Chapter 21 : Molecular Aspects of Antigenic Variation in

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Molecular Aspects of Antigenic Variation in , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap21-2.gif


Antigenic variation is a key survival strategy employed by a wide range of infectious organisms, allowing them to colonize and persist in a vertebrate host in the face of an evolving immune response. Variant surface antigens (VSA) of the parasite responsible for the most severe form of human malaria, , also contribute significantly to the pathology of disease. Characterization of gene coding sequences is difficult due to their extreme diversity, but there are certain key conserved features in gene structure. The conservation in upstream sequences, in terms of both sequence and organization, may indicate some evolutionary pressure that restricts recombination between limited subsets of genes. The adhesion of different Duffy-binding-like (DBL) and cysteine-rich interdomain region (CIDR) domain types to host cell-surface molecules has been investigated in heterologous expression studies, establishing domains responsible for particular adhesive phenotypes and pinpointing regions critical for binding. Clonal switching of gene expression during chronic infection reflects the sum of several molecular processes, including temporal regulation of gene expression during intraerythrocytic development, mutually exclusive expression of only one variant per infected erythrocytes (IE), and the ability to switch expression in progeny parasites. Chronic infection with malaria is characterized by periodic peaks of parasitemia. A consensus model for variant expression during chronic infections can now be proposed. Following merozoite release from the liver, an initial erythrocyte membrane protein 1 (PfEMP1) variant dominates the first cycle of intraerythrocytic infection.

Citation: Horrocks P, Kyes S, Bull P, Deitsch K. 2005. Molecular Aspects of Antigenic Variation in , p 399-415. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch21
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(A) Chromosomal distribution and orientation of the multigene family. genes are indicated as block arrows with the upstream sequence type () indicated using letters A, B, and C. The most common subtelomeric organization of genes is an gene in tail-to-tail orientation with a gene immediately adjacent to the telomere-associated repeat sequences (TARES). Additional features which may or may not be present are shown in brackets. Some subtelomeric regions contain an gene and/or other members of the () and () multigene families. D and genes are always in the same relative location and/or orientation as -type genes. When present, chromosome-central gene variants are either or type and are typically clustered in a head-to-tail orientation. The CD36-binding phenotype of the encoded PfEMP1 appears to be predictable from gene location, as demonstrated in heterologous protein expression studies ( ). CSA binding is likely to be mediated by the -type -encoded PfEMP1 ( ). genes encoding PfEMP1 for other severe disease phenotypes, such as ICAM-1 binding and CR1-mediated rosetting, have been confirmed with isolate IT/FCR3 but not with the genome project isolate 3D7. These genes are type , (ICAM-1) ( ) and (CR1) ( ). (B) gene structure and sequence features. The basic coding sequence units of a gene include an N-terminal sequence (NTS), at least two DBL domains, and the transmembrane (TM) region with exon 2 encoding the semiconserved acidic terminal sequence (ATS). Noncoding features include the relatively conserved 5′ region (), the intron, and the 3′ region (). A common polymorphic gene is depicted, indicating the formation of the NTS, first DBLα and then CIDR, into what is termed the head structure. The presence of CIDR1α in the head structure predicts that the encoded PfEMP1 binds to CD36. Other domains that may be present in the PfEMP1 molecule are indicated below the basic PfEMP1 organization. Adhesion by these domains to certain host ligands, e.g., DBL1α1 to CR1, DBLβC2 to ICAM-1, and DBLγ to CSA ( ), has been reported, although the presence of these domains in the encoded PfEMP1 molecule should not always be assumed to indicate a particular adhesive property of the IE.

