1887

Chapter 26 : The Genome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Genome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap26-2.gif

Abstract:

is the most important vector of malaria in sub-Saharan Africa, where most of the world’s human malaria cases and deaths occur each year. Genetically, sensu stricto is a very polymorphic taxon. is clearly a species with a high degree of genetic population structure, particularly in west and central Africa. has three pairs of chromosomes, an X and Y sex-determining pair and two autosomes, chromosomes 2 and 3. The shotgun sequences from Celera and Genoscope were assembled with the Celera assembler into 8,987 scaffolds (ordered and oriented sets of contigs with gaps) that constitute the assembled genome. The genome is currently undergoing a major update of the assembly, which will then be followed by an entirely new annotation. A major milestone for the VectorBase developers will be the completion of the first draft of the genome and close comparison between the and genomes. Postgenome studies using large-scale data sets involving expressed sequence tags (ESTs), microarray expression analysis, single nucleotide polymorphisms, and proteomics data, in addition to third-party annotations, are essential to provide information on the annotation of the genome and to pinpoint unique and fundamental aspects of mosquito biology that could be exploited for control. Insecticides are an essential component to most malaria control programs. Our future challenge will be to determine the function of gene products and to establish precisely how they interact in time and space to affect vector biology and disease transmission.

Citation: Collins F, Hill C. 2005. The Genome, p 499-515. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch26

Key Concept Ranking

Single Nucleotide Polymorphism
0.41667545
Plasma Membrane
0.40275878
0.41667545
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic diagram by M. Coluzzi of the X chromosome of showing sites of hybridization of a sample of BAC clones and cDNA clones. The dark lines below the chromosome indicate the approximate location along the chromosome of individual scaffolds. Scaffolds are identified by the last four digits in the scaffold clone name (e.g., scaffold AAAB01008846 is marked 8846).Arrows indicate orientation of the scaffold from the first nucleotide pair to the last (at arrowhead). Some small scaffolds in division 6 have not been oriented.

Citation: Collins F, Hill C. 2005. The Genome, p 499-515. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic representation of the molecular processes involved in GPCR signal transduction pathways that may operate in a range of mosquito biological processes such as olfaction, taste, vision, and neurohormonal processes. GPCRs in sensilla of the mosquito antennae and mouthparts are thought to function in mosquito olfaction and taste, while GPCRs in the photoreceptor cells of the compound eye function in visual processes. In this diagram, a seven-transmembrane-spanning GPCR is shown interacting with a range of extracellular ligands, including odorant molecules in the case of olfaction and photons of light in the case of visual processes. Odorant receptors may interact with OBPs before interacting with the GPCR. Following interaction with a specific ligand, the GPCR undergoes a conformational change and interacts with heterotrimeric G protein complexes that activate downstream effector molecules, either adenyl cyclase (AC) or phospholipase C (PLC).This results in the synthesis of second messengers, namely cyclic AMP (cAMP), diacylglycerol (DAG), and inositol 1,4,5- triphosphate (IP), which regulate cation channels, resulting in a transduction current.

