Chapter 17 : Lipids: Metabolism and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Lipids: Metabolism and Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap17-2.gif


This chapter reviews recent advances in understanding the pathways for membrane biogenesis in , presents new information in this field learned from the available genome sequence and its annotation, and discusses progress in lipid-based antimalarial chemotherapy. It focuses on the pathways of synthesis of phospholipids (PLs) and neutral lipids and their importance in parasite physiology, intracellular localization and trafficking of lipids, and newly identified pharmacological targets. Studies with parasites grown in vitro or isolated from patients with malaria have revealed profound changes in the membrane composition and structure of surrounding uninfected red blood cells. Glycerolipid metabolism in various organisms initiates with the acylation of glycerol-3-phosphate, which can be produced by the phosphorylation of glycerol by glycerokinase or the reduction of the glycolytic intermediate dihydroxyacetone-3-phosphate by dihydroxyacetone-3-phosphate dehydrogenase. The available genome has revealed the presence of only one putative acyl-CoA diacylglycerol acyltransferase gene named PfDGAT1. This gene encodes a polypeptide with a molecular mass of 78.1 kDa with a broad acyl-CoA specificity, localized to the microsomes. The de novo biosynthetic pathways of phatidylethanolamine (PE) and phosphatidylcholine (PC) initiate with the phosphorylation of ethanolamine and choline, conversion of the phosphoethanolamine and phosphocholine formed into CDP-ethanolamine and CDP-choline, and DAG-dependent acylation of the latter products into PE and PC, respectively. Subcellular fractionation of the malarial parasites remains a difficult task, and cellular localization of the various lipids and mechanisms mediating their intracellular trafficking remains to be elucidated.

Citation: Vial H, Ben Mamoun C. 2005. Lipids: Metabolism and Function, p 327-352. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Pathways for the synthesis of phospholipids and neutral lipids in .The pathways shown include the relevant steps discussed in the text and the enzymes involved in these pathways are described in Table 1 . CL, cardiolipin; PGP, phosphatidylglycerol phosphate.

Citation: Vial H, Ben Mamoun C. 2005. Lipids: Metabolism and Function, p 327-352. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ancelin, M. L.,, M. Calas,, A. Bonhoure,, S. Herbute,, and H. J. Vial. 2003. In vivo antimalarial activities of mono- and bis quaternary ammonium salts interfering with Plasmodium phospholipid metabolism. Antimicrob.Agents Chemother. 47: 2598 2605.
2. Ancelin, M. L.,, M. Parant,, M. J. Thuet,, J. R. Philippot,, and H. J. Vial. 1991. Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection. Biochem. J. 273: 701 709.
3. Ancelin, M. L.,, and H. J. Vial. 1989. Regulation of phosphatidylcholine biosynthesis in Plasmodium-infected erythrocytes. Biochim.Biophys.Acta 1001: 82 89.
4. Ansorge, I.,, D. Jeckel,, F. Wieland,, and K. Lingelbach. 1995. Plasmodium falciparum-infected erythrocytes utilize a synthetic truncated ceramide precursor for synthesis and secretion of truncated sphingomyelin. Biochem. J. 308: 335 341.
5. Ardail, D.,, F. Gasnier,, F. Lerme,, C. Simonot,, P. Louisot,, and O. Gateau-Roesch. 1993. Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J. Biol. Chem. 268: 25985 25992.
6. Baunaure, F.,, P. Eldin,, A.-M. Cathiard,, and H. Vial. 2004. Characterization of a non-mitochondrial type I phosphatidylserine decarboxylase in Plasmodium falciparum. Mol. Microbiol. 51: 33 46.
7. Beaumelle, B. D. 1987. Métabolisme des acides gras et dynamique des phospholipides dans l’érythrocyte infecté par le parasite du paludisme. Ph.D. Thesis. Université de Montpellier II, Montpellier, France.
8. Beaumelle, B. D.,, and H. J. Vial. 1988a. Acyl-CoA synthetase activity in Plasmodium knowlesi-infected erythrocytes displays peculiar substrate specificities. Biochim. Biophys.Acta 958: 1 9.