Citation: Horrocks P, Kyes S, Bull P, Deitsch K. 2005. Molecular Aspects of Antigenic Variation in , p 399-415. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Control of gene expression. The control of gene expression is complex and includes temporal regulation during a cell cycle, mutually exclusive expression of a single variant in an IE, as well as switching of variants expressed in progeny clones. The status of expression for 5 of the 60 genes present per haploid genome is represented in the ring and pigmented trophozoite stages during two cell cycles. Changes to the IE surface are indicated schematically, from smooth (rings) to patterned (pigmented trophozoites), emphasizing that PfEMP1 absent from the IE surface for most of the ring stage is present during trophozoite stages. In the first cell cycle, variant 1 encodes a PfEMP1 variant (light grey dots) on the trophozoite surface, whereas in the second cycle a switch to a variant (dark grey dots) encoded by variant 2 has occurred. During the ring stage of cell cycle 1, variant 1 is exclusively transcribed, giving rise to the corresponding PfEMP1 variant on the trophozoite IE surface while the remainder of the repertoire is transcriptionally silent (at least in terms of mRNA that encodes surface exposed PfEMP1). In trophozoite stage IE, all gene variants are silenced (note transcription from the intronic promoter, although possibly not from that of variant 1) except for one variant (here variant 60, analogous to the conserved ).Thus genes are subject to both temporal and mutually exclusive transcriptional regulation within a cell cycle. During an infection a small proportion of the parasite population may switch expression of PfEMP1. This is represented here by a switch to expression of the PfEMP1 variant 2 in cell cycle 2. variant 2 is subject to the same temporal and mutually exclusive transcriptional regulation as variant 1 during cell cycle 1.

Citation: Horrocks P, Kyes S, Bull P, Deitsch K. 2005. Molecular Aspects of Antigenic Variation in , p 399-415. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Do genes exist in three transcriptional states? One interpretation of switching rates measured in vitro was that each gene is capable of existing in one of three transcriptional states. First, the on state is where a gene is transcribed and encodes the PfEMP1 molecule on the IE surface. Second, the gene is transcriptionally silent, off but capable of being activated. Transition rates between these two transcriptional states (solid arrows) have been measured and shown to be an intrinsic property of each gene variant. A third transcriptional state was suggested from in vitro data, indicating that the variant expression history impacts on the ability of a gene variant to be switched on. This is termed the heavily silenced transcriptional state. How genes transition to and from this state, and the rates at which this occurs, is not known (broken arrows); their speculative nature is emphasized here by their separation in a second (lower) grey box. Thus, it is proposed that the overall transcriptional status of a gene variant is dependent not only on the intrinsic switch rate between on and off states, but also on whether the gene exists in the heavily silenced state.

Citation: Horrocks P, Kyes S, Bull P, Deitsch K. 2005. Molecular Aspects of Antigenic Variation in , p 399-415. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Agur, Z.,, D. Abiri,, and L. H. Van der Ploeg. 1989. Ordered appearance of antigenic variants of African trypanosomes explained in a mathematical model based on a stochastic switch process and immune-selection against putative switch intermediates. Proc. Natl. Acad. Sci. USA 86: 9626 9630.
2. Akhtar, A. 2003. Dosage compensation: an intertwined world of RNA and chromatin remodelling. Curr. Opin. Genet. Dev. 13: 161 169.
3. Aravind, L.,, L. M. Iyer,, T. E. Wellems,, and L. H. Miller. 2003. Plasmodium biology: genomic gleanings. Cell 115: 771 785.
4. Bahl, A.,, B. Brunk,, J. Crabtree,, M. J. Fraunholz,, B. Gajria,, G. R. Grant,, H. Ginsburg,, D. Gupta,, J. C. Kissinger,, P. Labo,, L. Li,, M. D. Mailman,, A. J. Milgram,, D. S. Pearson,, D. S. Roos,, J. Schug,, C. J. Stoeckert, Jr.,, and P. Whetzel. 2003. PlasmoDB: the Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res. 31: 212 215.
5. Baruch, D. I.,, X. C. Ma,, H. B. Singh,, X. Bi,, B. L. Pasloske,, and R. J. Howard. 1997. Identification of a region of PfEMP1 that mediates adherence of Plasmodium falciparum infected erythrocytes to CD36: conserved function with variant sequence. Blood 90: 3766 3775.
6. Baruch, D. I.,, B. L. Pasloske,, H. B. Singh,, X. Bi,, X. C. Ma,, M. Feldman,, T. F. Taraschi,, and R. J. Howard. 1995. Cloning the P. falciparum gene encoding PfEMP1, a malarial variant antigen and adherence receptor on the surface of parasitized human erythrocytes. Cell 82: 77 87.
7. Borst, P. 2002. Antigenic variation and allelic exclusion. Cell 109: 5 8.
8. Borst, P.,, W. Bitter,, R. McCulloch,, F. Van Leeuwen,, and G. Rudenko. 1995. Antigenic variation in malaria. Cell 82: 14.
9. Borst, P.,, G. Rudenko,, P. A. Blundell,, F. van Leeuwen,, M.A. Cross,, R. McCulloch,, H. Gerrits,, and I. M. Chaves. 1997. Mechanisms of antigenic variation in African trypanosomes. Behring Inst. Mitt. March: 1 15.
