. W. 2004. Genetic and physiological interactions in the amoeba-bacteria symbiosis. J. Eukaryot. Microbiol. 51: 502 508.
88. Jones, B. W.,, and M. K. Nishiguchi. 2004. Counterillumination in the Hawaiian bobtail squid, Euprymna scolopes Berry (Mollusca: Cephalopoda). Mar. Biol. 144: 1151 1155.
89. Karunakaran, R.,, T. H. Mauchline,, A. H. Hosie,, and P. S. Poole. 2005. A family of promoter probe vectors incorporating autofluorescent and chromogenic reporter proteins for studying gene expression in Gram-negative bacteria. Microbiology 151: 3249 3256.
90. Kimbell, J. R.,, and M. J. McFall-Ngai. 2004. Symbiontinduced changes in host actin during the onset of a beneficial animal-bacterial association. Appl. Environ. Microbiol. 70: 1434 1441.
91. Koch, B.,, L. E. Jensen,, and O. Nybroe. 2001. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Methods 45: 187 195.
92. Koropatnick, T. A.,, J. T. Engle,, M. A. Apicella,, E. V. Stabb,, W. E. Goldman,, and M. J. McFall-Ngai. 2004. Microbial factor-mediated development in a host-bacterial mutualism. Science 306: 1186 1188.
93. Kranz, R. G.,, K. K. Gabbert,, and M. T. Madigan. 1997. Positive selection systems for discovery of novel polyester biosynthesis genes based on fatty acid detoxification. Appl. Environ. Microbiol. 63: 3010 3013.
94. Krieger, J.,, O. Giere,, and N. Dublier. 2000. Localization of RubisCO and sulfur in endosymbiotic bacteria of the gutless marine oligochaete Inanidrilus leukodermatus (Annelida). Mar. Biol. 137: 239 244.
95. Kudo, T.,, M. Ohkuma,, S. Moriya,, S. Noda,, and K. Ohtoko. 1998. Molecular phylogenetic identification of the intestinal anaerobic microbial community in the hindgut of the termite, Reticulitermes speratus, without cultivation. Extremophiles 2: 155 161.
96. Lambertsen, L.,, C. Sternberg,, and S. Molin. 2004. Mini-Tn7 transposons for site-specific tagging of bacteria with fluorescent proteins. Environ. Microbiol. 6: 726 732.
97. Land, J. v. d.,, and A. Nørrevang. 1975. The systematic position of Lamellibrachia [sic] (Annelida, Vestimentifera). Zeit. Zool. Syst. Evol. 1: 86 101.
98. Lane, D. J.,, B. Pace,, G. J. Olsen,, D. A. Stahl,, M. L. Sogin,, and N. R. Pace. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc. Natl. Acad. Sci. USA 82: 6955 6959.
99. Lang, A. S.,, and J. T. Beatty. 2001. The gene transfer agent of Rhodobacter capsulatus and “constitutive transduction” in prokaryotes. Arch. Microbiol. 175: 241 249.
100. Leadbetter, J. R.,, and J. A. Breznak. 1996. Physiological ecology of Methanobrevibacter cuticularis sp. nov. and Methanobrevibacter curvatus sp. nov., isolated from the hindgut of the termite Reticulitermes flavipes. Appl. Environ. Microbiol. 62: 3620 3631.
101. Leadbetter, J. R.,, L. D. Crosby,, and J. A. Breznak. 1998. Methanobrevibacter filiformis sp. nov., a filamentous methanogen from termite hindguts. Arch. Microbiol. 169: 287 292.
102. Leadbetter, J. R.,, T. M. Schmidt,, J. R. Graber,, and J. A. Breznak. 1999. Acetogenesis from H2 plus CO2 by spirochetes from termite guts. Science 283: 686 689.
103. Lee, K.-H.,, and E. G. Ruby. 1994. Effects of the squid host on the abundance and distribution of symbiotic Vibrio fischeri in nature. Appl. Environ. Microbiol. 60: 1565 1571.
