Chapter 15 : Protein Kinases Regulating Proliferation and Development

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Protein Kinases Regulating Proliferation and Development, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap15-2.gif


This chapter briefly considers the major features of cell cycle control to provide a general context for the discussion of cell proliferation regulators. Progression through the cell cycle phases is controlled by the cyclin-dependent protein kinases (CDKs). These enzymes phosphorylate a number of substrates involved in processes such as in initiation of DNA synthesis or chromosome segregation. The molecular machinery controlling cell cycle progression is in essence a mere effector of signaling pathways, which are activated by a variety of intra- or extracellular stimuli. The life cycle of malaria parasites is an alternation of developmental stages where the parasite is cell cycle arrested, and stages undergoing intense cell division. The alternation of actively dividing and cell cycle- arrested developmental stages during the life cycle of malaria parasites must be associated with an efficient and versatile cell cycle control machinery, whose activity needs to be integrated with specific cell development programs. The underlying principles of cell division control at the molecular level and the identity of key players in this process such as CDKs, cyclins, and CDK inhibitors (CKIs) have been elucidated mostly through genetic analysis in yeast. The genome encodes a number of proteins putatively involved in calcium signaling, including calmodulin-related proteins, a calcium-transporting ATPase, and a family of CDPKs, which are composed of a protein kinase catalytic domain fused to a calcium-binding domain.

Citation: Doerig C. 2005. Protein Kinases Regulating Proliferation and Development, p 290-310. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Plasmodial protein kinases clustering within the CMGC family. The figure depicts only the CMGC branch of a larger tree constructed (by J. Packer, Abbott Laboratories) from a Hidden Markov Model-derived alignment of all protein kinases in the genome. Four human protein kinases (underlined) representing the four major families in the CMGC group (CDKs, MAPKs, GSK3, and CDK-like) were included in the alignment to anchor the position of these families in the tree. Branches with bootstrap values >40 are shown with dashes. The scale bar represents 0.1 mutational changes per residue (10 PAM units). Although some plasmodial sequences clearly cluster with established families (e.g., PfPK5 with CDK1/2 or Pfmap-1 and Pfmap-2 with the MAPKs), others (e.g., those labeled “CMGC-like” on the figure, because their branch originates near the base of the branch containing the CDK, MAPK and GSK3 groups) are much more difficult to classify. Adapted from Ward et al., 2004, which should be consulted for details, including bootstrap values.

Citation: Doerig C. 2005. Protein Kinases Regulating Proliferation and Development, p 290-310. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Raw microarray expression data for the CDK-related protein kinases and cylins compiled from the files from the Bozdech et al. study and made available on PlasmoDB (www.plasmodb.org). See Bozdech et al., 2003, and the PlasmoDB website for details.

Citation: Doerig C. 2005. Protein Kinases Regulating Proliferation and Development, p 290-310. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Plasmodial CDK-related kinases and cyclins, with potential upstream regulators and substrates. The figure shows selected elements, with their PlasmoDB identifier, of each pathway known to operate in . The lists given in each box do not pretend to be exhaustive, as only a subset of relevant elements was included. Furthermore, extensive cross talk most likely operates between pathways, but no attempt was made at illustrating this. Likewise, for the sake of clarity and concision, only a small number of potential substrate groups are shown.Asterisks in the central box indicate those elements for which putative homologs in other systems are involved in transcriptional regulation in addition to or instead of direct cell cycle control.

Citation: Doerig C. 2005. Protein Kinases Regulating Proliferation and Development, p 290-310. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch15
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Abe, M. K.,, K.T. Kahle,, M. P. Saelzler,, K. Orth,, J. E. Dixon,, and M. R. Rosner. 2001. ERK7 is an autoactivated member of the MAPK family. J. Biol. Chem. 276: 21272 21279.
2. Abe, M. K.,, M. P. Saelzler,, R. Espinosa III,, K.T. Kahle,, M. B. Hershenson,, M. M. Le Beau,, and M. R. Rosner. 2002. ERK8, a new member of the mitogen-activated protein kinase family. J. Biol.Chem. 277: 16733 16743.
3. Arnot, D. E.,, and K. Gull. 1998. The Plasmodium cell-cycle: facts and questions. Ann.Trop. Med. Parasitol. 92: 361 365.