Citation: Collins F, Hill C. 2005. The Genome, p 499-515. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch26
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817558.chap26
1. Beard, C. B.,, M. Q. Benedict,, J. P. Primus,, V. Finnerty,, and F. H. Collins. 1995. Eye pigments in wild-type and eye-color mutant strains of the African malaria vector Anopheles gambiae. J. Hered. 86: 375 380.
2. Besansky, N. J.,, and J. R. Powell. 1992. Reassociation kinetics of Anopheles gambiae (Diptera: Culicidae) DNA. J. Med. Entomol. 29: 125 128.
3. Besansky, N. J.,, T. Lehmann,, G.T. Fahey,, D. Fontenille,, L. E. Braack,, W. A. Hawley,, and F. H. Collins. 1997. Patterns of mitochondrial variation within and between African malaria vectors, Anopheles gambiae and An. arabiensis, suggest extensive gene flow. Genetics 147: 1817 1828.
4. Biessmann, H.,, M. F. Walter,, S. Dimitratos,, and D. Woods. 2002. Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol. Biol. 11: 123 132.
5. Blandin, S.,, L. F. Moita,, T. Kocher,, M. Wilm,, F. C. Kafatos,, and E.A. Levashina. 2002. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3: 852 856.
6. Chambers, E.W.,, D.D. Lovin,, and D.W. Severson. 2003. Utility of comparative anchor-tagged sequences as physical anchors for comparative genome analysis among the culicidae. Am. J.Trop. Med. Hyg. 69: 98 104.
7. Christophides, G. K.,, E. Zdobnov,, C. Barillas- Mury,, E. E. Birney,, S. Blandin,, C. Blass,, P.T. Brey,, F. H. Collins,, A. Danielli,, G. Dimopoulos,, C. Hetru,, N.T. Hoa,, J.A. Hoffmann,, S. M. Kanzok,, I. Letunic,, E.A. Levashina,, T.G. Loukeris,, G. Lycett,, S. Meister,, K. Michel,, L. F. Moite,, H.M. Muller,, M.A. Osta,, S. M. Paskewitz,, J. M. Reichart,, A. Rzhetsky,, L. Troxler,, K. D. Vernick,, D. Vlachou,, J. Volz,, C. von Mering,, J. Xu,, L. Zheng,, P. Bork,, and F.C. Kafatos. 2002. Immunity-related genes and gene families in Anopheles gambiae. Science 298: 159 165.
8. Christophides, G. K.,, D. Vlachou,, and F.C. Kafatos. 2004. Comparative and functional genomics of the innate immune system in the malaria vector Anopheles gambiae. Immunol. Rev. 198: 127 148.
9. Coetzee, M.,, M. Craig,, and D. Le Sueur. 2000. Distribution of African malaria vector mosquitoes belonging to the Anopheles gambiae complex. 2000. Parasitol.Today 16: 74 77.
10. Coluzzi, M. 1994. Malaria and the Afrotropical ecosystems: impact of man-made environmental changes. Parassitologia 36: 223 227.
11. Coluzzi, M.,, V. Petrarca,, and M.A. Di Deco. 1985. Chromosomal inversion integradation and incipient speciation in Anopheles gambiae. Boll. Zool. 52: 45 63.
12. Coluzzi, M.,, A. Sabatini,, A. della Torre,, M.A. Di Deco,, and V. Petrarca. 2002. A polytene chromosome analysis of the Anopheles gambiae species complex. Science 298: 1415 1418.
13. Coluzzi, M.,, A. Sabatini,, V. Petrarca,, and M.A. Di Deco. 1979. Chromosomal differentiation and adaptation to human environments in the Anopheles gambiae complex. Trans. R. Soc.Trop. Med. Hyg. 73: 483 497.
14. Cooke, B. M.,, and R. L. Coppel. 2004. Blue skies or stormy weather: what lies ahead for malaria research? Trends Parasitol. 20: 611 614.
15. della Torre, A.,, C. Fanello,, M. Akogbeto,, J. Dossou- Yovo,, and G. Favia. 2001. Molecular evidence of incipient speciation within Anopheles gambaie s.s. in West Africa. Insect Mol. Biol. 10: 9 18.
16. Dimopoulos, G.,, G.K. Christophides,, S. Meister,, J. Schultz,, K. P. White,, C. Barillas-Mury,, and F. C. Kafatos. 2002. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc. Natl. Acad. Sci. USA 99: 8814.