9. Beaumelle, B.D.,, and H. J. Vial. 1988b. Uninfected red cells from malaria-infected blood: alteration of fatty acid composition involving a serum protein: an in vivo and in vitro study. In Vitro Cell. Dev. Biol. 24: 711 718.
10. Beaumelle, B. D.,, H. J. Vial,, and A. Bienvenüe. 1988. Enhanced transbilayer mobility of phospholipids in malaria-infected monkey erythrocytes: a spin-label study. J. Cell. Physiol. 135: 94 100.
11. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol. Microbiol. 39: 26 36.
12. Biagini, G. A.,, E. M. Pasini,, R. Hughes,, H. P. De Koning,, H. J. Vial,, P. M. O’Neill,, S.A. Ward,, and P. G. Bray. 2004. Characterization of the choline carrier of Plasmodium falciparum:a route for the selective delivery of novel antimalarial drugs. Blood 104: 3372 3377.
13. Biagini, G.A.,, E. Richier,, P.G. Bray,, M. Calas,, H. Vial,, and S. A. Ward. 2003. Heme binding contributes to antimalarial activity of bis-quaternary ammoniums. Antimicrob.Agents Chemother. 47: 2584 2589.
14. Bozdech, Z.,, M. Llinas,, B. L. Pulliam,, E.D. Wong,, J. Zhu,, and J. L. DeRisi. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1: E5.
15. Brand, V.,, C. Sandu,, C. Duranton,, V. Tanneur,, K. Lang,, S. Huber,, and F. Lang. 2003. Dependence of Plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte. Cell. Physiol. Biochem. 13: 347 356.
16. Carman, G. M.,, and S. A. Henry. 1999. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38: 361 399.
17. Coleman, R.A.,, and D. P. Lee. 2004. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43: 134 176.
18. Das, I.,, J. De Belleroche,, C. J. Moore,, and F. C. Rose. 1986. Determination of free choline in plasma and erythrocyte samples and choline derived from membrane phosphatidylcholine by a chemioluminescent method. Anal. Biochem. 152: 178 182.
19. Divo, A. A.,, T. G. Geary,, N. L. Davis,, and J. B. Jensen. 1985. Nutritional requirements of Plasmodium falciparum in culture. I.Exogenously supplied dialyzable components necessary for continuous growth. J. Protozool. 32: 59 64.
20. Dowhan, W. 1997. Molecular basis for membrane phospholipid diversity:why are there so many lipids? Annu. Rev. Biochem. 66: 199 232.
21. Eda, S.,, and I.W. Sherman. 2002. Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell. Physiol. Biochem. 12: 373 384.
22. Elabbadi, N.,, M. L. Ancelin,, and H. J. Vial. 1997. Phospholipid metabolism of serine in Plasmodiuminfected erythrocytes involves phosphatidylserine and direct serine decarboxylation. Biochem. J. 324: 435 445.
23. Enjalbal, C.,, R. Roggero,, R. Cerdan,, J. Martinez,, H. Vial,, and J. L. Aubagnac. 2004. Automated monitoring of phosphatidylcholine biosyntheses in Plasmodium falciparum by electrospray ionization mass spectrometry through stable isotope labeling experiments. Anal. Chem. 76: 4515 4521.
24. Faergeman, N. J.,, P.N. Black,, X.D. Zhao,, J. Knudsen,, and C. C. DiRusso. 2001. The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J. Biol. Chem. 276: 37051 37059.
25. Fitch, C.D. 2004. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 74: 1957 1972.
26. Gerold, P.,, and R.T. Schwarz. 2001. Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 112: 29 37.
27. Grellier, P.,, D. Rigomier,, V. Clavey,, J.C. Fruchart,, and J. Schrével. 1991. Lipid traffic between high density lipoproteins and Plasmodium falciparuminfected red blood cells. J. Cell Biol. 112: 267 277.
28. Haldar, K. 1996. Sphingolipid synthesis and membrane formation by Plasmodium. Trends Cell Biol. 6: 398 405.
29. Haldar, K.,, A. F. De Amorim,, and G.A. M. Cross. 1989. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells. J. Cell Biol. 108: 2183 2192.