10. Borst, P.,, and S. Ulbert. 2001. Control of VSG gene expression sites. Mol. Biochem. Parasitol. 114: 17 27.
11. Brannan, L. R.,, S. A. McLean,, and R. S. Phillips. 1993. Antigenic variants of Plasmodium chabaudi chabaudi AS and the effects of mosquito transmission. Parasite Immunol. 15: 135 141.
12. Brannan, L. R.,, C. M. Turner,, and R. S. Phillips. 1994. Malaria parasites undergo antigenic variation at high rates in vivo . Proc. R. Soc. Lond. B Biol. Sci. 256: 71 75.
13. Buffet, P. A.,, B. Gamain,, C. Scheidig,, D. Baruch,, J. D. Smith,, R. Hernandez-Rivas,, B. Pouvelle,, S. Oishi,, N. Fujii,, T. Fusai,, D. Parzy,, L. H. Miller,, J. Gysin,, and A. Scherf. 1999. Plasmodium falciparum domain mediating adhesion to chondroitin sulfate A: a receptor for human placental infection. Proc. Natl. Acad. Sci. USA 96: 12743 12748.
14. Bull, P. C.,, M. Kortok,, O. Kai,, F. Ndungu,, A. Ross,, B. S. Lowe,, C. I. Newbold,, and K. Marsh. 2000. Plasmodium falciparum-infected erythrocytes: agglutination by diverse Kenyan plasma is associated with severe disease and young host age. J. Infect. Dis. 182: 252 259.
15. Bull, P. C.,, B. S. Lowe,, N. Kaleli,, F. Njuga,, M. Kortok,, A. Ross,, F. Ndungu,, R.W. Snow,, and K. Marsh. 2002. Plasmodium falciparum infections are associated with agglutinating antibodies to parasite-infected erythrocyte surface antigens among healthy Kenyan children. J. Infect. Dis. 185: 1688 1691.
16. Bull, P.C.,, B. S. Lowe,, M. Kortok,, C. S. Molyneux,, C. I. Newbold,, and K. Marsh. 1998. Parasite antigens on the infected red cell surface are targets for naturally acquired immunity to malaria. Nat. Med. 4: 358 360.
17. Bull, P. C.,, A. Pain,, F. M. Ndungu,, S. M. Kinyanjui,, D. J. Roberts,, C. I. Newbold,, and K. Marsh. Plasmodium falciparum antigenic variation: relationships between in-vivo selection, the acquired antibody response and disease severity. J. Infect. Dis., in press.
18. Calderwood, M. S.,, L. Gannoun-Zaki,, T. E. Wellems,, and K.W. Deitsch. 2003. Plasmodium falciparum var genes are regulated by two regions with separate promoters, one upstream of the coding region and a second within the intron. J. Biol. Chem. 278: 34125 34132.
19. Chattopadhyay, R.,, A. Sharma,, V. K. Srivastava,, S. S. Pati,, S. K. Sharma,, B. S. Das,, and C. E. Chitnis. 2003. Plasmodium falciparum infection elicits both variant-specific and cross-reactive antibodies against variant surface antigens. Infect Immun. 71: 597 604.
20. Chen, Q.,, V. Fernandez,, A. Sundstrom,, M. Schlichtherle,, S. Datta,, P. Hagblom,, and M. Wahlgren. 1998. Developmental selection of var gene expression in Plasmodium falciparum. Nature 394: 392 395.
21. Clemson, C. M.,, J. A. McNeil,, H. F. Willard,, and J. B. Lawrence. 1996. XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure. J. Cell Biol. 132: 259 275.
22. David, P. H.,, M. Hommel,, L. H. Miller,, I. J. Udeinya,, and L. D. Oligino. 1983. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes. Proc. Natl. Acad. Sci. USA 80: 5075 5079.
23. Deitsch, K. W.,, M. S. Calderwood,, and T. E. Wellems. 2001. Malaria. Cooperative silencing elements in var genes. Nature 412: 875 876.
24. Deitsch, K.W.,, A. del Pinal,, and T. E. Wellems. 1999. Intra-cluster recombination and var transcription switches in the antigenic variation of Plasmodium falciparum. Mol. Biochem. Parasitol. 101: 107 116.
25. Deitsch, K.W.,, E. R. Moxon,, and T. E. Wellems. 1997. Shared themes of antigenic variation and virulence in bacterial, protozoal, and fungal infections. Microbiol. Mol. Biol. Rev. 61: 281 293.