104. Leidy, J. 1881. The parasites of the termites. J. Nat. Acad. Sci. (Philadelphia) 8: 425 447.
105. Lilburn, T. G.,, K. S. Kim,, N. E. Ostrom,, K. R. Byzek,, J. R. Leadbetter,, and J. A. Breznak. 2001. Nitrogen fixation by symbiotic and free-living spirochetes. Science 292: 2495 2498.
106. Lim, G. E.,, and M. G. Haygood. 2004. Candidatus Endobugula glebosa,” a specific bacterial symbiont of the marine bryzoan Bugula simplex. Appl. Environ. Microbiol. 70: 4921 4929.
107. Limpens, E.,, C. Franken,, P. Smit,, J. Willemse,, T. Bisseling,, and R. Geurts. 2003. LysM domain receptor kinases regulating rhizobial nod factor-induced infection. Science 302: 630 633.
108. Loper, J. L.,, and S. E. Lindow. 1994. A biological sensor for iron available to bacteria in their habitats on plant surfaces. Appl. Environ. Microbiol. 60: 1934 1941.
109. Loy, A.,, A. Lehner,, N. Lee,, J. Adamczyk,, H. Meier,, J. Ernst,, K.-H. Schleifer,, and M. Wagner. 2002. Oligonucleotide microarray for 16S rRNA gene-based detection of all recognized lineages of sulfate-reducing prokaryotes in the environment. Appl. Environ. Microbiol. 68: 5064 5081.
110. Manz, W.,, R. Amann,, W. Ludwig,, M. Wagner,, and K.-H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of Proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15: 593 600.
111. Margulis, L. 1970. Origin of Eukaryotic Cells: Evidence and Research Implications for a Theory of the Origin and Evolution of Microbial, Plant, and Animal Cells on the Precambrian Earth. Yale University Press, New Haven, CT.
112. Martens, E. C.,, K. Heungens,, and H. Goodrich-Blair. 2003. Early colonization events in the mutualistic association between Steinernema carpocapsae nematodes and Xenorhabdus nematophila bacteria. J. Bacteriol. 185: 3147 3154.
113. Martinez-Torres, D.,, C. Buades,, A. Latorre,, and A. Moya. 2001. Molecular systematics of aphids and their primary endosymbionts. Mol. Phylogen. Evol. 20: 437 449.
114. Matson, E. G.,, M. G. Thompson,, S. B. Humphrey,, R. L. Zuerner,, and T. B. Stanton. 2005. Identification of genes of VSH-1, a prophage-like gene transfer agent of Brachyspira hyodysenteriae. J. Bacteriol. 187: 5885 5892.
115. Matsusaki, H.,, S. Manji,, K. Taguchi,, M. Kato,, T. Fukui,, and Y. Doi. 1998. Cloning and molecular analysis of the poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- co-3-hydroxyalkanoate) biosynthesis genes in Pseudomonas sp. strain 61-3. J. Bacteriol. 180: 6459 6467.
116. Matz, M.,, D. Shagin,, E. Bogdanova,, O. Britanova,, S. Lukyanov,, L. Diatchenko,, and A. Chenchik. 1999. Amplification of cDNA ends based on template-switching effect and step-out PCR. Nucleic. Acids Res. 27: 1558 1560.
117. Mazmanian, S. K.,, C. H. Liu,, A. O. Tzianabos,, and D. L. Kasper. 2005. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122: 107 118.
118. McFall-Ngai, M. J.,, and M. K. Montgomery. 1990. The anatomy and morphology of the adult bacterial light organ of Euprymna scolopes Berry (Cephalopoda: Sepiolidae). Biol. Bull. 179: 332 339.
119. Metcalf, W. W.,, W. Jiang,, L. L. Daniels,, S. K. Kim,, A. Haldimann,, and B. L. Wanner. 1996. Conditionally replicative and conjugative plasmids carrying lacZ alpha for cloning, mutagenesis, and allele replacement in bacteria. Plasmid 35: 1 13.