30. Haldar, K.,, N. Mohandas,, B. U. Samuel,, T. Harrison,, N. L. Hiller,, T. Akompong,, and P. Cheresh. 2002. Protein and lipid trafficking induced in erythrocytes infected by malaria parasites. Cell. Microbiol. 4: 383 395.
31. Hanada, K.,, T. Mitamura,, M. Fukasawa,, P.A. Magistrado,, T. Horii,, and M. Nishijima. 2000. Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum. Biochem. J. 346: 671 677.
32. Hanada, K.,, N. M. Palacpac,, P.A. Magistrado,, K. Kurokawa,, G. Rai,, D. Sakata,, T. Hara,, T. Horii,, M. Nishijima,, and T. Mitamura. 2002. Plasmodium falciparum phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a possible target for malaria chemotherapy. J. Exp. Med. 195: 23 34.
33. Hannun, Y. A. 1994. The sphingomyelin cycle and second messenger function of ceramide. J. Biol.Chem. 269: 3125 3128.
34. Holz, G.G. 1977. Lipids and the malaria parasite. Bull. W. H. O. 55: 237 248.
35. Huitema, K.,, J. van den Dikkenberg,, J. F. Brouwers,, and J. C. Holthuis. 2004. Identification of a family of animal sphingomyelin synthases. EMBO J. 23: 33 44.
36. Jackson, K. E.,, N. Klonis,, D. J. Ferguson,, A. Adisa,, C. Dogovski,, and L. Tilley. 2004. Food vacuoleassociated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Mol. Microbiol. 54: 109 122.
37. Joshi, P.,, G. P. Dutta,, and C. M. Crupta. 1987. An intracellular siman malarial parasite ( Plasmodium knowlesi) induces stage-dependent alterations in membrane phospholipid organization of its host erythrocyte. Biochem. J. 146: 103 108.
38. Kent, C. 1995. Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64: 315 343.
39. Krishnegowda, G.,, and D. C. Gowda. 2003. Intraerythrocytic Plasmodium falciparum incorporates extraneous fatty acids to its lipids without any structural modification. Mol. Biochem. Parasitol. 132: 55 ].
40. Krugliak, M.,, Z. Waldman,, and H. Ginsburg. 1987. Gentamicin and amikacin repress the growth of Plasmodium falciparum in culture, probably by inhibiting a parasite acid phospholipase. Life Sci. 40: 1253 1257.
41. Lang, F.,, P.A. Lang,, K. S. Lang,, V. Brand,, V. Tanneur,, C. Duranton,, T. Wieder,, and S. M. Huber. 2004. Channel-induced apoptosis of infected host cells—the case of malaria. Pflugers Arch. 448: 319 324.
42. Larvor, M. P.,, R. Cerdan,, C. Gumila,, L. Maurin,, P. Seta,, C. Roustan,, and H. Vial. 2003. Characterization of the lipid-binding domain of the Plasmodium falciparum CTP:phosphocholine cytidylyltransferase through synthetic-peptide studies. Biochem. J. 375: 653 661.
43. Lauer, S.,, J. VanWye,, T. Harrison,, H. McManus,, B. U. Samuel,, N. L. Hiller,, N. Mohandas,, and K. Haldar. 2000. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19: 3556 3564.
44. Lauer, S.A.,, N. Ghori,, and K. Haldar. 1995. Sphingolipid synthesis as a target for chemotherapy against malaria parasites. Proc. Natl.Acad. Sci.USA 92: 9181 9185.
45. Lehane, A. M.,, K. J. Saliba,, R. J. Allen,, and K. Kirk. 2004. Choline uptake into the malaria parasite is energized by the membrane potential. Biochem. Biophys. Res. Commun. 320: 311 317.
46. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, A.A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503 1508.
47. Maguire, P.A.,, J. Prudhomme,, and I.W. Sherman. 1991. Alterations in erythrocyte membrane phospholipid organization due to the intracellular growth of the human malaria parasite, Plasmodium falciparum. Parasitology 102: 179 186.
48. Maguire, P. A.,, and I.W. S. Sherman. 1990. Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol. Biochem. Parasitol. 38: 105 112.
49. Marechal, E.,, N. Azzouz,, C. S. de Macedo,, M.A. Block,, J. E. Feagin,, R.T. Schwarz,, and J. Joyard. 2002. Synthesis of chloroplast galactolipids in apicomplexan parasites. Eukaryot. Cell 1: 653 656.