17. Donnelly, M. J.,, J. Pinto,, R. Girod,, N. J. Besansky,, and T. Lehmann. 2004. Revisiting the role of introgression vs shared ancestral polymorphisms as key processes shaping genetic diversity in the recently separated sibling species of the Anopheles gambiae complex. Heredity 92: 61 68.
18. Favia, G.,, G. Dimopoulos,, A. della Torre,, Y. T. Toure,, M. Coluzzi,, and C. Louis. 1994. Polymorphisms detected by random PCR distinguish between different chromosomal forms of Anopheles gambiae. Proc. Natl.Acad. Sci.USA 91: 10315 10319.
19. Favia, G.,, A. della Torre,, M. Bagayoko,, A. Lanfrancotti,, N. Sagnon,, Y. T. Toure,, and M. Coluzzi. 1997. Molecular identification of sympatric chromosomal forms of Anopheles gambiae and further evidence of their reproductive isolation. Insect Mol. Biol. 6: 377 383.
20. Fox, A.,, R. Pitts,, H. Robertson,, J. R. Carlson,, and L. J. Zwiebel. 2001. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood-feeding. Proc. Natl.Acad. Sci.USA 98: 14693 14697.
21. Fox, A. N.,, R. J. Pitts,, and L. J. Zwiebel. 2002. A cluster of candidate odorant receptors from the malaria vector mosquito, Anopheles gambiae. Chem. Senses 27: 453.
22. Gentile, G.,, M. Slotman,, V. Ketmaier,, J. R. Powell,, and A. Caccone. 2001. Attempts to molecularly distinguish cryptic taxa in Anopheles gambiae s.s. Insect Mol. Biol. 10: 25 32.
23. Githeko, A. K.,, A.D. Brandling-Bennett,, M. Beier,, F. Atieli,, M. Owaga,, and F. H. Collins. 1992. The reservoir of Plasmodium falciparum malaria in a holoendemic area of western Kenya. Trans. R. Soc. Trop. Med. Hyg. 86: 355 358.
24. Hallem, E. A.,, A. N. Fox,, L. J. Zwiebel,, and J. R. Carlson. 2004. Mosquito receptor for human-sweat odorant. Nature 427: 212 213.
25. Hemingway, J.,, N. J. Hawkes,, L. McCarroll,, and H. Ranson. 2004. The molecular basis of insecticide resistance in mosquitoes. Insect Biochem. Mol. Biol. 34: 653 665.
26. Hill, C. A.,, A. N. Fox,, R. J. Pitts,, L. B. Kent,, P. L. Tan,, M.A. Chrystal,, A. Cravchik,, F. H. Collins,, H. M. Robertson,, and L. J. Zwiebel. 2002. G protein-coupled receptors in Anopheles gambiae. Science 298: 176 178.
27. Hill, C. A.,, F. C. Kafatos,, S. K. Stansfield,, and F. H. Collins. 2005. Arthropod-borne diseases: vector control in the genomics era. Nat. Rev. Microbiol. 3: 262 268.
28. Hill, C.A.,, and S. K. Wikel. 2005. The Ixodes scapularis genome project: an opportunity for advancing tick research. Trends Parasitol. 21: 151 153.
29. Holt, R.A.,, and F. H. Collins. The malaria mosquito genome. Encyclopedia of Molecular Cell Biology and Molecular Medicine, in press.
30. Holt, R. A.,, G. M. Subramanian,, A. Halpern,, G. G. Sutton,, R. Charlab,, D. R. Nusskern,, P. Wincker,, A. G. Clark,, J. M. Ribeiro,, R. Wides,, S. L. Salzberg,, B. Loftus,, M. Yandell,, W. H. Majoros,, D. B. Rusch,, Z. Lai,, C. L. Kraft,, J. F. Abril,, V. Anthouard,, P. Arensburger,, P. W. Atkinson,, H. Baden,, V. de Berardinis,, D. Baldwin,, V. Benes,, J. Biedler,, C. Blass,, R. Bolanos,, D. Boscus,, M. Barnstead,, S. Cai,, A. Center,, K. Chaturverdi,, G. K. Christophides,, M.A. Chrystal,, M. Clamp,, A. Cravchik,, V. Curwen,, A. Dana,, A. Delcher,, I. Dew,, C. A. Evans,, M. Flanigan,, A. Grundschober-Freimoser,, L. Friedli,, Z. Gu,, P. Guan,, R. Guigo,, M. E. Hillenmeyer,, S. L. Hladun,, J. R. Hogan,, Y. S. Hong,, J. Hoover,, O. Jaillon,, Z. Ke,, C. Kodira,, E. Kokoza,, A. Koutsos,, I. Letunic,, A. Levitsky,, Y. Liang,, J. J. Lin,, N. F. Lobo,, J. R. Lopez,, J.A. Malek,, T. C. McIntosh,, S. Meister,, J. Miller,, C. Mobarry,, E. Mongin,, S. D. Murphy,, D. A. O’Brochta,, C. Pfannkoch,, R. Qi,, M.A. Regier,, K. Remington,, H. Shao,, M. V. Sharakhova,, C. D. Sitter,, J. Shetty,, T. J. Smith,, R. Strong,, J. Sun,, D. Thomasova,, L. Q. Ton,, P. Topalis,, Z. Tu,, M. F. Unger,, B. Walenz,, A. Wang,, J. Wang,, M. Wang,, X. Wang,, K. J. Woodford,, J. R. Wortman,, M. Wu,, A. Yao,, E.M. Zdobnov,, H. Zhang,, Q. Zhao,, S. Zhao,, S. C. Zhu,, I. Zhimulev,, M. Coluzzi,, A. della Torre,, C.W. Roth,, C. Louis,, F. Kalush,, R. J. Mural,, E. W. Myers,, M. D. Adams,, H.O. Smith,, S. Broder,, M. J. Gardner,, C. M. Fraser,, E. Birney,, P. Bork,, P.T. Brey,, J.C. Venter,, J. Weissenbach,, F. C. Kafatos,, F. H. Collins,, and S. L. Hoffman. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129 149.
31. Hong, Y. S.,, J. R. Hogan,, X. Wang,, A. Sarkar,, C. Sim,, B. J. Loftus,, C. Ren,, E. R. Huff,, J. L. Carlile,, K. Black,, H. B. Zhang,, M. J. Gardner,, and F. H. Collins. 2003. Construction of a BAC library and generation of BAC end sequence-tagged connectors for genome sequencing of the African malaria mosquito Anopheles gambiae. Mol. Genet. Genomics 268: 720 728.
32. Justice, R.W.,, S. Dimitratos,, M. F. Walter,, D. F. Woods,, and H. Biessmann. 2003. Sexual dimorphic expression of putative antennal carrier protein genes in the malaria vector Anopheles gambiae. Insect Mol. Biol. 12: 581 594.
33. Krzywinski, J.,, and N. J. Besansky. 2003. Molecular systematics of Anopheles: from subgenera to subpopulations. Annu. Rev. Entomol. 48: 111 139.
34. Kumar, V.,, and F. H. Collins. 1994. A technique for nucleic acid in situ hybridization to polytene chromosomes of mosquitoes in the Anopheles gambiae complex. Insect Mol. Biol. 3: 41 47.
35. Lanzaro, G.C.,, Y.T. Toure,, J. Carnahan,, L. Zheng,, G. Dolo,, S. Traore,, V. Petrarca,, K. D. Vernick,, and C. E. Taylor. 1998. Complexities in the genetic structure of Anopheles gambiae populations in west Africa as revealed by microsatellite DNA analysis. Proc. Natl.Acad. Sci. USA 95: 14260 14265.
36. Lehmann, T.,, M. Licht,, N. Elissa,, B. T. Maega,, J. M. Chimumbwa,, F.T. Watsenga,, C. S. Wondji,, F. Simard,, and W. A. Hawley. 2003. Population structure of Anopheles gambiae in Africa. J. Hered. 94: 133 147.
37. Mason, G. F. 1967. Genetic studies on mutations in species A and B of the Anopheles gambiae complex. Genet. Res. 10: 205 217.
38. Melo, A. C.,, M. Rutzler,, R. J. Pitts,, and L. J. Zwiebel. 2004. Identification of a chemosensory receptor from the yellowfever mosquito, Aedes aegypti, that is highly conserved and expressed in olfactory and gustatory organs. Chem. Senses 29: 403 410.
39. Mongin, E.,, C. Louis,, R. A. Holt,, E. Birney,, and F. H. Collins. 2004. The Anopheles gambiae genome: an update. Trends Parasitol. 20: 49 52.
40. Mukabayire, O.,, and N. J. Besansky. 1996. Distribution of T1, Q, Pegasus and mariner transposable elements on the polytene chromosomes of PEST, a standard strain of Anopheles gambiae. Chromosoma 104: 585 595.
41. Ortelli, F.,, L.C. Rossiter,, J. Vontas,, H. Ranson,, and J. Hemingway. 2003. Heterologous expression of four glutathione transferase genes genetically linked to a major insecticide-resistance locus from the malaria vector Anopheles gambiae. Biochem. J. 373: 957 963.
42. Osta, M. A.,, G. K. Christophides,, and F. C. Kafatos. 2004a. Effects of mosquito genes on Plasmodium development. Science 303: 2030 2032.
43. Osta, M.A.,, G. K. Christophides,, D. Vlachou,, and F. C. Kafatos. 2004b. Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J. Exp. Biol. 207: 2551 2563.
44. Pitts, R. J.,, A. N. Fox,, and L. J. Zwiebel. 2004. A highly conserved candidate chemoreceptor expressed in both olfactory and gustatory tissues in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA 103: 5058 5063.
