Chapter 25 : Lignin and Lignin-Modifying Enzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Lignin and Lignin-Modifying Enzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap25-2.gif


There is increasing worldwide interest in the use of ligninolytic fungi for bioremediation purposes and for biopulping applications. Three families of fungal enzymes, designated lignin-modifying enzymes (LMEs), consist of lignin peroxidases (LiPs), manganese peroxidases (MnPs), and laccases (LACs), and these play a key role in lignin biotransformation. Demethoxylation is the most obvious consequence of attack on lignin by these fungi. Other methods such as nuclear magnetic resonance spectroscopy have also been used to study the degradation of polymeric lignin, but these methods are not easily amenable for detailed physiological and biochemical studies on white rot fungi and their enzymes. The disadvantage in the use of dimeric lignin model compounds is the fact that, unlike the lignin polymer, they can be taken up and metabolized intracellularly by microorganisms, which can make it difficult to determine whether the degradation products observed really reflect actual ligninolytic activity. Therefore, ideally, lignin model compounds should be sufficiently macromolecular but at the same time facilitate efficient product analysis. A heme peroxidase different from other microbial, plant, and animal peroxidases, termed versatile peroxidase (VP), was discovered in and species. Hydroxylation of both phenolic and nonphenolic lignin resulting in new phenolic substructures on the lignin polymer may make it susceptible to attack by LAC or MnP.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Catalytic cycle of lignin peroxidase (LiP) in the presence (left panel) and absence (right panel) of a mediator, as exemplified by the veratryl alcohol in this figure. Symbols: LiP, native lignin peroxidase; LiP I, compound I; LiP II, compound II; VA, veratryl alcohol; VAD, veratraldehyde; SH, reducing substrate; S•, substrate cation radical.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Oxidation of VA to veratraldehyde by LiP in the presence of HO.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Catalytic cycle of manganese-dependent peroxidase (MnP). See the text for details.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

MnP activity assay scheme.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ander, P.,, C. Mishra,, R. Farrel,, and K.-E. Eriksson. 1990. Redox interactions in lignin degradation: interaction between laccase, different peroxidases and cellobiose: quinone oxidoreductase. J. Biotechnol. 13: 189 198.
2. Archibald, F. S. 1992. A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 58: 3110 3116.
3. Aro, N.,, T. Pakula,, and M. Pentilä. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS. Microbiol. Rev. 29: 719 739.
4. Baldrian, P. 2006. Fungal laccases—occurrence and properties. FEMS. Microbiol. Rev. 30: 215 242.
5. Bao, W. L.,, Y. Fukushima,, K. A. Jensen,, M. A Moen,, and K. E. Hammel. 1994. Oxidative-degradation of nonphenolic lignin during lipid-peroxidation by fungal manganese peroxidase. FEBS. Lett. 354: 297 300.
6. Barr, D. P.,, and S. D. Aust. 1994. Conversion of lignin peroxidase compound III to active enzyme by cation radicals. Arch. Biochem. Biophys. 312: 511 515.
7. Barr, D. P.,, M. M. Shah,, T. A. Grover,, and S. D. Aust. 1992. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 298: 480 485.
8. Blanchette, R. A. 1991. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 29: 381 398.
9. Blanchette, R. A. 1995. Degradation of the lignocellulose complex in wood. Can. J. Bot. 7351: 999 1010.
10. Blanchette, R. A. 2000. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 46: 189 204.
11. Boominathan, K.,, and C. A. Reddy,. 1992. Lignin degradation by fungi: biotechnological applications, p. 763 822. In D. K. Arora,, K. G. Mukerji,, and R. P. Elander (ed.), Handbook of Applied Mycology, vol.4. Biotechnology. Marcel Dekker Inc, New York, N.Y..
12. Breen, A.,, and F. L. Singleton. 1999. Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 10: 252 258.
13. Buswell, J. A.,, and O. Odier. 1987. Lignin biodegradation. CRC Crit. Rev. Biotechnol. 6: 1 60.
14. Cai, D.,, and M. Tien. 1993. Lignin-degrading peroxidases of Phanerochaete chrysosporium. J. Biotechnol. 30: 79 90.
15. Call, H. P.,, and I. Mucke. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems [Lignozym(R)- process]. J. Biotechnol. 53: 163 202.