4. Bahl, A.,, B. Brunk,, R. L. Coppel,, J. Crabtree,, S. J. Diskin,, M. J. Fraunholz,, G. R. Grant,, D. Gupta,, R. L. Huestis,, J. C. Kissinger,, P. Labo,, L. Li,, S. K. McWeeney,, A. J. Milgram,, D. S. Roos,, J. Schug,, and C. J. Stoeckert, Jr. 2002. PlasmoDB: the Plasmodium genome resource. An integrated database providing tools for accessing, analyzing and mapping expression and sequence data (both finished and unfinished). Nucleic Acids Res. 30: 87 90.
5. Baldauf, S. L. 2003. The deep roots of eukaryotes. Science 300: 1703 1706.
6. Barik, S.,, R. E. Taylor,, and D. Chakrabarti. 1997. Identification, cloning, and mutational analysis of the casein kinase 1 cDNA of the malaria parasite, Plasmodium falciparum. Stage-specific expression of the gene. J. Biol. Chem. 272: 26132 26138.
7. Billker, O.,, S. Dechamps,, R. Tewari,, G. Wenig,, B. Franke-Fayard,, and V. Brinkmann. 2004. Calcium and a calcium-dependent protein kinase regulate gamete formation and mosquito transmission in a malaria parasite. Cell 117: 503 514.
8. Billker, O.,, V. Lindo,, M. Panico,, A. E. Etienne,, T. Paxton,, A. Dell,, M. Rogers,, R. E. Sinden,, and H. R. Morris. 1998. Identification of xanthurenic acid as the putative inducer of malaria development in the mosquito. Nature 392: 289 292.
9. Boonstra, J.,, and G. S. van Rossum. 2003. The role of cytosolic phospholipase A2 in cell cycle progression. Prog. Cell Cycle Res. 5: 181 190.
10. Bozdech, Z.,, M. Llinas,, B. L. Pulliam,, E. D. Wong,, J. Zhu,, and J. L. DeRisi. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1: E5.
11. Bracchi-Ricard, V.,, S. Barik,, C. Delvecchio,, C. Doerig,, R. Chakrabarti,, and D. Chakrabarti. 2000. PfPK6, a novel cyclin-dependent kinase/mitogen- activated protein kinase-related protein kinase from Plasmodium falciparum. Biochem. J. 347: 255 263.
12. Brinkworth, R. I.,, R.A. Breinl,, and B. Kobe. 2003. Structural basis and prediction of substrate specificity in protein serine/threonine kinases. Proc. Natl. Acad. Sci. USA 100: 74 79.
13. Carucci, D. J.,, A. A. Witney,, D. K. Muhia,, D. C. Warhurst,, P. Schaap,, M. Meima,, J. L. Li,, M. C. Taylor,, J. M. Kelly,, and D. A. Baker. 2000. Guanylyl cyclase activity associated with putative bifunctional integral membrane proteins in Plasmodium falciparum. J. Biol. Chem. 275: 22147 22156.
14. Cornelis, S.,, Y. Bruynooghe,, G. Denecker,, S. Van Huffel,, S. Tinton,, and R. Beyaert. 2000. Identification and characterization of a novel cell cycleregulated internal ribosome entry site. Mol. Cell 5: 597 605.
15. Davies, S. P.,, H. Reddy,, M. Caivano,, and P. Cohen. 2000. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351: 95 105.
16. Deng, W.,, and D. A. Baker. 2002. A novel cyclic GMP-dependent protein kinase is expressed in the ring stage of the Plasmodium falciparum life cycle. Mol. Microbiol. 44: 1141 1151.
17. Dickinson, L. A.,, A. J. Edgar,, J. Ehley,, and J. M. Gottesfeld. 2002. Cyclin L is an RS domain protein involved in pre-mRNA splicing. J. Biol. Chem. 277: 25465 25473.
18. Doerig, C. 1997. Signal transduction in malaria parasites. Parasitol.Today 13: 307 313.
19. Doerig, C.,, and D. Chakrabarti,. 2004. Cell cycle control in Plasmodium falciparum: a genomics perspective, p. 249 287. In A.P. Waters, and C. J. Janse (ed.), Malaria Parasites: Genomes and Molecular Biology. Caister Academic Press, Wymondham, United Kingdom
20. Doerig, C.,, J. Endicott,, and D. Chakrabarti. 2002. Cyclin-dependent kinase homologues of Plasmodium falciparum. Int. J. Parasitol. 32: 1575 1585.
