Chapter 11 : Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap11-2.gif


In erythrocytes, has no obvious energy stores. Glucose storage forms such as amylopectin and mannitol identified in other apicomplexan parasites are not reported in . The mitochondrion maintains a transmembrane potential gradient that is essential for survival and is a target for the antimalarial atovaquone; however, it is not used for aerobic glycolysis in asexual-stage parasites. Large quantities of lactic acid produced in the vicinity of hypoxic host tissue may impair function of host cells. There are, therefore, two independent reasons for targeting glycolysis in the postgenome era: first, to kill parasites by identifying new inhibitors and eventually developing novel drugs, and second, to decrease use of glucose and output of lactic acid in those regions where there are many parasites that could compete with host tissues for glucose and add to the problem of disposal of lactate. Increased metabolic activity of -infected red blood cells is accompanied by the appearance of glycolytic enzymes with properties distinct from host red blood cell enzymes. The most obvious way for inhibitors to target the action of glycolytic enzymes is by blocking their catalytic sites, which allows substrate analogs to be used as probes. Glucose transport may be a promising target on theoretical grounds; Lactate dehydrogenase (LDH) has received the most attention so far in terms of rational drug development. Glycolysis in may contribute to disease pathogenesis by competing for glucose in host tissues, lending added impetus to discovering ways of inhibiting this key pathway.

Citation: Woodrow C, Krishna S. 2005. Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, p 223-233. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Postulated scheme for glycolytic reactions in -infected erythrocytes. Distinct cytosolic and apicoplast enzymes for TPI and pyruvate kinase are shown (see Table 1 ). Abbreviations: triosephosphate isomerase,TPI.For Enzyme Commission numbers, see Table 1 .

Citation: Woodrow C, Krishna S. 2005. Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, p 223-233. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abrahamsen, M. S.,, T. J. Templeton,, S. Enomoto,, J. E. Abrahante,, G. Zhu,, C.A. Lancto,, M. Deng,, C. Liu,, G. Widmer,, S. Tzipori,, G. A. Buck,, P. Xu,, A.T. Bankier,, P.H. Dear,, B.A. Konfortov,, H. F. Spriggs,, L. Iyer,, V. Anantharaman,, L. Aravind,, and V. Kapur. 2004. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304: 441 445.
2. Bakker, B. M.,, M. C. Walsh,, B. H. ter Kuile,, F. I. Mensonides,, P. A. Michels,, F. R. Opperdoes,, and H.V. Westerhoff. 1999. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 96: 10098 10103.
3. Bakker, B. M.,, H.V. Westerhoff,, F. R. Opperdoes,, and P.A. Michels. 2000. Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol. Biochem. Parasitol. 106: 1 10.
4. Bapteste, E.,, D. Moreira,, and H. Philippe. 2003. Rampant horizontal gene transfer and phosphodonor change in the evolution of the phosphofructokinase. Gene 318: 185 191.
5. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol. Microbiol. 39: 26 36.
6. Bozdech, Z.,, M. Llinas,, B. L. Pulliam,, E.D. Wong,, J. Zhu,, and J. L. DeRisi. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1: E5.
7. Brady, R. L.,, and A. Cameron. 2004. Structurebased approaches to the development of novel antimalarials. Curr. Drug Targets 5: 137 149.
8. Brown, W. M.,, C. A. Yowell,, A. Hoard,, T. A. Vander Jagt,, L. A. Hunsaker,, L. M. Deck,, R. E. Royer,, R. C. Piper,, J. B. Dame,, M.T. Makler,, and D. L. Vander Jagt. 2004. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry 43: 6219 6229.
9. Bzik, D. J.,, B. A. Fox,, and K. Gonyer. 1993. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Mol. Biochem. Parasitol. 59: 155 166.