16. Camarero, S.,, S. Sarkar,, F. J. Ruiz-Duenas,, M. J. Martinez,, and A. T. Martinez. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274: 10324 10330.
17. Candeias, L. P.,, and P. J. Harvey. 1995. Lifetime and reactivity of the veratryl alcohol radical-cation—implications for lignin peroxidase catalysis. J. Biol. Chem. 270: 16745 16748.
18. Castillo, M. D.,, P. J. Stenstrom,, and P. Ander. 1994. Determination of manganese peroxidase activity with 3- methyl-2-benzothiazolinone hydrazone and 3-(dimethylamino) benzoic acid. Anal. Biochem. 218: 399 404.
19. Chung, N.,, and S. D. Aust. 1995. Inactivation of lignin peroxidase by hydrogen-peroxide during the oxidation of phenols. Arch. Biochem. Biophys. 316: 851 855.
20. Crawford, R. L. 1981. Lignin Biodegradation and Transformation. John Wiley & Sons, Inc., New York, N.Y..
21. Crestini, C.,, L. Jurasek,, and D. S. Argyropoulos. 2003. On the mechanism of laccase-mediator system in the oxidation of lignin. Chem. Eur. J. 9: 5371 5378.
22. Cullen, D.,, and P. J. Kersten. 2004. Enzymology and molecular biology of lignin degradation, p. 249 273. In R. Brambl and G. A. Marzluf (ed.), The Mycota III. Biochemistry and Molecular Biology, 2nd ed. Springer- Verlag, Berlin, Germany.
23. Davin, L. B.,, and N. G. Lewis. 2006. Lignin primary structures and dirigent sites. Curr. Opin. Biotechnol. 16: 407 415.
24. D’Souza, T. M.,, C. S. Merritt,, and C. A. Reddy. 1999. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl. Environ. Microbiol. 65: 5307-– 5313.
25. Durán, N.,, M. A. Rosa,, A. Dannibale,, and L. Gianfreda. 2002. Applications of laccases and tyrosinases (phenol oxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31: 907 931.
26. Eggert, C.,, U. Temp,, J. F. Dean,, and K.-E. Eriksson. 1997. A fungal metabolite mediates degradation of nonphenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391: 144 148.
27. Eggert, C.,, U. Temp,, and K.-E. Eriksson. 1997. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 407: 89 92.
28. Enoki, M.,, T. Watanabe,, S. Nakagame,, K. Koller,, K. Messner,, Y. Honda,, and M. Kuwahara. 1999. Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiol. Lett. 180: 205 211.
29. Eriksson, K.-E.,, R. A. Blanchette,, and P. Ander. 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, New York, N.Y..
30. Flournoy, D. S.,, J. A. Paul,, T. K. Kirk,, and T. L. Highley. 1993. Changes in the size and volume of pores in sweetgum wood during simultaneous rot by Phanerochaete chrysosporium Burds. Holzforschung 47: 297 301.
31. Forney, L. J.,, C. A. Reddy,, M. Tien,, and S. D. Aust. 1982. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J. Biol. Chem. 257: 11455 11462.
32. Gadd, G. M. (ed.). 2001. Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
33. Gamble, G. R.,, A. Sethuraman,, D. E. Akin,, and K.-E. Eriksson. 1994. Biodegradation of lignocellulose in Bermuda grass by white-rot fungi analyzed by solid-state C- 13 nuclear magnetic resonance. Appl. Environ. Microbiol. 60: 3138 3144.
34. Geng, X.,, and K. Li. 2002. Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol. 60: 342 346.
35. Gilbertson, R. L. 1980. Wood-rotting fungi of North America. Mycologia 72: 1 49.
36. Glenn, J. K.,, and M. H. Gold. 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242: 329 341.
37. Glumoff, T.,, P. J. Harvey,, S. Molinari,, M. Goble,, G. Frank,, J. M. Palmer,, D. G. Smit,, and M. S. A. Leisola. 1990. Lignin peroxidase from Phanerochaete chrysosporium. Molecular and kinetic characterization of isozymes. Eur. J. Biochem. 187: 515 520.
38. Gold, M. H.,, and M. Alic. 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 57: 605 622.
39. Gold, M. H.,, H. Wariishi,, and K. Valli. 1989. Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. ACS Symp. Ser. 389: 127 140.