21. Doerig, C.,, P. Horrocks,, J. Coyle,, J. Carlton,, A. Sultan,, D. Arnot,, and R. Carter. 1995. Pfcrk-1, a developmentally regulated cdc2-related protein kinase of Plasmodium falciparum. Mol. Biochem.Parasitol. 70: 167 174.
22. Doerig, C. M.,, D. Parzy,, G. Langsley,, P. Horrocks,, R. Carter,, and C. D. Doerig. 1996. A MAP kinase homologue from the human malaria parasite, Plasmodium falciparum. Gene 177: 1 6.
23. Dorin, D.,, P. Alano,, I. Boccaccio,, L. Ciceron,, C. Doerig,, R. Sulpice,, and D. Parzy. 1999. An atypical mitogen-activated protein kinase (MAPK) homologue expressed in gametocytes of the human malaria parasite Plasmodium falciparum. Identification of a MAPK signature. J. Biol. Chem. 274: 29912 29920.
24. Dorin, D.,, K. Le Roch,, P. Sallicandro,, P. Alano,, D. Parzy,, P. Poullet,, L. Meijer,, and C. Doerig. 2001. Pfnek-1, a NIMA-related kinase from the human malaria parasite Plasmodium falciparum. Biochemical properties and possible involvement in MAPK regulation. Eur. J. Biochem. 268: 2600 2608.
25. Dorin, D.,, J. P. Semblat,, P. Poullet,, P. Alano,, D. Goldring,, C. Whittle,, S. Patterson,, C. Whittle,, D. Chakrabarti,, and C. Doerig. 2005. PfPK7, an atypical MEK-related protein kinase, reflects the absence of typical three-component MAP kinase pathways in the human malaria parasite Plasmodium falciparum. Mol. Microbiol. 55: 184 196.
26. Droucheau, E.,, A. Primot,, V. Thomas,, D. Mattei,, M. Knockaert,, C. Richardson,, P. Sallicandro,, P. Alano,, A. Jafarshad,, B. Baratte,, C. Kunick,, D. Parzy,, L. Pearl,, C. Doerig,, and L. Meijer. 2004. Plasmodium falciparum glycogen synthase kinase-3: molecular model, expression, intracellular localisation and selective inhibitors. Biochim. Biophys. Acta 1697: 181 196.
27. Dutta, A.,, and S. P. Bell. 1997. Initiation of DNA replication in eukaryotic cells. Annu. Rev. Cell Dev. Biol. 13: 293 332.
28. Farber, P. M.,, R. Graeser,, R. M. Franklin,, and B. Kappes. 1997. Molecular cloning and characterization of a second calcium-dependent protein kinase of Plasmodium falciparum. Mol. Biochem. Parasitol. 87: 211 216.
29. Forsburg, S. L. 2004. Eukaryotic MCM proteins: beyond replication initiation. Microbiol. Mol. Biol. Rev. 68: 109 131.
30. Garcia, G. E.,, R. A. Wirtz,, J. R. Barr,, A. Woolfitt,, and R. Rosenberg. 1998. Xanthurenic acid induces gametogenesis in Plasmodium, the malaria parasite. J. Biol. Chem. 273: 12003 12005.
31. Graeser, R.,, P. Kury,, R. M. Franklin,, and B. Kappes. 1997. Characterization of a mitogen-activated protein (MAP) kinase from Plasmodium falciparum. Mol. Microbiol. 23: 151 159.
32. Grimes, C. A.,, and R. S. Jope. 2001. The multifaceted roles of glycogen synthase kinase 3_ in cellular signaling. Prog. Neurobiol. 65: 391 426.
33. Gururajan, R.,, J. M. Lahti,, J. Grenet,, J. Easton,, I. Gruber,, P. F. Ambros,, and V. J. Kidd. 1998. Duplication of a genomic region containing the Cdc2L1-2 and MMP21-22 genes on human chromosome 1p36.3 and their linkage to D1Z2. Genome Res. 8: 929 939.
34. Gustin, M. C.,, J. Albertyn,, M. Alexander,, and K. Davenport. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62: 1264 1300.
35. Holton, S.,, A. Merckx,, D. Burgess,, C. Doerig,, M. Noble,, and J. Endicott. 2003. Structures of P. falciparum PfPK5 test the CDK regulation paradigm and suggest mechanisms of small molecule inhibition. Structure (Cambridge) 11: 1329 1337.