50. Martin, D.,, L. Gannoun-Zaki,, S. Bonnefoy,, P. Eldin,, K. Wengelnik,, and H. Vial. 2000. Characterization of Plasmodium falciparum CDP-diacylglycerol synthase, a proteolytically cleaved enzyme. Mol. Biochem. Parasitol. 110: 93 105.
51. Matesanz, F.,, M.M. Tellez,, and A. Alcina. 2003. The Plasmodium falciparum fatty acyl-CoA synthetase family (PfACS) and differential stage-specific expression in infected erythrocytes. Mol. Biochem. Parasitol. 126: 109 112.
52. Mitamura, T.,, K. Hanada,, E. P. Ko-Mitamura,, M. Nishijima,, and T. Horii. 2000. Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. Parasitol. Int. 49: 219 229.
53. Moll, G. N.,, H. J. Vial,, M. L. Ancelin,, J. A. Op den Kamp,, B. Roelofsen,, and L. L. van Deenen. 1988. Phospholipid uptake by Plasmodium knowlesi infected erythrocytes. FEBS Lett. 232: 341 346.
54. Moll, G. N.,, H. J. Vial,, F. C. vanderWiele,, M. L. Ancelin,, B. Roelofsen,, A. J. Slotboom,, G. H. de Haas,, L. L. van Deenen,, and J. A. Op den Kamp. 1990. Selective elimination of malaria infected erythrocytes by a modified phospholipase A2 in vitro. Biochim. Biophys.Acta 1024: 189 192.
55. Murphy, S. C.,, B. U. Samuel,, T. Harrison,, K. D. Speicher,, D.W. Speicher,, M. E. Reid,, R. Prohaska,, P. S. Low,, M. J. Tanner,, N. Mohandas,, and K. Haldar. 2004. Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 103: 1920 1928.
56. Nagao, E.,, K. B. Seydel,, and J. A. Dvorak. 2002. Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection. Exp. Parasitol. 102: 57 59.
57. Naik, R. S.,, O. H. Branch,, A. S. Woods,, M. Vijaykumar,, D. J. Perkins,, B. L. Nahlen,, A. A. Lal,, R. J. Cotter,, C. E. Costello,, C. F. Ockenhouse,, E.A. Davidson,, and D.C. Gowda. 2000. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J. Exp. Med. 192: 1563 1576.
58. Nawabi, P.,, A. Lykidis,, D. Ji,, and K. Haldar. 2003. Neutral-lipid analysis reveals elevation of acylglycerols and lack of cholesterol esters in Plasmodium falciparum- infected erythrocytes. Eukaryot. Cell 2: 1128 1131.
59. Omodeo-Sale, F.,, A. Motti,, N. Basilico,, S. Parapini,, P. Olliaro,, and D. Taramelli. 2003. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood 102: 705 711.
60. Palacpac, N. M. Q.,, Y. Hiramine,, F. Mi-Ichi,, M. Torii,, K. Kita,, R. Hiramatsu,, T. Horii,, and T. Mitamura. 2004. Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. J. Cell Sci. 117: 1469 1480.
61. Pandey, A.V.,, V.K. Babbarwal,, J.N. Okoyeh,, R. M. Joshi,, S. K. Puri,, R. L. Singh, andV. S. Chauhan. 2003. Hemozoin formation in malaria: a two-step process involving histidine-rich proteins and lipids. Biochem. Biophys. Res.Commun. 308: 736 743.
62. Pessi, G.,, G. Kociubinski,, and C. B. Mamoun. 2004. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc. Natl. Acad. Sci. USA 101: 6206 6211.
63. Ralph, S. A.,, G. G. Van Dooren,, R. F. Waller,, M. J. Crawford,, M. J. Fraunholz,, B. J. Foth,, C. J. Tonkin,, D. S. Roos,, and G. I. McFadden. 2004. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2: 203 216.
64. Roggero, R.,, R. Zufferey,, M. Minca,, E. Richier,, M. Calas,, H. Vial,, and C. Ben Mamoun. 2004. Unraveling the mode of action of the antimalarial choline analog G25 in Plasmodium falciparum and Saccharomyces cerevisiae. Antimicrob.Agents Chemother. 48: 2816 2824.