10. Cameron, A.,, J. Read,, R. Tranter,, V. J. Winter,, R. B. Sessions,, R. L. Brady,, L. Vivas,, A. Easton,, H. Kendrick,, S. L. Croft,, D. Barros,, J. L. Lavandera,, J. J. Martin,, F. Risco,, S. Garcia-Ochoa,, F. J. Gamo,, L. Sanz,, L. Leon,, J. R. Ruiz,, R. Gabarro,, A. Mallo,, and F. Gomez de las Heras. 2004. Identification and activity of a series of azolebased compounds with lactate dehydrogenasedirected anti-malarial activity. J. Biol. Chem. 279: 31429 31439.
11. Certa, U.,, P. Ghersa,, H. Dobeli,, H. Matile,, H. P. Kocher,, I.K. Shrivastava,, A.R. Shaw,, and L. H. Perrin. 1988. Aldolase activity of a Plasmodium falciparum protein with protective properties. Science 240: 1036 1038.
12. Chan, M.,, and T. S. Sim. 2004. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from Plasmodium falciparum. Biochem. Biophys. Res. Commun. 326: 188 196.
13. Claustre, S.,, C. Denier,, F. Lakhdar-Ghazal,, A. Lougare,, C. Lopez,, N. Chevalier,, P.A. Michels,, J. Perie,, and M. Willson. 2002. Exploring the active site of Trypanosoma brucei phosphofructokinase by inhibition studies: specific irreversible inhibition. Biochemistry 41: 10183 10193.
14. Cooke, A. H.,, P. L. Chiodini,, T. Doherty,, A. H. Moody,, J. Ries,, and M. Pinder. 1999. Comparison of a parasite lactate dehydrogenase-based immunochromatographic antigen detection assay (OptiMAL) with microscopy for the detection of malaria parasites in human blood samples. Am. J.Trop. Med. Hyg. 60: 173 176.
15. Daubenberger, C. A.,, F. Poltl-Frank,, G. Jiang,, J. Lipp,, U. Certa,, and G. Pluschke. 2000. Identification and recombinant expression of glyceraldehyde- 3-phosphate dehydrogenase of Plasmodium falciparum. Gene 246: 255 264.
16. Daubenberger, C. A.,, E. J. Tisdale,, M. Curcic,, D. Diaz,, O. Silvie,, D. Mazier,, W. Eling,, B. Bohrmann,, H. Matile,, and G. Pluschke. 2003. The N′-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol. Chem. 384: 1227 1237.
17. Deck, L. M.,, R. E. Royer,, B. B. Chamblee,, V. M. Hernandez,, R. R. Malone,, J. E. Torres,, L. A. Hunsaker,, R. C. Piper,, M.T. Makler,, and D. L. Vander Jagt. 1998. Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite Plasmodium falciparum. J. Med. Chem. 41: 3879 3887.
18. Dunn, C. R.,, M. J. Banfield,, J. J. Barker,, C.W. Higham,, K. M. Moreton,, D. Turgut-Balik,, R. L. Brady,, and J. J. Holbrook. 1996. The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat. Struct. Biol. 3: 912 915.
19. Elliott, J. L.,, K. J. Saliba,, and K. Kirk. 2001. Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Biochem. J. 355: 733 739.
20. Fast, N. M.,, J. C. Kissinger,, D. S. Roos,, and P. J. Keeling. 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18: 418 426.
21. Florens, L.,, M. P. Washburn,, J.D. Raine,, R.M. Anthony,, M. Grainger,, J. D. Haynes,, J. K. Moch,, N. Muster,, J. B. Sacci,, D. L. Tabb,, A.A. Witney,, D. Wolters,, Y. Wu,, M. J. Gardner,, A.A. Holder,, R. E. Sinden,, J. R. Yates,, and D. J. Carucci. 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419: 520 526.
22. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J.A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S.A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J.C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R.W. Davis,, C.M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498 511.
23. Gardner, M. J.,, H. Tettelin,, D. J. Carucci,, L. M. Cummings,, L. Aravind,, E.V. Koonin,, S. Shallom,, T. Mason,, K. Yu,, C. Fujii,, J. Pederson,, K. Shen,, J. Jing,, C. Aston,, Z. Lai,, D. C. Schwartz,, M. Pertea,, S. Salzberg,, L. Zhou,, G. G. Sutton,, R. Clayton,, O. White,, H. O. Smith,, C. M. Fraser,, S. L. Hoffman, et al. 1998. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282: 1126 1132.