36. Hu, D.,, A. Mayeda,, J. H. Trembley,, J. M. Lahti,, and V. J. Kidd. 2003. CDK11 complexes promote premRNA splicing. J. Biol. Chem. 278: 8623 8629.
37. Hu, K.,, T. Mann,, B. Striepen,, C. J. Beckers,, D. S. Roos,, and J. M. Murray. 2002. Daughter cell assembly in the protozoan parasite Toxoplasma gondii. Mol. Biol. Cell 13: 593 606.
38. Janse, C. J.,, P. F. van der Klooster,, H. J. van der Kaay,, M. van der Ploeg,, and J. P. Overdulve. 1986. DNA synthesis in Plasmodium berghei during asexual and sexual development. Mol. Biochem. Parasitol. 20: 173 182.
39. Janse, C. J.,, and P. H. Van Vianen. 1994. Flow cytometry in malaria detection. Methods Cell Biol. 42: 295 318.
40. Janse, C. J.,, P. H. van Vianen,, H. J. Tanke,, B. Mons,, T. Ponnudurai,, and J. P. Overdulve. 1987. Plasmodium species: flow cytometry and microfluorometry assessments of DNA content and synthesis. Exp. Parasitol. 64: 88 94.
41. Kahl, C. R.,, and A. R. Means. 2003. Regulation of cell cycle progression by calcium/calmodulin-dependent pathways. Endocr. Rev. 24: 719 736.
42. Kaldis, P. 1999. The cdk-activating kinase (CAK): from yeast to mammals. Cell. Mol. Life Sci. 55: 284 296.
43. Kappes, B.,, J. Yang,, B.W. Suetterlin,, K. Rathgeb- Szabo,, M. J. Lindt,, and R. M. Franklin. 1995. A Plasmodium falciparum protein kinase with two unusually large kinase inserts. Mol. Biochem.Parasitol. 72: 163 178.
44. Kaushal, D. C.,, R. Carter,, L. H. Miller,, and G. Krishna. 1980. Gametocytogenesis by malaria parasites in continuous culture. Nature 286: 490 492.
45. Kawamoto, F.,, R. Alejo-Blanco,, S. L. Fleck,, Y. Kawamoto,, and R. E. Sinden. 1990. Possible roles of Ca 2+ and cGMP as mediators of the exflagellation of Plasmodium berghei and Plasmodium falciparum. Mol. Biochem. Parasitol. 42: 101 108.
46. Kelly, T. J.,, and G.W. Brown. 2000. Regulation of chromosome replication. Annu. Rev. Biochem. 69: 829 880.
47. Kumar, A.,, A. Vaid,, C. Syin,, and P. Sharma. 2004. PfPKB, a novel protein kinase B like enzyme from plasmodium falciparum. I. Identification, characterization and possible role in parasite development. J. Biol. Chem. 279: 24255 24264.
48. Lahti, J. M.,, J. Xiang,, and V. J. Kidd. 1995. The PITSLRE protein kinase family. Prog.Cell Cycle Res. 1: 329 338.
49. Le Roch, K.,, C. Sestier,, D. Dorin,, N. Waters,, B. Kappes,, D. Chakrabarti,, L. Meijer,, and C. Doerig. 2000. Activation of a Plasmodium falciparum cdc2-related kinase by heterologous p25 and cyclin H. Functional characterization of a P. falciparum cyclin homologue. J. Biol. Chem. 275: 8952 8958.
50. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, A. A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503 1508.
51. Li, J. L.,, D. A. Baker,, and L. S. Cox. 2000. Sexual stage-specific expression of a third calcium-dependent protein kinase from Plasmodium falciparum. Biochim. Biophys.Acta 1491: 341 349.
52. Li, J. L.,, K. J. Robson,, J. L. Chen,, G. A. Targett,, and D. A. Baker. 1996. Pfmrk, a MO15-related protein kinase from Plasmodium falciparum. Gene cloning, sequence, stage-specific expression and chromosome localization. Eur. J. Biochem. 241: 805 813.
53. Li, J. L.,, G. A. Targett,, and D. A. Baker. 2001a. Primary structure and sexual stage-specific expression of a LAMMER protein kinase of Plasmodium falciparum. Int. J. Parasitol. 31: 387 392.