65. Rontein, D.,, I. Nishida,, G. Tashiro,, K. Yoshioka,, W. I. Wu,, D. R. Voelker,, G. Basset,, and A.D. Hanson. 2001. Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J. Biol. Chem. 276: 35523 35529.
66. Salom-Roig, X.,, H. Hamzé,, M. Calas,, and H. Vial. 2005. Dual molecules as new antimalarials. Comb. Chem. High Throughput Screen. 8: 49 62.
67. Samuel, B.U.,, N. Mohandas,, T. Harrison,, H. Mc- Manus,, W. Rosse,, M. Reid,, and K. Haldar. 2001. The role of cholesterol and glycosylphosphatidylinositol- anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276: 29319 29329.
68. Santiago, T. C.,, R. Zufferey,, R. S. Mehra,, R. A. Coleman,, and C. Ben Mamoun. 2004. The Plasmodium falciparum PfGatp is an endoplasmic reticulum membrane protein important for the initial step of malarial glycerolipid synthesis. J. Biol. Chem. 279: 9222 9232.
69. Sherman, I.W.,, S. Eda,, and E. Winograd. 2003. Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect. 5: 897 909.
70. Sherman, I.W.,, J. Prudhomme,, and J. F. Tait. 1997. Altered membrane phospholipid asymmetry in Plasmodium falciparum-infected erythrocytes. Parasitol. Today 13: 242 243.
71. Sherman, L. 1979. Biochemistry of Plasmodium (malarial parasites). Microbiol. Rev. 43: 453 495.
72. Shibuya, I. 1992. Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog. Lipid Res. 31: 245 299.
73. Shohet, S. B. 1971. The apparent transfer of fatty acid from phosphatidylcholine to phosphatidylethanolamine in human erythrocytes. J.Lipid Res. 12: 139 141.
74. Simões, A. P.,, S. Fiebig,, F. Wunderlich,, H. Vial,, B. Roelofsen,, and J.A. Op den Kamp. 1993. Plasmodium chabaudi-parasitized erythrocytes: phosphatidylcholine species of parasites and host cell membranes. Mol. Biochem. Parasitol. 57: 345 348.
75. Simões, A. P.,, G.N. Moll,, B. Beaumelle,, H. J. Vial,, B. Roelofsen,, and J. A. Op den Kamp. 1990. Plasmodium knowlesi induces alterations in phosphatidylcholine and phosphatidylethanolamine molecular species composition of parasitized monkey erythrocytes. Biochim. Biophys.Acta 1022: 135 145.
76. Smith, J. D. 1993. Phospholipid biosynthesis in protozoa. Prog. Lipid Res. 32: 47 60.
77. Sohlenkamp, C.,, I. M. Lopez-Lara,, and O. Geiger. 2003. Biosynthesis of phosphatidylcholine in bacteria. Prog. Lipid Res. 42: 115 162.
78. Stahl, U.,, A. S. Carlsson,, M. Lenman,, A. Dahlqvist,, B. Huang,, W. Banas,, A. Banas,, and S. Stymne. 2004. Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 135: 1324 1335.
79. Staines, H. M.,, and K. Kirk. 1998. Increased choline transport in erythrocytes from mice infected with the malaria parasite Plasmodium vinckei vinckei. Biochem. J. 334: 525 530.
80. Surolia, A.,, T. Ramya,, V. Ramya,, and N. Surolia. 2004. ‘FAS’t inhibition of malaria. Biochem. J. 383: 401 412.
81. Surolia, N.,, and A. Surolia. 2001. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat. Med. 7: 167 173.
82. Tellez, M.,, F. Matesanz,, and A. Alcina. 2003. The C-terminal domain of the Plasmodium falciparum acyl-CoA synthetases PfACS1 and PfACS3 functions as ligand for ankyrin. Mol. Biochem. Parasitol. 129: 191 198.
83. Van Deenen, L. L. M.,, and J. De Gier,. 1975. Lipids of the red cell membrane, p. 147 211. In G. Surgenor (ed.), The Red Blood Cell. Academic Press, New York, N.Y.