26. Duffy, M. F.,, J. C. Reeder,, and G.V. Brown. 2003. Regulation of antigenic variation in Plasmodium falciparum: censoring freedom of expression? Trends Parasitol. 19: 121 124.
27. Feuerbach, F.,, V. Galy,, E. Trelles-Sticken,, M. Fromont-Racine,, A. Jacquier,, E. Gilson,, J. C. Olivo-Marin,, H. Scherthan,, and U. Nehrbass. 2002. Nuclear architecture and spatial positioning help establish transcriptional states of telomeres in yeast. Nat. Cell Biol. 4: 214 221.
28. Fidock, D.A.,, E. Bottius,, K. Brahimi,, I. I. Moelans,, M. Aikawa,, R. N. Konings,, U. Certa,, P. Olafsson,, T. Kaidoh,, and A. Asavanich. 1994. Cloning and characterization of a novel Plasmodium falciparum sporozoite surface antigen, STARP. Mol. Biochem. Parasitol. 64: 219 232.
29. Figueiredo, L. M.,, L. H. Freitas-Junior,, E. Bottius,, J. C. Olivo-Marin,, and A. Scherf. 2002. A central role for Plasmodium falciparum subtelomeric regions in spatial positioning and telomere length regulation. EMBO J. 21: 815 824.
30. Fischer, K.,, P. Horrocks,, M. Preuss,, J. Wiesner,, S. Wunsch,, A.A. Camargo,, and M. Lanzer. 1997. Expression of var genes located within polymorphic subtelomeric domains of Plasmodium falciparum chromosomes. Mol. Cell. Biol. 17: 3679 3686.
31. Forsyth, K. P.,, G. Philip,, T. Smith,, E. Kum,, B. Southwell,, and G.V. Brown. 1989. Diversity of antigens expressed on the surface of erythrocytes infected with mature Plasmodium falciparum parasites in Papua New Guinea. Am. J. Trop. Med. Hyg. 41: 259 265.
32. Francis, N. J.,, and R. E. Kingston. 2001. Mechanisms of transcriptional memory. Nat. Rev. Mol. Cell Biol. 2: 409 421.
33. Freitas-Junior, L. H.,, E. Bottius,, L.A. Pirrit,, K.W. Deitsch,, C. Scheidig,, F. Guinet,, U. Nehrbass,, T. E. Wellems,, and A. Scherf. 2000. Frequent ectopic recombination of virulence factor genes in telomeric chromosome clusters of P. falciparum. Nature 407: 1018 1022.
34. Fried, M.,, and P. E. Duffy. 1996. Adherence of Plasmodium falciparum to chondroitin sulfate A in the human placenta. Science 272: 1502 1504.
35. Gamain, B.,, J.D. Smith,, M. Avril,, D. I. Baruch,, A. Scherf,, J. Gysin,, and L. H. Miller. 2004. Identification of a 67-amino-acid region of the Plasmodium falciparum variant surface antigen that binds chondroitin sulphate A and elicits antibodies reactive with the surface of placental isolates. Mol. Microbiol. 53: 445 455.
36. Gardner, J. P.,, R. A. Pinches,, D. J. Roberts,, and C. I. Newbold. 1996. Variant antigens and endothelial receptor adhesion in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 93: 3503 3508.
37. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S.A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R.W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498 511.
38. Gatton, M. L.,, J. M. Peters,, E.V. Fowler,, and Q. Cheng. 2003. Switching rates of Plasmodium falciparum var genes: faster than we thought? Trends Parasitol. 19: 202 208.
39. Giha, H.A.,, T. Staalsoe,, D. Dodoo,, I.M. Elhassan,, C. Roper,, G. M. Satti,, D. E. Arnot,, T. G. Theander,, and L. Hviid. 1999. Nine-year longitudinal study of antibodies to variant antigens on the surface of Plasmodium falciparum-infected erythrocytes. Infect. Immun. 67: 4092 4098.
40. Giha, H.A.,, T. G. Theander,, T. Staalso,, C. Roper,, I. M. Elhassan,, H. Babiker,, G. M. Satti,, D. E. Arnot,, and L. Hviid. 1998. Seasonal variation in agglutination of Plasmodium falciparum-infected erythrocytes. Am. J. Trop. Med. Hyg. 58: 399 405.