54. Li, T.,, A. Inoue,, J. M. Lahti,, and V. J. Kidd. 2004. Failure to proliferate and mitotic arrest of CDK11 (p110/p58)-null mutant mice at the blastocyst stage of embryonic cell development. Mol. Cell. Biol. 24: 3188 3197.
55. Li, Z.,, K. Le Roch,, J. A. Geyer,, C. L. Woodard,, S. T. Prigge,, J. Koh,, C. Doerig,, and N. C. Waters. 2001b. Influence of human p16(INK4) and p21(CIP1) on the in vitro activity of recombinant Plasmodium falciparum cyclin-dependent protein kinases. Biochem. Biophys. Res. Commun. 288: 1207 1211.
56. Lin, D. T.,, N. D. Goldman,, and C. Syin. 1996. Stage-specific expression of a Plasmodium falciparum protein related to the eukaryotic mitogen-activated protein kinases. Mol. Biochem. Parasitol. 78: 67 77.
57. Madeira, L.,, R. DeMarco,, M. L. Gazarini,, S. Verjovski- Almeida,, and C. R. Garcia. 2003. Human malaria parasites display a receptor for activated C kinase ortholog. Biochem. Biophys. Res. Commun. 306: 995 1001.
58. Martin, S. K.,, M. Jett,, and I. Schneider. 1994. Correlation of phosphoinositide hydrolysis with exflagellation in the malaria microgametocyte. J. Parasitol. 80: 371 378.
59. McCollum, D.,, and K. L. Gould. 2001. Timing is everything: regulation of mitotic exit and cytokinesis by the MEN and SIN. Trends Cell Biol. 11: 89 95.
60. McGowan, C. H. 2003. Regulation of the eukaryotic cell cycle. Prog. Cell Cycle Res. 5: 1 4.
61. Merckx, A.,, K. Le Roch,, M. P. Nivez,, D. Dorin,, P. Alano,, G. J. Gutierrez,, A. R. Nebreda,, D. Goldring,, C. Whittle,, S. Patterson,, D. Chakrabarti,, and C. Doerig. 2003. Identification and initial characterization of three novel cyclin-related proteins of the human malaria parasite Plasmodium falciparum. J. Biol. Chem. 278: 39839 39850.
62. Miyata, Y.,, M. Akashi,, and E. Nishida. 1999. Molecular cloning and characterization of a novel member of the MAP kinase superfamily. Genes Cells 4: 299 309.
63. Mock, B. A.,, C. Padlan,, C. A. Kozak,, and V. Kidd. 1994. The gene for mouse p58cdc2L1(Cdc2l1) protein kinase maps to distal mouse chromosome 4. Mamm. Genome 5: 191 192.
64. Morgan, D. O. 1997. Cyclin-dependent kinases: engines, clocks, and microprocessors. Annu. Rev. Cell Dev. Biol. 13: 261 291.
65. Muhia, D. K.,, C. A. Swales,, W. Deng,, J. M. Kelly,, and D.A. Baker. 2001. The gametocyte-activating factor xanthurenic acid stimulates an increase in membrane-associated guanylyl cyclase activity in the human malaria parasite Plasmodium falciparum. Mol. Microbiol. 42: 553 560.
66. Muhia, D. K.,, C. A. Swales,, U. Eckstein-Ludwig,, S. Saran,, S. D. Polley,, J. M. Kelly,, P. Schaap,, S. Krishna,, and D. A. Baker. 2003. Multiple splice variants encode a novel adenylyl cyclase of possible plastid origin expressed in the sexual stage of the malaria parasite Plasmodium falciparum. J. Biol. Chem. 278: 22014 22022.
67. O’Connell, M. J.,, M. J. Krien, andT. Hunter. 2003. Never say never. The NIMA-related protein kinases in mitotic control. Trends Cell Biol. 13: 221 228.
68. Rangajaran, R.,, K. Bei,, D. Jethawaney,, P. Maldonado,, D. Dorin,, A. Sultan,, and C. Doerig. 2005. A MAP kinase regulates gametogenesis and transmission of the malaria parasite Plasmodium berghei. EMBO Rep. 6: 464 469.
69. Read, M.,, T. Sherwin,, S. P. Holloway,, K. Gull,, and J. E. Hyde. 1993. Microtubular organization visualized by immunofluorescence microscopy during erythrocytic schizogony in Plasmodium falciparum and investigation of post-translational modifications of parasite tubulin. Parasitology 106: 223 232.