120. Millikan, D. S.,, H. Felbeck,, and J. L. Stein. 1999. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl. Environ. Microbiol. 65: 3129 3133.
121. Mitra, R. M.,, and S. R. Long. 2004. Plant and bacterial symbiotic mutants define three transcriptionally distinct stages in the development of the Medicago truncatula/ Sinorhizobium meliloti symbiosis. Plant Physiol. 134: 595 604.
122. Mitra, R. M.,, S. L. Shaw,, and S. R. Long. 2004. Six nonnodulating plant mutants defective for Nod factorinduced transcriptional changes associated with the legume-rhizobia symbiosis. Proc. Natl. Acad. Sci. USA 101: 10217 10222.
123. Moran, N. A.,, and A. Mira. 2001. The process of genome shrinkage in the obligate symbiont Buchnera aphidicola. Genome. Biol. 2: research0054.1 0054.12.
124. Neef, A. 1997. Anwendung der in situ Einzelzell- Identifizierung von Bakterien zur Populationsanalyse in komplexen mikrobiellen Biozönosen. Technische Universität München, Munich, Germany.
125. Nyholm, S. V.,, and M. J. McFall-Ngai. 2004. The winnowing: establishing the squid-vibrio symbiosis. Nat. Rev. Microbiol. 2: 632 642.
126. Odelson, D. A.,, and J. A. Breznak. 1983. Volatile fatty acid production by the hind-gut microbiota of xylophagous termites. Appl. Environ. Microbiol. 45: 1602 1613.
127. Ohkuma, M.,, and T. Kudo. 1996. Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. Appl. Environ. Microbiol. 62: 461 468.
128. Ohkuma, M.,, S. Noda,, R. Usami,, K. Horikoshi,, and T. Kudo. 1996. Diversity of nitrogen fixation genes in the symbiotic intestinal microflora of the termite Reticulitermes speratus. Appl. Environ. Microbiol. 62: 2747 2752.
129. Orphan, V. J.,, K. U. Hinrichs,, W. Ussler III,, C. K. Paull,, L. T. Taylor,, S. P. Sylva,, J. M. Hayes,, and E. F. Delong. 2001. Comparative analysis of methane-oxidizing archaea and sulfate-reducing bacteria in anoxic marine sediments. Appl. Environ. Microbiol. 67: 1922 1934.
130. Orphan, V. J.,, C. H. House,, K.-U. Hinrichs,, K. D. McKeegan,, and E. F. DeLong. 2001. Methane-consuming Archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293: 484 487.
131. Orphan, V. J.,, C. H. House,, K.-U. Hinrichs,, K. D. McKeegan,, and E. F. DeLong. 2002. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments. Proc. Natl. Acad. Sci. USA 99: 7663 7668.
132. Ott, J., 1995. Sulfide symbioses in shallow sands, p. 143 147. In A. Eleftheriou,, A. Ansell,, and C. Smith (ed.), Biology and Ecology of Shallow Coastal Waters. Olsen & Olsen, Fredensborg, Denmark.
133. Ott, T.,, J. T. van Dongen,, C. Gunther,, L. Krusell,, G. Desbrosses,, H. Vigeolas,, V. Bock,, T. Czechowski,, P. Geigenberger,, and M. K. Udvardi. 2005. Symbiotic leghemoglobins are crucial for nitrogen fixation in legume root nodules but not for general plant growth and development. Curr. Biol. 15: 531 535.
134. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734 740.
135. Pasteris, J.,, J. Freeman,, S. Goffredi,, and K. Buck. 2001. Raman spectroscopic and laser scanning confocal microscopic analysis of sulfur in living sulfur-precipitating marine bacteria. Chem. Geol. 180: 3 18.
136. Pernthaler, A.,, and R. Amann. 2004. Simultaneous fluorescence in situ hybridization of mRNA and rRNA in environmental bacteria. Appl. Environ. Microbiol. 70: 5426 5433.