24. Gomez, M. S.,, R. C. Piper,, L.A. Hunsaker,, R. E. Royer,, L. M. Deck,, M.T. Makler,, and D. L. Vander Jagt. 1997. Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum. Mol. Biochem.Parasitol. 90: 235 246.
25. Goodyer, I.D.,, D. J. Hayes,, and R. Eisenthal. 1997. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum- infected erythrocytes via two saturable carriers. Mol. Biochem. Parasitol. 84: 229 239.
26. Grall, M.,, I. K. Srivastava,, M. Schmidt,, A. M. Garcia,, J. Mauel,, and L. H. Perrin. 1992. Plasmodium falciparum: identification and purification of the phosphoglycerate kinase of the malaria parasite. Exp. Parasitol. 75: 10 18.
27. Heise, A.,, W. Peters,, and H. Zahner. 1999. A monoclonal antibody reacts species-specifically with amylopectin granules of Eimeria bovis merozoites. Parasitol. Res. 85: 500 503.
28. Hicks, K. E.,, M. Read,, S. P. Holloway,, P. F. Sims,, and J. E. Hyde. 1991. Glycolytic pathway of the human malaria parasite Plasmodium falciparum:primary sequence analysis of the gene encoding 3- phosphoglycerate kinase and chromosomal mapping studies. Gene 100: 123 129.
29. Homewood, C.A. 1977. Carbohydrate metabolism of malarial parasites. Bull.W. H.O. 55: 229 235.
30. Joet, T.,, U. Eckstein-Ludwig,, C. Morin,, and S. Krishna. 2003a. Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc. Natl.Acad. Sci. USA 100: 7476 7479.
31. Joet, T.,, C. Morin,, J. Fischbarg,, A. I. Louw,, U. Eckstein-Ludwig,, C. Woodrow,, and S. Krishna. 2003b. Why is the Plasmodium falciparum hexose transporter a promising new drug target? Expert Opin.Ther.Targets 7: 593 602.
32. Kaslow, D. C.,, and S. Hill. 1990. Cloning metabolic pathway genes by complementation in Escherichia coli. Isolation and expression of Plasmodium falciparum glucose phosphate isomerase. J. Biol. Chem. 265: 12337 12341.
33. Kim, H.,, U. Certa,, H. Dobeli,, P. Jakob,, and W. G. Hol. 1998. Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum. Biochemistry 37: 4388 4396.
34. Kirk, K.,, H. A. Horner,, and J. Kirk. 1996. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol. Biochem. Parasitol. 82: 195 205.
35. Kissinger, J. C.,, B. P. Brunk,, J. Crabtree,, M. J. Fraunholz,, B. Gajria,, A. J. Milgram,, D. S. Pearson,, J. Schug,, A. Bahl,, S. J. Diskin,, H. Ginsburg,, G. R. Grant,, D. Gupta,, P. Labo,, L. Li,, M. D. Mailman,, S. K. McWeeney,, P. Whetzel,, C. J. Stoeckert,, and D. S. Roos. 2002. The Plasmodium genome database. Nature 419: 490 492.
36. Knapp, B.,, E. Hundt,, and H. A. Kupper. 1990. Plasmodium falciparum aldolase: gene structure and localization. Mol. Biochem. Parasitol. 40: 1 12.
37. Krishna, S.,, and C. J. Woodrow. 1999. Expression of parasite transporters in Xenopus oocytes. Novartis Found. Symp. 226: 126 139.
38. Lasonder, E.,, Y. Ishihama,, J. S. Andersen,, A. M. Vermunt,, A. Pain,, R.W. Sauerwein,, W. M. Eling,, N. Hall,, A. P. Waters,, H. G. Stunnenberg,, and M. Mann. 2002. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419: 537 542.
39. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, A.A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503 1508.
40. Lopez, C.,, N. Chevalier,, V. Hannaert,, D. J. Rigden,, P. A. Michels,, and J. L. Ramirez. 2002. Leishmania donovani phosphofructokinase. Gene characterization, biochemical properties and structure- modeling studies. Eur. J. Biochem. 269: 3978 3989.