70. Ross-Macdonald, P. B.,, R. Graeser,, B. Kappes,, R. Franklin,, and D. H. Williamson. 1994. Isolation and expression of a gene specifying a cdc2-like protein kinase from the human malaria parasite Plasmodium falciparum. Eur. J. Biochem. 220: 693 701.
71. Russo, G. L.,, C. van den Bos,, A. Sutton,, P. Coccetti,, M. D. Baroni,, L. Alberghina,, and D. R. Marshak. 2000. Phosphorylation of Cdc28 and regulation of cell size by the protein kinase CKII in Saccharomyces cerevisiae. Biochem. J. 351: 143 150.
72. Ryves, W. J.,, and A. J. Harwood. 2003. The interaction of glycogen synthase kinase-3 (GSK-3) with the cell cycle. Prog. Cell Cycle Res. 5: 489 495.
73. Schaeffer, H. J.,, and M. J. Weber. 1999. Mitogen-activated protein kinases: specific messages from ubiquitous messengers. Mol. Cell. Biol. 19: 2435 2444.
74. Sherr, C. J.,, and J. M. Roberts. 1999. CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev. 13: 1501 1512.
75. Sinden, R. E.,, G.A. Butcher,, O. Billker,, and S. L. Fleck. 1996. Regulation of infectivity of Plasmodium to the mosquito vector. Adv. Parasitol. 38: 53 117.
76. Skalhegg, B. S.,, and K. Tasken. 2000. Specificity in the cAMP/PKA signaling pathway. Differential expression, regulation, and subcellular localization of subunits of PKA. Front. Biosci. 5: D678 D693.
77. Solomon, M. J.,, and P. Kaldis. 1998. Regulation of CDKs by phosphorylation. Results Probl. Cell Differ. 22: 79 109.
78. Stiller, J.W.,, and B. D. Hall. 2002. Evolution of the RNA polymerase II C-terminal domain. Proc. Natl. Acad. Sci. USA 99: 6091 6096.
79. Stork, P. J.,, and J. M. Schmitt. 2002. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol. 12: 258 266.
80. Syin, C.,, D. Parzy,, F. Traincard,, I. Boccaccio,, M. B. Joshi,, D.T. Lin,, X. M. Yang,, K. Assemat,, C. Doerig,, and G. Langsley. 2001. The H89 cAMPCH15 dependent protein kinase inhibitor blocks Plasmodium falciparum development in infected erythrocytes. Eur. J. Biochem. 268: 4842 4849.
81. Ubersax, J. A.,, E. L. Woodbury,, P. N. Quang,, M. Paraz,, J. D. Blethrow,, K. Shah,, K. M. Shokat,, and D.O. Morgan. 2003. Targets of the cyclin-dependent kinase Cdk1. Nature 425: 859 864.
82. Ward, P.,, L. Equinet,, J. Packer,, and C. Doerig. 2004. Protein kinases of the human malaria parasite Plasmodium falciparum: the kinome of a divergent eukaryote. BMC Genomics 5: 79.
83. Waters, N. C.,, C. L. Woodard,, and S. T. Prigge. 2000. Cyclin H activation and drug susceptibility of the Pfmrk cyclin dependent protein kinase from Plasmodium falciparum. Mol. Biochem.Parasitol. 107: 45 55.
84. Wittenberg, C.,, and R. La Valle. 2003. Cell-cycleregulatory elements and the control of cell differentiation in the budding yeast. Bioessays 25: 856 867.
85. Zhang, S.,, M. Cai,, S. Xu,, S. Chen,, X. Chen,, C. Chen,, and J. Gu. 2002. Interaction of p58(PITSLRE), a G2/M-specific protein kinase, with cyclin D3. J. Biol. Chem. 277: 35314 35322.
86. Zhao, Y.,, S. Pokutta,, P. Maurer,, M. Lindt,, R. M. Franklin,, and B. Kappes. 1994. Calcium-binding properties of a calcium-dependent protein kinase from Plasmodium falciparum and the significance of individual calcium-binding sites for kinase activation. Biochemistry 33: 3714 3721.


Generic image for table

The plasmodial CMGC (CDK, MAPK, GSK3 and CDK-like) protein kinases and associatedproteins

Citation: Doerig C. 2005. Protein Kinases Regulating Proliferation and Development, p 290-310. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch15

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error