41. Grant, P. A. 2001. A tale of histone modifications. Genome Biol. 2: 3.
42. Handunnetti, S. M.,, K. N. Mendis,, and P. H. David. 1987. Antigenic variation of cloned Plasmodium fragile in its natural host Macaca sinica. Sequential appearance of successive variant antigenic types. J. Exp. Med. 165: 1269 1283.
43. Hediger, F.,, and S. M. Gasser. 2002. Nuclear organization and silencing: putting things in their place. Nat. Cell Biol. 4: 53 55.
44. Horrocks, P.,, R. Pinches,, S. Kyes,, N. Kriek,, S. Lee,, Z. Christodoulou,, and C. I. Newbold. 2002. Effect of var gene disruption on switching in Plasmodium falciparum. Mol. Microbiol. 45: 1131 1141.
45. Horrocks, P.,, S. Kyes,, R. Pinches,, Z. Christodoulou,, and C. Newbold. 2004a. Transcription of a subtelomerically located var gene variant in Plasmodium falciparum appears to require the truncation of an adjacent var gene. Mol. Biochem. Parasitol. 134: 193 199.
46. Horrocks, P.,, R. Pinches,, Z. Christodoulou,, S.A. Kyes,, and C. I. Newbold. 2004b. Variable var transition rates underlie antigenic variation in malaria. Proc. Natl. Acad. Sci. USA 101: 11129 11134.
47. Jensen, A. T.,, P. Magistrado,, S. Sharp,, L. Joergensen,, T. Lavstsen,, A. Chiucchiuini,, A. Salanti,, L. S. Vestergaard,, J. P. Lusingu,, R. Hermsen,, R. Sauerwein,, J. Christensen,, M. A. Nielsen,, L. Hviid,, C. Sutherland,, T. Staalsoe,, and T. G. Theander. 2004 . Plasmodium falciparum associated with severe childhood malaria preferentially expresses PfEMP1 encoded by group A var genes. J. Exp. Med. 199: 1179 1190.
48. Jenuwein, T.,, and C.D. Allis. 2001. Translating the histone code. Science 293: 1074 1080.
49. Kinyanjui, S. M.,, P. Bull,, C. I. Newbold,, and K. Marsh. 2003. Kinetics of antibody responses to Plasmodium falciparum-infected erythrocyte variant surface antigens. J. Infect. Dis. 187: 667 674.
50. Kirchmaier, A. L.,, and J. Rine. 2001. DNA replication- independent silencing in S. cerevisiae. Science 291: 646 650.
51. Kraemer, S. M.,, and J.D. Smith. 2003. Evidence for the importance of genetic structuring to the structural and functional specialization of the Plasmodium falciparum var gene family. Mol. Microbiol. 50: 1527 1538.
52. Kriek, N.,, L. Tilley,, P. Horrocks,, R. Pinches,, B.C. Elford,, D. J. Ferguson,, K. Lingelbach,, and C. I. Newbold. 2003. Characterization of the pathway for transport of the cytoadherence-mediating protein, PfEMP1, to the host cell surface in malaria parasite-infected erythrocytes. Mol. Microbiol. 50: 1215 1227.
53. Kyes, S.,, P. Horrocks,, and C. Newbold. 2001. Antigenic variation at the infected red cell surface in malaria. Annu. Rev. Microbiol. 55: 673 707.
54. Kyes, S.,, R. Pinches,, and C. Newbold. 2000. A simple RNA analysis method shows var and rif multigene family expression patterns in Plasmodium falciparum. Mol. Biochem. Parasitol. 105: 311 315.
55. Kyes, S. A.,, Z. Christodoulou,, A. Raza,, P. Horrocks,, R. Pinches,, J. A. Rowe,, and C. I. Newbold. 2003. A well-conserved Plasmodium falciparum var gene shows an unusual stage-specific transcript pattern. Mol. Microbiol. 48: 1339 1348.
56. Lavstsen, T.,, A. Salanti,, A.T. Jensen,, D. E. Arnot,, and T. G. Theander. 2003. Sub-grouping of Plasmodium falciparum 3D7 var genes based on sequence analysis of coding and non-coding regions. Malar. J. 2: 27.
57. Leech, J. H.,, J.W. Barnwell,, L. H. Miller,, and R. J. Howard. 1984. Identification of a strain-specific malarial antigen exposed on the surface of Plasmodium falciparum-infected erythrocytes. J. Exp. Med. 159: 1567 1575.