41. Makler, M.T.,, J. M. Ries,, J.A. Williams,, J. E. Bancroft,, R.C. Piper,, B. L. Gibbins,, and D. J. Hinrichs. 1993. Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity. Am. J.Trop. Med. Hyg. 48: 739 741.
42. Meier, B.,, H. Dobeli,, and U. Certa. 1992. Stage-specific expression of aldolase isoenzymes in the rodent malaria parasite Plasmodium berghei. Mol. Biochem. Parasitol. 52: 15 27.
43. Murphy, A. D.,, J. E. Doeller,, B. Hearn,, and N. Lang-Unnasch. 1997. Plasmodium falciparum: cyanide-resistant oxygen consumption. Exp. Parasitol. 87: 112 120.
44. Olafsson, P.,, and U. Certa. 1994. Expression and cellular localisation of hexokinase during the bloodstage development of Plasmodium falciparum. Mol. Biochem. Parasitol. 63: 171 174.
45. Olafsson, P.,, H. Matile,, and U. Certa. 1992. Molecular analysis of Plasmodium falciparum hexokinase. Mol. Biochem. Parasitol. 56: 89 101.
46. Opperdoes, F. R. 1987. Compartmentation of carbohydrate metabolism in trypanosomes. Annu. Rev. Microbiol. 41: 127 151.
47. Pal, B.,, B. Pybus,, D. D. Muccio,, and D. Chattopadhyay. 2004. Biochemical characterization and crystallization of recombinant 3-phosphoglycerate kinase of Plasmodium falciparum. Biochim. Biophys. Acta 1699: 277 280.
48. Palmer, C. J.,, J. F. Lindo,, W. I. Klaskala,, J.A. Quesada,, R. Kaminsky,, M. K. Baum,, and A. L. Ager. 1998. Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J. Clin. Microbiol. 36: 203 206.
49. Parthasarathy, S.,, H. Balaram,, P. Balaram,, and M. R. Murthy. 2002. Structures of Plasmodium falciparum triosephosphate isomerase complexed to substrate analogues: observation of the catalytic loop in the open conformation in the ligand-bound state. Acta Crystallogr. D Biol. Crystallogr. 58: 1992 2000.
50. Parthasarathy, S.,, K. Eaazhisai,, H. Balaram,, P. Balaram,, and M. R. Murthy. 2003. Structure of Plasmodium falciparum triose-phosphate isomerase- 2-phosphoglycerate complex at 1.1-A resolution. J. Biol. Chem. 278: 52461 52470.
51. Petry, F.,, and J. R. Harris. 1999. Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. Int. J. Parasitol. 29: 1249 1260.
52. Rager, N.,, C. B. Mamoun,, N. S. Carter,, D. E. Goldberg,, and B. Ullman. 2001. Localization of the Plasmodium falciparum PfNT1 nucleoside transporter to the parasite plasma membrane. J. Biol. Chem. 276: 41095 41099.
53. Ralph, S. A.,, G. G. Van Dooren,, R. F. Waller,, M. J. Crawford,, M. J. Fraunholz,, B. J. Foth,, C. J. Tonkin,, D. S. Roos,, and G. I. McFadden. 2004. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2: 203 216.
54. Ranie, J.,, V. P. Kumar,, and H. Balaram. 1993. Cloning of the triosephosphate isomerase gene of Plasmodium falciparum and expression in Escherichia coli. Mol. Biochem. Parasitol. 61: 159 169.
55. Razakantoanina, V.,, P. P. Nguyen Kim,, and G. Jaureguiberry. 2000. Antimalarial activity of new gossypol derivatives. Parasitol. Res. 86: 665 668.
56. Read, J.A.,, V. J. Winter,, C.M. Eszes,, R.B. Sessions,, and R. L. Brady. 2001. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 43: 175 185.
57. Read, M.,, K. E. Hicks,, P. F. Sims,, and J. E. Hyde. 1994. Molecular characterisation of the enolase gene from the human malaria parasite Plasmodium falciparum. Evidence for ancestry within a photosynthetic lineage. Eur. J. Biochem. 220: 513 520.