40. Gomez-Toribio, V.,, A. T. Martinez,, M. J. Martinez,, and F. Guillen. 2001. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence of Mn2_. Eur. J. Biochem. 268: 4787 4793.
41. Goodwin, D. C.,, S. D. Aust,, and T. A. Grover. 1995. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry 34: 5060 5065.
42. Hammel, K. E.,, K. A. Jensen,, M. D. Mozuch,, L. L. Landucci,, M. Tien,, and E. A. Pease. 1993. Ligninolysis by a purified lignin peroxidase. J. Biol. Chem. 268: 12274 12281.
43. Hammel, K. E.,, A. N. Kapich,, K. A. Jensen, Jr.,, and Z. C. Ryan. 2002. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30: 445 453.
44. Harkin, M.,, and J. R. Obst. 1973. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experientia 29: 381 387.
45. Harvey, P. J.,, and J. M. Palmer. 1990. Oxidation of phenolic compounds by ligninase. J. Biotechnol. 13: 169 180.
46. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi—production and role in lignin degradation. FEMS Microbiol. Rev. 13: 125 135.
47. Hatakka, A., 2001. Biodegradation of lignin, p. 129 184. In M. Hofrichter, and A. Steinbüchel (ed.), Biopolymers, vol. 1. Lignin, Humic Substances and Coal. Wiley-VCH, Weinheim, Germany.
48. Hatakka, A.,, T. Lundell,, M. Hofrichter,, and P. Maijala,. 2003. Manganese peroxidase and its role in the degradation of wood lignin, p. 230 243. In S. D. Mansfield, and J. N. Saddler (ed.), Applications of Enzymes to Lignocellulosics. ACS Symposium Series 855. Oxford University Press, Washington, D.C..
49. Higuchi, T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci. Technol. 24: 23 63.
50. Higuchi, T. 2004. Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase. Jpn. Acad. Ser. B 80: 204 214.
51. Higuchi, T.,, H.-M. Chang,, and T. K. Kirk (ed.). 1983. Recent Advances in Lignin Biodegradation Research. Unipublishers Co. LTD., Tokyo, Japan..
52. Hofrichter, M. 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb. Technol. 30: 454 466.
53. Ikehata, K.,, I. D. Buchanan,, and D. W. Smith. 2004. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J. Environ. Eng. Sci. 3: 1 19.
54. Jensen, K. A.,, W. L. Bao,, S. Kawai,, E. Srebotnik,, and K. E. Hammel. 1996. Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl. Environ. Microbiol. 62: 3679 3686.
55. Kapich, A.,, M. Hofrichter,, T. Vares,, and A. Hatakka. 1999. Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and C-14-labeled lignins. Biochem. Biophys. Res. Commun. 259: 212 219.
56. Kapich, A. N.,, K. A. Jensen,, and K. E. Hammel. 1999. Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett. 461: 115 119.
57. Kawai, S.,, K. A. Jensen,, W. Bao,, and K. E. Hammel. 1995. New polymeric model substrates for the study of microbial ligninolysis. Appl. Environ. Microbiol. 61: 3407 3414.
58. Kirk, T. K.,, and D. Cullen,. 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi, p. 273 307. In A. R. Young, and M. Akhtar (ed.), Environmentally Friendly Technologies for the Pulp and Paper Industry. John Wiley & Sons, Inc., New York, NY..
59. Kirk, T. K.,, and R. L. Farrell. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41: 465 505.
60. Krause, D. O.,, S. E. Denman,, R. I. Mackie,, M. Morrison,, A. L. Rae,, G. T. Attwood,, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology and genomics. FEMS Microbiol. Rev. 27: 663 693.
61. Leonowicz, A.,, and K. Grzywnowicz. 1981. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 3: 55 58.
62. Leonowicz, A.,, N. S. Cho,, J. Luterek,, A. Wilkolazka,, M. Wojtaswasilewska,, A. Matuszewska,, M. Hofrichter,, D. Wesenberg,, and J. Rogalski. 2001. Fungal laccases: properties and activity on lignin. J. Basic Microbiol. 41: 185 227.
63. Leontievsky, A.,, N. Myasoedova,, N. Pozdnyakova,, and L. Golovleva. 1997. ‘Yellow’ laccase of Pannus tigrinus oxidizes non-phenolic susbstrates without electron-transfer mediators. FEBS. Lett. 413: 446 448.