58. Li, Y. C.,, T. H. Cheng,, and M. R. Gartenberg. 2001. Establishment of transcriptional silencing in the absence of DNA replication. Science 291: 650 653.
59. Lindenthal, C.,, P. G. Kremsner,, and M. Q. Klinkert. 2003. Commonly recognised Plasmodium falciparum parasites cause cerebral malaria. Parasitol. Res. 91: 363 368.
60. Marsh, K.,, and R. J. Howard. 1986. Antigens induced on erythrocytes by P. falciparum: expression of diverse and conserved determinants. Science 231: 150 153.
61. Mechali, M. 2001. DNA replication origins: from sequence specificity to epigenetics. Nat. Rev. Genet. 2: 640 645.
62. Miller, L. H.,, M. F. Good,, and G. Milon. 1994. Malaria pathogenesis. Science 2640: 1878 1883.
63. Molineaux, L.,, H. H. Diebner,, M. Eichner,, W. E. Collins,, G. M. Jeffery,, and K. Dietz. 2001. Plasmodium falciparum parasitaemia described by a new mathematical model. Parasitology 122: 379 391.
64. Molineaux, L.,, and K. Dietz. 1999. Review of intra- host models of malaria. Parassitologia 41: 221 231.
65. Newbold, C.,, P. Warn,, G. Black,, A. Berendt,, A. Craig,, B. Snow,, M. Msobo,, N. Peshu,, and K. Marsh. 1997a. Receptor-specific adhesion and clinical disease in Plasmodium falciparum. Am. J. Trop. Med. Hyg. 57: 389 398.
66. Newbold, C. I.,, A.G. Craig,, S. Kyes,, A. R. Berendt,, R.W. Snow,, N. Peshu,, and K. Marsh. 1997b. PfEMP1,polymorphism and pathogenesis. Ann. Trop. Med. Parasitol. 91: 551 557.
67. Nielsen, M. A.,, T. Staalsoe,, J.A. Kurtzhals,, B. Q. Goka,, D. Dodoo,, M. Alifrangis,, T.G. Theander,, B. D. Akanmori,, and L. Hviid. 2002. Plasmodium falciparum variant surface antigen expression varies between isolates causing severe and nonsevere malaria and is modified by acquired immunity. J. Immunol. 168: 3444 3450.
68. Nielsen, M. A.,, L. S. Vestergaard,, J. Lusingu,, J. A. Kurtzhals,, H.A. Giha,, B. Grevstad,, B.Q. Goka,, M. M. Lemnge,, J. B. Jensen,, B. D. Akanmori,, T. G. Theander,, T. Staalsoe,, and L. Hviid. 2004. Geographical and temporal conservation of antibody recognition of Plasmodium falciparum variant surface antigens. Infect. Immun. 72: 3531 3535.
69. Nordstrand, A.,, A.G. Barbour,, and S. Bergstrom. 2000. Borrelia pathogenesis research in the postgenomic and post-vaccine era. Curr. Opin. Microbiol. 3: 86 92.
70. Noviyanti, R.,, G.V. Brown,, M. E. Wickham,, M. F. Duffy,, A. F. Cowman,, and J. C. Reeder. 2001. Multiple var gene transcripts are expressed in Plasmodium falciparum infected erythrocytes selected for adhesion. Mol. Biochem. Parasitol. 114: 227 237.
71. Oh, S. S.,, S. Voigt,, D. Fisher,, S. J. Yi,, P. J. LeRoy,, L. H. Derick,, S. Liu,, and A. H. Chishti. 2000. Plasmodium falciparum erythrocyte membrane protein 1 is anchored to the actin-spectrin junction and knob-associated histidine-rich protein in the erythrocyte skeleton. Mol. Biochem. Parasitol. 108: 237 247.
72. Paget-McNicol, S.,, M. Gatton,, I. Hastings,, and A. Saul. 2002. The Plasmodium falciparum var gene switching rate, switching mechanism and patterns of parasite recrudescence described by mathematical modelling. Parasitology 124: 225 235.
73. Peters, J.,, E. Fowler,, M. Gatton,, N. Chen,, A. Saul,, and Q. Cheng. 2002. High diversity and rapid changeover of expressed var genes during the acute phase of Plasmodium falciparum infections in human volunteers. Proc. Natl. Acad. Sci. USA 99: 10689 10694.