58. Ridley, R. G. 1997. Plasmodium: drug discovery and development—an industrial perspective. Exp. Parasitol. 87: 293 304.
59. Roth, E. F., Jr.,, M. C. Calvin,, I. Max-Audit,, J. Rosa,, and R. Rosa. 1988. The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites. Blood 72: 1922 1925.
60. Royer, R. E.,, L. M. Deck,, N. M. Campos,, L. A. Hunsaker,, and D. L. Vander Jagt. 1986. Biologically active derivatives of gossypol: synthesis and antimalarial activities of peri-acylated gossylic nitriles. J. Med. Chem. 29: 1799 1801.
61. Saliba, K. J.,, S. Krishna,, and K. Kirk. 2004. Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative. FEBS Lett. 570: 93 96.
62. Sherman, I.W. 1979. Biochemistry of Plasmodium (malarial parasites). Microbiol. Rev. 43: 453 495.
63. Sherman, I.W. 1998. Malaria, p. 135 143. ASM Press, Washington,D.C.
64. Simmons, D. L.,, J. E. Hyde,, M. Mackay,, M. Goman,, and J. Scaife. 1985. Cloning studies on the gene coding for L-(+)-lactate dehydrogenase of Plasmodium falciparum. Mol. Biochem. Parasitol. 15: 231 243.
65. Speer, C. A.,, S. Clark,, and J. P. Dubey. 1998. Ultrastructure of the oocysts, sporocysts, and sporozoites of Toxoplasma gondii. J. Parasitol. 84: 505 512.
66. Srivastava, I. K.,, H. Rottenberg,, and A. B. Vaidya. 1997. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J. Biol. Chem. 272: 3961 3966.
67. Srivastava, I. K.,, M. Schmidt,, M. Grall,, U. Certa,, A. M. Garcia,, and L. H. Perrin. 1992. Identification and purification of glucose phosphate isomerase of Plasmodium falciparum. Mol. Biochem. Parasitol. 54: 153 164.
68. Takashima, E.,, S. Takamiya,, S. Takeo,, F. Mi-ichi,, H. Amino,, and K. Kita. 2001. Isolation of mitochondria from Plasmodium falciparum showing dihydroorotate dependent respiration. Parasitol. Int. 50: 273 278.
69. ter Kuile, F.,, N. J. White,, P. Holloway,, G. Pasvol,, and S. Krishna. 1993. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol. 76: 85 95.
70. Ureta, T. 1982. The comparative isozymology of vertebrate hexokinases. Comp. Biochem. Physiol. B 71: 549 555.
71. Uyemura, S.A.,, S. Luo,, S.N. Moreno,, and R. Docampo. 2000. Oxidative phosphorylation, Ca 2+ transport, and fatty acid-induced uncoupling in malaria parasites mitochondria. J. Biol. Chem. 275: 9709 9715.
72. Velanker, S. S.,, S. S. Ray,, R. S. Gokhale,, S. Suma,, H. Balaram,, P. Balaram,, and M. R. Murthy. 1997. Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design. Structure 5: 751 761.
73. Winter, V. J.,, A. Cameron,, R. Tranter,, R. B. Sessions,, and R. L. Brady. 2003. Crystal structure of Plasmodium berghei lactate dehydrogenase indicates the unique structural differences of these enzymes are shared across the Plasmodium genus. Mol. Biochem. Parasitol. 131: 1 10.
74. Woodrow, C. J.,, R. J. Burchmore,, and S. Krishna. 2000. Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 97: 9931 9936.
75. Woodrow, C. J.,, J. I. Penny,, and S. Krishna. 1999. Intraerythrocytic Plasmodium falciparum expresses a high affinity facilitative hexose transporter. J. Biol. Chem. 274: 7272 7277.
76. Yang, S.,, and S. F. Parmley. 1997. Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184: 1 12.


Generic image for table

In silico analysis of glycolytic enzymes of

Citation: Woodrow C, Krishna S. 2005. Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, p 223-233. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error