45. Ranson, H.,, C. Claudianos,, F. Ortelli,, C. Abgrall,, J. Hemingway,, M.V. Sharakhova,, M. F. Unger,, F. H. Collins,, and R. Feyereisen. 2002. Evolution of supergene families associated with insecticide resistance. Science 298: 179 181.
46. Ranson, H.,, M.G. Paton,, B. Jensen,, L. McCarroll,, A. Vaughan,, J. R. Hogan,, J. Hemmingway,, and F. H. Collins. 2004. Genetic mapping of genes conferring permethrin resistance in the malaria vector, Anopheles gambiae. Insect Mol. Biol. 13: 379 386.
47. Ribeiro, J. M. C. 2003. A catalogue of Anopheles gambiae transcripts significantly more or less expressed following a blood meal. Insect Biochem. Mol. Biol. 33: 865 882.
48. Severson, D.W.,, B. deBruyn,, D. D. Lovin,, S. E. Brown,, D. L. Knudson,, and I. Morlas. 2004. Comparative genome analysis of the yellow fever mosquito Aedes aegypti with Drosophila melanogaster and the malaria vector mosquito Anopheles gambiae. J. Hered. 95: 103 113.
49. Scott, T.W.,, W. Takken,, B.G. Knols,, and C. Boete. 2002. The ecology of genetically modified mosquitos. Science 298: 117 119.
50. Thomasova, D.,, L. Q. Ton,, R. R. Copley,, E. M. Zdobnov,, X. Wang,, Y. S. Hong,, C. Sim,, P. Bork,, F. C. Kafatos,, and F. H. Collins. 2002. Comparative genomic analysis in the region of a major Plasmodium- refractoriness locus of Anopheles gambiae. Proc. Natl.Acad. Sci. USA 99: 8179 8184.
51. Toure, Y.T.,, V. Petrarca,, S. F. Traore,, A. Coulibaly,, H. M. Maiga,, O. Sankare,, M. Sow,, M. A. Di Deco,, and M. Coluzzi. 1998. The distribution and inversion polymorphism of chromosomally recognized taxa of the Anopheles gambiae complex in Mali,West Africa. Parassitologia 40: 477 511.
52. Tripet, F.,, Y.T. Toure,, G. Dolo,, and G.C. Lanzaro. 2003. Frequency of multiple inseminations in fieldcollected Anopheles gambiae females revealed by DNA analysis of transferred sperm. Am. J.Trop. Med. Hyg. 68: 1 5.
53. Tripet, F.,, Y.T. Toure,, C. E. Taylor,, D.E. Norris,, G. Dolo,, and G. C. Lanzaro. 2001. DNA analysis of transferred sperm reveals significant levels of gene flow between molecular forms of Anopheles gambiae. Mol. Ecol. 10: 1725 1732.
54. Vogt, R. G. 2002. Odorant binding protein homologues of the malaria vector mosquito Anopheles gambiae, possible orthologues of the OS-E and OSF OBPs of Drosophila melanogaster. J. Chem. Ecol. 28: 2371 2376.
55. White, G. B. 1974. Anopheles gambiae complex and disease transmission in Africa. Trans.R. Soc.Trop. Med. Hyg. 68: 278 301.
56. Xu, P. X.,, L. J. Zwiebel,, and D. P. Smith. 2003. Identification of a distinct family of genes encoding atypical odorant-binding proteins from the malaria vector mosquito, Anopheles gambiae. Insect Mol. Biol. 12: 549 560.
57. Zdobnov, E. M.,, C. von Mering,, I. Letunic,, D. Torrents,, M. Suyama,, R. R. Copley,, G. K. Christophides,, D. Thomasova,, R.A. Holt,, G. M. Subramanian,, H. M. Mueller,, G. Dimopoulos,, J. H. Law,, M.A. Wells,, E. Birney,, R. Charlab,, A. L. Halpern,, E. Kokoza,, C. L. Kraft,, Z. Lai,, S. Lewis,, C. Louis,, C. Barillas-Mury,, D. Nusskern,, G. M. Rubin,, S. L. Salzberg,, G. G. Sutton,, P. Topalis,, R. Wides,, P. Wincker,, M. Yandell,, F. H. Collins,, J. Ribeiro,, W. M. Gelbart,, F. C. Kafatos,, and P. Bork. 2002. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298: 149 159.
58. Zwiebel, L. J.,, and W. Takken. 2004. Olfactory regulation of mosquito-host interactions. Insect Biochem. Mol. Biol. 34: 645 652.

Tables

Generic image for table
TABLE 1

Species in the complex and their role in malaria transmission

Citation: Collins F, Hill C. 2005. The Genome, p 499-515. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error