74. Recker, M.,, S. Nee,, P. C. Bull,, S. Kinyanjui,, K. Marsh,, C. Newbold,, and S. Gupta. 2004. Transient cross-reactive immune responses can orchestrate antigenic variation in malaria. Nature 429: 555 558.
75. Reeder, J. C.,, A. F. Cowman,, K. M. Davern,, J. G. Beeson,, J. K. Thompson,, S. J. Rogerson,, and G.V. Brown. 1999. The adhesion of Plasmodium falciparum-infected erythrocytes to chondroitin sulfate A is mediated by P. falciparum erythrocyte membrane protein 1. Proc. Natl. Acad. Sci. USA 96: 5198 5202.
76. Roberts, D. J.,, A. G. Craig,, A. R. Berendt,, R. Pinches,, G. Nash,, K. Marsh,, and C. I. Newbold. 1992. Rapid switching to multiple antigenic and adhesive phenotypes in malaria. Nature 357: 689 692.
77. Robinson, B. A.,, T. L. Welch,, and J. D. Smith. 2003. Widespread functional specialization of Plasmodium falciparum erythrocyte membrane protein 1 family members to bind CD36 analysed across a parasite genome. Mol. Microbiol. 47: 1265 1278.
78. Rowe, A.,, J. Obeiro,, C. I. Newbold,, and K. Marsh. 1995. Plasmodium falciparum rosetting is associated with malaria severity in Kenya. Infect. Immun. 63: 2323 2326.
79. Rowe, J. A.,, and S. A. Kyes. 2004. The role of Plasmodium falciparum var genes in malaria in pregnancy. Mol. Microbiol. 53: 1011 1019.
80. Rowe, J. A.,, S. A. Kyes,, S. J. Rogerson,, H. A. Babiker,, and A. Raza. 2002. Identification of a conserved Plasmodium falciparum var gene implicated in malaria in pregnancy. J. Infect. Dis. 185: 1207 1211.
81. Rowe, J. A.,, J. M. Moulds,, C. I. Newbold,, and L. H. Miller. 1997. P. falciparum rosetting mediated by a parasite-variant erythrocyte membrane protein and complement-receptor 1. Nature 388: 292 295.
82. Salanti, A.,, A.T. Jensen,, H.D. Zornig,, T. Staalsoe,, L. Joergensen,, M.A. Nielsen,, A. Khattab,, D. E. Arnot,, M.Q. Klinkert,, L. Hviid,, and T.G. Theander. 2002. A sub-family of common and highly conserved Plasmodium falciparum var genes. Mol. Biochem. Parasitol. 122: 111 115.
83. Salanti, A.,, T. Staalsoe,, T. Lavstsen,, A.T. Jensen,, M. P. Sowa,, D. E. Arnot,, L. Hviid,, and T. G. Theander. 2003. Selective upregulation of a single distinctly structured var gene in chondroitin sulphate A-adhering Plasmodium falciparum involved in pregnancy-associated malaria. Mol. Microbiol. 49: 179 191.
84. Scherf, A.,, L. M. Figueiredo,, and L. H. Freitas- Junior. 2001. Plasmodium telomeres: a pathogen’s perspective. Curr. Opin. Microbiol. 4: 409 414.
85. Scherf, A.,, R. Hernandez-Rivas,, P. Buffet,, E. Bottius,, C. Benatar,, B. Pouvelle,, J. Gysin,, and M. Lanzer. 1998. Antigenic variation in malaria: in situ switching, relaxed and mutually exclusive transcription of var genes during intra-erythrocytic development in Plasmodium falciparum. EMBO J. 17: 5418 5426.
86. Sleutels, F.,, R. Zwart,, and D. P. Barlow. 2002. The non-coding Air RNA is required for silencing autosomal imprinted genes Nature 415: 810 813.
87. Smith, J. D.,, C. E. Chitnis,, A. G. Craig,, D. J. Roberts,, D. E. Hudson-Taylor,, D. S. Peterson,, R. Pinches,, C. I. Newbold,, and L. H. Miller. 1995. Switches in expression of Plasmodium falciparum var genes correlate with changes in antigenic and cytoadherent phenotypes of infected erythrocytes. Cell 82: 101 110.
88. Smith, J. D.,, A. G. Craig,, N. Kriek,, D. Hudson- Taylor,, S. Kyes,, T. Fagen,, R. Pinches,, D. I. Baruch,, C. I. Newbold,, and L. H. Miller. 2000a. Identification of a Plasmodium falciparum intercellular adhesion molecule-1 binding domain: a parasite adhesion trait implicated in cerebral malaria. Proc. Natl. Acad. Sci. USA 97: 1766 1771.