137. Pernthaler, A.,, J. Pernthaler,, and R. Amann,. 2004. Sensitive multi-color fluorescence in situ hybridization for the identification of environmental microorganisms. In G. Kowalchuk,, F. J. de Bruijn,, I. M. Head,, A. D. L. Akkermans,, and J. D. van Elsas (ed.), Molecular Microbial Ecology Manual. Kluwer Academic Press, Boston, MA.
138. Pernthaler, J.,, F. O. Glöckner,, W. Schönhuber,, and R. Amann,. 2001. Fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes, p. 207 226. In J. Paul (ed.), Methods in Microbiology, vol. 30. Academic Press, San Diego, CA.
139. Peters, J. E.,, and N. L. Craig. 2000. Tn 7 transposes proximal to DNA double-strand breaks and into regions where chromosomal DNA replication terminates. Mol. Cell 6: 573 582.
140. Polz, M. F.,, and C. M. Cavanaugh. 1995. Dominance of one bacterial phylotype at a Mid-Atlantic Ridge hydrothermal vent site. Proc. Natl. Acad. Sci. USA 92: 7232 7236.
141. Polz, M. F.,, D. L. Distel,, B. Zarda,, R. Amann,, H. Felbeck,, J. A. Ott,, and C. M. Cavanaugh. 1994. Phylogenetic analysis of a highly specific association between ectosymbiotic, sulfur-oxidizing bacteria and a marine nematode. Appl. Environ. Microbiol. 60: 4461 4467.
142. Preston, G. M. 2004. Plant perceptions of plant growthpromoting Pseudomonas. Philos. Trans. R. Soc. Lond. B 359: 907 918.
143. Racker, E. 1957. The reductive pentose phosphate cycle. I. Phosphoribulokinase and ribulose diphosphate carboxylase. Arch. Biochem. Biophys. 69: 300 310.
144. Radutoiu, S.,, L. H. Madsen,, E. B. Madsen,, H. H. Felle,, Y. Umehara,, M. Gronlund,, S. Sato,, Y. Nakamura,, S. Tabata,, N. Sandal,, and J. Stougaard. 2003. Plant recognition of symbiotic bacteria requires two LysM receptorlike kinases. Nature 425: 585 592.
145. Rakoff-Nahoum, S.,, J. Paglino,, F. Eslami-Varzaneh,, and S. Edberg. 2004. Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118: 229 241.
146. Rawls, J. F.,, B. S. Samuel,, and J. I. Gordon. 2004. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101: 4596 4601.
147. Richards, K. S.,, T. P. Fleming,, and B. G. M. Jamieson. 1982. An ultrastructural study of the distal epidermis and the occurrence of subcuticular bacteria in the gutless tubificid Phallodrilus albidus (Oligochaeta : Annelida). Aust. J. Zool. 30: 327 336.
148. Ruby, E. G.,, M. Urbanowski,, J. Campbell,, A. Dunn,, M. Faini,, R. Gunsalus,, P. Lostroh,, C. Lupp,, J. McCann,, D. Millikan,, A. Schaefer,, E. Stabb,, A. Stevens,, K. Visick,, C. Whistler,, and E. P. Greenberg. 2005. Complete genome sequence of Vibrio fischeri: a symbiotic bacterium with pathogenic congeners. Proc. Natl. Acad. Sci. USA 102: 3004 3009.
149. Russel, N. J.,, and D. S. Nichols. 1999. Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145: 767 779.
150. Schedel, J.,, and H. Truper. 1980. Anaerobic oxidation of thiosulfate and elemental sulfur in Thiobacillus denitrificans. Arch. Microbiol. 124: 205 210.
151. Schramm, A.,, S. K. Davidson,, J. A. Dodsworth,, H. L. Drake,, D. A. Stahl,, and N. Dubilier. 2003. Acidovoraxlike symbionts in the nephridia of earthworms. Environ. Microbiol. 5: 804 809.