64. Lin, Y.,, and S. Tanaka. 2006. Ethanol fermentation from biomass resources. Appl. Microbiol. Biotechnol. 69: 627 642.
65. Lynd, H. R.,, W. H. VanZyl,, J. E. Mcbride,, and M. Laser. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16: 577 583.
66. Mai, C.,, W. Schorman,, O. Milstein,, and A. Hutterman. 2000. Enhanced stability of laccase in the presence of phenolic compounds. Appl. Microbiol. Biotechnol. 54: 510 514.
67. Makela, M.,, S. Galkin,, A. Hatakka,, and T. Lundell. 2002. Production of organic acid and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb. Technol. 30: 542 549.
68. Martinez, A. T. 2002. Molecular biology and structurefunction of lignin-degrading heme peroxidases. Enzyme Microb. Technol. 30: 425 444.
69. Martinez, A. T.,, M. Speranza,, F. J. Riz-Duenas,, P. Ferreira,, S. Camarero,, F. Guillen,, M. J. Martinez,, A. Gutierrez,, and J. C. del Rio. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8: 195 204.
70. Mayer, A. M.,, and R. C. Staples. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60: 551 565.
71. Mester, T.,, and J. A. Field. 1998. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. Biol. Chem. 273: 15412 15417.
72. Moen, M. A.,, and K. E. Hammel. 1994. Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl. Environ. Microbiol. 60: 1956 1961.
73. Mosier, N.,, C. Wyman,, B. Dale,, R. Elander,, Y. Y. Lee,, M. Holtzapple,, and M. Ladisch. 2005. Features of promising technologies for treatment of lignocellulosic biomass. Bioresour. Technol. 96: 673 686.
74. Ollikka, P.,, V. M. Leppanen,, T. Anttila,, and I. Suominen. 1995. Purification of major lignin peroxidase isoenzymes from Phanerochaete chrysosporium by chromatofocusing. Protein Expr. Purif. 6: 337 342.
75. Paszczynski, A.,, R. Crawford,, and V.-B. Huynh. 1986. Manganese peroxidase of Phanerochaete chrysosporium: purification. Methods Enzymol. 161: 264 270.
76. Pérez-Boada, M.,, F. J. Ruiz-Dvenas,, R. Pogni,, R. Basosi,, T. Choinowski,, M. J. Martínez,, K. Piontek,, and A. T. Martínez. 2005. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. J. Mol. Biol. 354: 385 402.
77. Reddy, C. A.,, and T. M. D’Souza. 1994. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol. Rev. 13: 137 152.
78. Reddy, C. A.,, and Z. Mathew,. 2001. Bioremediation potential of white-rot fungi, p 52-– 78. In G. M. Gadd (ed.), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
79. Renganathan, V.,, and M. H. Gold. 1986. Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 25: 1626 1631.
80. Rheinhammar, B., 1984. Laccase, p. 4 10. In R. Lontie (ed.), Copper Proteins and Copper Enzymes. CRC Press, Inc., Boca Raton, FL..
81. Rheinhammar, B.,, and T. K. Kirk. 1990. Comparison of lignin peroxidase, horseradish-peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 268: 475 480.
82. Rodriguez, C. S.,, and H. J. L. Toca. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv. 24: 500 513.
83. Rothschild, N.,, C. Novotny,, S. Sasek,, and C. G. Dosoretz. 2002. Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase. Enzyme Microb. Technol. 31: 627 633.
84. Roy, B. P.,, M. G. Paice,, F. S. Archibald,, S. K. Misra,, and L. E. Misiak. 1994. Creation of metal-complexing agents, reduction of manganese-dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose- quinone oxidoreductase from Trametes versicolor. J. Biol. Chem. 269: 19745 19750.
85. Ruiz-Duenas, F. J.,, S. Camarero,, M. Perez-Boada,, M. J. Martinez,, and A. T. Martinez. 2001. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29: 116 122.
86. Rypacek, V. 1977. Chemical composition of hemicelluloses as a factor participating in the substrate specificity of wood-destroying fungi. Wood Sci. Technol. 11: 59 67.
87. Scott, G. M.,, M. Akhtar,, M. J. Lentz,, T. K. Kirk,, and R. Swaney. 1998. New technology for papermaking: commercializing biopulping. Tappi J. 81: 220 225.