84. Van der Schaft, P. H.,, B. Beaumelle,, H. Vial,, B. Roelofsen,, J. A. Op den Kamp,, and L. L. Van Deenen. 1987. Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection. Biochim. Biophys.Acta 901: 1 14.
85. Vial, H.,, S. Wein,, C. Farenc,, F. Bressolle,, C. Kocken,, A. Thomas,, and M. Calas. 2004. Prodrugs of bisthiazolium salts are orally potent antimalarials. Proc. Natl.Acad. Sci.USA 101: 15458 15463.
86. Vial, H. J.,, and M. L. Ancelin. 1992. Malarial lipids. An overview. Subcell. Biochem. 18: 259 306.
87. Vial, H. J.,, M. L. Ancelin,, J. R. Philippot,, and M. J. Thuet. 1990. Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. Blood Cells 16: 531 555.
88. Vial, H. J.,, M. L. Ancelin,, M. J. Thuet,, and J. R. Philippot. 1989. Phospholipid metabolism in Plasmodium- infected erythrocytes: guidelines for further studies using radioactive precursor incorporation. Parasitology 98: 351 357.
89. Vial, H. J.,, and M. Calas,. 2001. Inhibitors of phospholipid metabolism, p. 347 365. In P. Rosenthal (ed.), Antimalarial Chemotherapy, Mechanisms of Action, Modes of Resistance, and New Directions in Drug Development. Humana Press, Totowa,N.J.
90. Vial, H. J.,, P. Eldin,, A. G. Tielens,, and J. J. van Hellemond. 2003. Phospholipids in parasitic protozoa. Mol. Biochem. Parasitol. 126: 143 154.
91. Vial, H. J.,, M. J. Thuet,, M. L. Ancelin,, J. R. Philippot,, and C. Chavis. 1984a. Phospholipid metabolism as a new target for malaria chemotherapy. Mechanism of action of D-2-amino-1-butanol. Biochem. Pharmacol. 33: 2761 2770.
92. Vial, H. J.,, M. J. Thuet,, J. L. Broussal,, and J. R. Philippot. 1982a. Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospholipid precursors and the identification of previously undetected metabolic pathways. J. Parasitol. 68: 379 391.
93. Vial, H. J.,, M. J. Thuet,, and J. R. Philippot. 1984b. Cholinephosphotransferase and ethanolaminephosphotransferase activities in Plasmodium knowlesi-infected erythrocytes. Their use as parasite-specific markers. Biochim. Biophys.Acta 795: 372 383.
94. Vial, H. J.,, M. J. Thuet,, and J. R. Philippot. 1982b. Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. J. Protozool. 29: 258 263.
95. Vielemeyer, O.,, M.T. McIntosh,, K.A. Joiner,, and I. Coppens. 2004. Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol. Biochem. Parasitol. 135: 197 209.
96. Wang, L.,, N. Mohandas,, A. Thomas,, and R. L. Coppel. 2003. Detection of detergent-resistant membranes in asexual blood-stage parasites of Plasmodium falciparum. Mol.Biochem.Parasitol. 130: 149 153.
97. Wang, Q.,, S. Brown,, D. S. Roos,, V. Nussenzweig,, and P. Bhanot. 2004. Transcriptome of axenic liver stages of Plasmodium yoelii. Mol. Biochem. Parasitol. 137: 161 168.
98. Wengelnik, K.,, V. Vidal,, M. L. Ancelin,, A. M. Cathiard,, J. L. Morgat,, C. H. Kocken,, M. Calas,, S. Herrera,, A.W. Thomas,, and H. J. Vial. 2002. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 295: 1311 1314.
99. Yeo, H. J.,, M. P. Larvor,, M. L. Ancelin,, and H. J. Vial. 1997. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase expressed in Escherichia coli: purification, characterization and lipid regulation. Biochem. J. 324: 903 910.
100. Yeo, H. J.,, J. Sri Widada,, O. Mercereau-Puijalon,, and H. J. Vial. 1995. Molecular cloning of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. Eur. J. Biochem. 233: 62 72.


Generic image for table

Known and putative phospholipid and neutral lipid enzymes of

Citation: Vial H, Ben Mamoun C. 2005. Lipids: Metabolism and Function, p 327-352. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error