152. Schwedock, J.,, T. L. Harmer,, K. M. Scott,, H. J. Hektor,, A. P. Seitz,, M. C. Fontana,, D. L. Distel,, and C. M. Cavanaugh. 2004. Characterization and expression of genes from the RubisCO gene cluster of the chemoautotrophic symbiont of Solemya velum: cbbLSQO. Arch. Microbiol. 182: 18 29.
153. Silhavy, T. J.,, M. J. Casadaban,, H. A. Shuman,, and J. R. Beckwith. 1976. Conversion of beta-galactosidase to a membrane-bound state by gene fusion. Proc. Natl. Acad. Sci. USA 73: 3423 3427.
154. Sipe, A. S.,, A. E. Wilbur,, and S. C. Cary. 2000. Bacterial symbiont transmission in the wood-boring shipworm Bankia setacea (Bivalvia: Teredinidae). Appl. Environ. Microbiol. 66: 1685 1691.
155. Small, A. L.,, and M. J. McFall-Ngai. 1999. Halide peroxidase in tissues that interact with bacteria in the host squid Euprymna scolopes. J. Cell Biochem. 72: 445 457.
156. Spaink, H. P. 2000. Root nodulation and infection factors produced by rhizobial bacteria. Annu. Rev. Microbiol. 54: 257 288.
157. Stappenbeck, T. S.,, L. V. Hooper,, and J. I. Gordon. 2002. Developmental regulation of intestinal angiogenesis by indigenous microbes via Paneth cells. Proc. Natl. Acad. Sci. USA 99: 15451 15455.
158. Stingl, U.,, A. Maass,, R. Radek,, and A. Brune. 2004. Symbionts of the gut flagellate Staurojoenina sp. from Neotermes cubanus represent a novel, termite-associated lineage of Bacteroidales: description of ‘ Candidatus Vestibaculum illigatum.’ Microbiology 150: 2229 2235.
159. Stougaard, J. 2001. Genetics and genomics of root symbiosis. Curr. Opin. Plant Biol. 4: 328 335.
160. Streams, M. E.,, C. R. Fisher,, and A. Fiala-Médioni. 1997. Methanotrophic symbiont location and fate of carbon incorporated from methane in a hydrocarbon seep mussel. Mar. Biol 129: 465 476.
161. Suzuki, Y.,, T. Sasaki,, M. Suzuki,, Y. Nogi,, T. Miwa,, K. Takai,, K. H. Nealson,, and K. Horikoshi. 2005. Novel chemoautotrophic endosymbiosis between a member of the Epsilonproteobacteria and the hydrothermal-vent gastropod Alviniconcha aff. hessleri (Gastropoda: Provannidae) from the Indian Ocean. Appl. Environ. Microbiol. 71: 5440 5450.
162. Tamm, S. L. 1982. Flagellated ectosymbiotic bacteria propel a eucaryotic cell. J. Cell Biol. 94: 697 709.
163. Tomarev, S. I.,, R. D. Zinovieva,, V. M. Weis,, A. B. Chepelinsky,, J. Piatigorsky,, and M. J. McFall-Ngai. 1993. Abundant mRNAs in the squid light organ encode proteins with a high similarity to mammalian peroxidases. Gene 132: 219 226.
164. Uchiumi, T.,, T. Ohwada,, M. Itakura,, H. Mitsui,, N. Nukui,, P. Dawadi,, T. Kaneko,, S. Tabata,, T. Yokoyama,, K. Tejima,, K. Saeki,, H. Omori,, M. Hayashi,, T. Maekawa,, R. Sriprang,, Y. Murooka,, S. Tajima,, K. Simomura,, M. Nomura,, A. Suzuki,, Y. Shimoda,, K. Sioya,, M. Abe,, and K. Minamisawa. 2004. Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J. Bacteriol. 186: 2439 2448.