88. Shimada, M.,, D. B. Ma,, Y. Akamatsu,, and T. Hattori. 1994. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiol. Rev. 13: 285 296.
89. Solomon, E. I.,, U. M. Sundaram,, and T. E. Machonkin. 1996. Multicopper oxidases and oxygenases. Chem. Rev. 96: 2563 2605.
90. Srebotnik, E.,, K. A. Jensen, Jr.,, and K. E. Hammel. 1994. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc. Natl. Acad. Sci. USA 91: 12794 12797.
91. Srebotnik, E.,, and K. Messner. 1994. A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white-rot fungi. Appl. Environ. Microbiol. 60: 1383 1386.
92. Srebotnik, E.,, and K. Messner. 2001. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101: 3397 3413.
93. Tanaka, H.,, S. Itakura,, and A. Enoki. 1999. Hydroxyl radical generation by an extracellular low-molecularweight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J. Biotechnol. 75: 57 70.
94. Teunissen, P. J.,, and J. A. Field. 1998. 2-Chloro-1,4- dimethoxybenzene as a mediator of lignin peroxidase catalyzed oxidations. FEBS Lett. 439: 219 223.
95. Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiology 140: 19 26.
96. Tien, M.,, and K. Kirk. 1984. Lignin degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. USA 81: 2280 2284.
97. Tsukihara, T.,, Y. Honda,, T. Watanabe,, and T. Watanabe. 2006. Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Appl. Microbiol. Biotechnol. 71: 114 120.
98. Urzua, U.,, P. J. Kersten,, and R. Vicuna. 1998. Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl. Environ. Microbiol. 64: 68 73.
99. Verdin, J.,, R. Pogni,, A. Baeza,, M. C. Baratto,, R. Basosi,, and R. Vazquez-Duhalt. 2006. Mechanism of versatile peroxidase inactivation by Ca(2_) depletion. Biophys. Chem. 121: 163 170.
100. Ward, G.,, P. Belinky,, Y. Hadar,, I. Bilkis,, and C. G. Dosoretz. 2002. The influence of non-phenolic mediators and phenolic co-substrates on the oxidation of 4-bromophenol by lignin peroxidase. Enzyme Microb. Technol. 30: 490 498.
101. Ward, G.,, Y. Hadar,, I. Bilkis,, and C. G. Dosoretz. 2003. Mechanistic features of lignin peroxidase catalyzed oxidation of substituted phenols and 1,2-dimethoxyarenes. J. Biol. Chem. 278: 39726 39734.
102. Wariishi, H.,, K. Valli,, and M. H. Gold. 1992. Manganese II oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 267: 23688 23695.
103. Wood, P. M. 1994. Pathways of production of Fenton reagent by wood-rotting fungi. FEMS Microbiol. Rev. 13: 313 320.
104. Wood, W. A.,, and S. T. Kellogg. 1988. Lignin, Pectin, and Chitin. Methods in Enzymology, vol. 161. Academic Press, Inc., San Diego, C.A..
105. Wymelenberg, A. V.,, P. Minges,, G. Sabat,, D. Martinez,, A. Aerts,, A. Salamov,, I. Grigoriev,, H. Shapiro,, N. Putnam,, P. Belinky,, C. Dosoretz,, J. Gaskell,, P. Kersten,, and D. Cullen. 2006. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet. Biol. 43: 343 356.
106. Yaver, D. S.,, F. Xu,, E. J. Golightly,, K. M. Brown,, S. H. Brown,, M. W. Rey,, P. Schneider,, T. Halkier,, K. Mondorf,, and H. Dalbøge. 1996. Purification, characterization, molecular cloning, and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Appl. Environ. Microbiol. 62: 834 841.
107. Yoshida, S.,, A. Chatani,, Y. Honda,, T. Watanabe,, and M. Kuwahara. 1998. Reaction of manganese peroxidase of Bjerkandera adusta with synthetic lignin in acetone solution. J. Wood Sci. 44: 486 490.
108. Zadrazil, F.,, and P. Reinger (ed.). 1988. Treatment of Lignocellulosics with White-Rot Fungi. Elsevier Applied Science, London, United Kingdom.


Generic image for table

Key features of LMEs

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error