89. Smith, J. D.,, S. Kyes,, A. G. Craig,, T. Fagan,, D. Hudson-Taylor,, L.H. Miller,, D. I. Baruch,, and C. I. Newbold. 1998. Analysis of adhesive domains from the A4VAR Plasmodium falciparum erythrocyte membrane protein-1 identifies a CD36 binding domain. Mol. Biochem. Parasitol. 97: 133 148.
90. Smith, J. D.,, G. Subramanian,, B. Gamain,, D. I. Baruch,, and L. H. Miller. 2000b. Classification of adhesive domains in the Plasmodium falciparum erythrocyte membrane protein 1 family. Mol. Biochem. Parasitol. 110: 293 310.
91. Springer, A. L.,, L. M. Smith,, D. Q. Mackay,, S. O. Nelson,, and J. D. Smith. 2004. Functional interdependence of the DBLβ domain and C2 region for binding of the Plasmodium falciparum variant antigen to ICAM-1. Mol. Biochem. Parasitol. 137: 55 64.
92. Su, X. Z.,, V. M. Heatwole,, S. P. Wertheimer,, F. Guinet,, J. A. Herrfeldt,, D. S. Peterson,, J. A. Ravetch,, and T. E. Wellems. 1995. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89 100.
93. Taylor, H. M.,, S. A. Kyes,, and C. I. Newbold. 2000. Var gene diversity in Plasmodium falciparum is generated by frequent recombination events. Mol. Biochem. Parasitol. 110: 391 397.
94. Tebo, A. E.,, P. G. Kremsner,, K. P. Piper,, and A. J. Luty. 2002. Low antibody responses to variant surface antigens of Plasmodium falciparum are associated with severe malaria and increased susceptibility to malaria attacks in Gabonese children. Am. J. Trop. Med. Hyg. 67: 597 603.
95. Turner, C.M. 1997. The rate of antigenic variation in fly-transmitted and syringe-passaged infections of Trypanosoma brucei. FEMS Microbiol. Lett. 153: 227 231.
96. Turner, C.M. 1999. Antigenic variation in Trypanosoma brucei infections: an holistic view. J. Cell Sci. 112: 3187 3192.
97. Turner, G.D.,, H. Morrison,, M. Jones,, T. M. Davis,, S. Looareesuwan,, I.D. Buley,, K.C. Gatter,, C. I. Newbold,, S. Pukritayakamee,, and B. Nagachinta. 1994. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am.J. Pathol. 145: 1057 1069.
98. Urban, B. C.,, D. J. Ferguson,, A. Pain,, N. Willcox,, M. Plebanski,, J. M. Austyn,, and D. J. Roberts. 1999. Plasmodium falciparum-infected erythrocytes modulate the maturation of dendritic cells. Nature 400: 73 77.
99. Voss, T. S.,, M. Kaestli,, D. Vogel,, S. Bopp,, and H. P. Beck. 2003. Identification of nuclear proteins that interact differentially with Plasmodium falciparum var gene promoters. Mol. Microbiol. 48: 1593 1607.
100. Voss, T. S.,, J. K. Thompson,, J. Waterkeyn,, I. Felger,, N. Weiss,, A. F. Cowman,, and H. P. Beck. 2000. Genomic distribution and functional characterisation of two distinct and conserved Plasmodium falciparum var gene 5′ flanking sequences. Mol. Biochem. Parasitol. 107: 103 115.
101. Waller, K. L.,, W. Nunomura,, B. M. Cooke,, N. Mohandas,, and R. L. Coppel. 2002. Mapping the domains of the cytoadherence ligand Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) that bind to the knob-associated histidine-rich protein (KAHRP). Mol. Biochem. Parasitol. 119: 125 129.


Generic image for table

promoter-type and exon 1 comparison for polymorphic genes in 3D7 genome

Citation: Horrocks P, Kyes S, Bull P, Deitsch K. 2005. Molecular Aspects of Antigenic Variation in , p 399-415. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch21
Generic image for table

promoter-type and exon 1 comparison for polymorphic genes in 3D7 genome, conserved within and between genomes

Citation: Horrocks P, Kyes S, Bull P, Deitsch K. 2005. Molecular Aspects of Antigenic Variation in , p 399-415. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error