165. Van Dover, C. L.,, B. Fry,, J. F. Grassle,, S. Humphris,, and P. A. Rona. 1988. Feeding biology of the shrimp Rimicaris exoculata at hydrothermal vents on the Mid- Atlantic Ridge. Mar. Biol. 98: 209 216.
166. van Rhijn, P.,, and J. Vanderleyden. 1995. The Rhizobium-plant symbiosis. Microbiol. Rev. 59: 124 142.
167. Vetter, R. D. 1985. Elemental sulfur in the gills of three species of clams containing chemoautotrophic symbiotic bacteria: a possible inorganic energy storage compound. Mar. Biol. 88: 33 42.
168. Viprey, V.,, A. Del Greco,, W. Golinowski,, W. J. Broughton,, and X. Perret. 1998. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 28: 1381 1389.
169. Walder, M. K.,, and J. J. Mekalanos. 1996. Lysogenic conversion by a filamentous bacteriophage encoding cholera toxin. Science 272: 1910 1914.
170. Wang, Y.,, U. Stingl,, F. Anton-Erxleben,, S. Geisler,, A. Brune,, and M. Zimmer. 2004. Candidatus Hepatoplasma crinochetorum,” a new, stalk-forming lineage of Mollicutes colonizing the midgut glands of a terrestrial isopod. Appl. Environ. Microbiol. 70: 6166 6172.
171. Washnick, M.,, and D. M. Lane. 1971. Ribulose biphosphate carboxylase from spinach leaves. Methods Enzymol. 23: 570 577.
172. Waterbury, J. B.,, C. B. Calloway,, and R. D. Turner. 1983. A cellulolytic-nitrogen fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). Science 221: 1401 1403.
173. Waters, E.,, M. J. Hohn,, I. Ahel,, D. E. Graham,, M. D. Adams,, M. Barnstead,, K. Y. Beeson,, L. Bibbs,, R. Bolanos,, M. Keller,, K. Kretz,, X. Lin,, E. Mathur,, J. Ni,, M. Podar,, T. Richardson,, G. G. Sutton,, M. Simon,, D. Soll,, K. O. Stetter,, J. M. Short,, and M. Noordewier. 2003. The genome of Nanoarchaeum equitans: insights into early archaeal evolution and derived parasitism. Proc. Natl. Acad. Sci. USA 100: 12984 12988.
174. Wenzel, M.,, R. Radek,, G. Brugerolle,, and H. König. 2003. Identification of the ectosymbiotic bacteria of Mixotricha paradoxa involved in movement symbiosis. Eur. J. Protistol. 39: 11 24.
175. Wilmot, D. B. J.,, and R. D. Vetter. 1990. The bacterial symbiont from the hydrothermal vent tubeworm Riftia pachyptila is a sulfide specialist. Mar. Biol. 106: 273 283.
176. Wilson, K., 1990. Preparation of genomic DNA from bacteria, p. 2.4.1 2.4.5. In F. M. Ausubel,, R. Brent,, R. E. Kingston,, D. D. Moore,, J. G. Seidman,, J. A. Smith,, and K. Struhl (ed.), Current Protocols in Molecular Biology. Greene Publishing Associates and Wiley Intersciences, New York, NY.
177. Wilson, K. J.,, A. Sessitsch,, J. C. Corbo,, K. E. Giller,, A. D. Akkermans,, and R. A. Jefferson. 1995. beta- Glucuronidase (GUS) transposons for ecological and genetic studies of rhizobia and other gram-negative bacteria. Microbiology 141: 1691 1705.
178. Wong, S. M.,, and J. J. Mekalanos. 2000. Genetic footprinting with mariner-based transposition in Pseudomonas aeruginosa. Proc. Natl. Acad. Sci. USA 97: 10191 10196.


Generic image for table

Examples of microbial symbioses

Citation: Ciche T, Goffredi S. 2007. General Methods To Investigate Microbial Symbioses, p 394-420. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error