Chapter 27 : The Transcriptome of Human Malaria Vectors

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Transcriptome of Human Malaria Vectors, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap27-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap27-2.gif


This chapter traces the development of gene expression studies in mosquitoes from a historical perspective. In addition, it reviews the relevant technologies that made the advances possible. While the principal focus is on the anopheline vectors of malaria, in particular, the authors intend to cite relevant advances in other insects, most notably the yellow fever mosquito, . The rapid development of molecular techniques and their applications in model organisms such as the vinegar fly, , fostered the reemergence of interest in whether genetics bolstered by molecular biology could provide useful tools in combating malaria transmission. Extensive expressed sequence tag (EST) studies designed to dissect the molecular components of innate immunity in mosquitoes have generated large amounts of information on the mosquito transcriptome. Extensive cDNA sequencing also has been used to identify genes differentially expressed in insecticide-resistant and -susceptible mosquitoes. Serial analysis of gene expression (SAGE) is based on the sequential analysis in large quantities of short cDNA sequence tags. Genes activated by both bacterial and malaria infection include those encoding a peptidoglycan recognition protein LB receptor, the gram-negative bacteria-binding protein opsonin, an fibrinogen- like lectin, a thioester-containing putative opsonin, the 14-D serine protease, the CED-6-like phagocytic adaptor,and the leucinerich repeat putative receptor. Monitoring genome-wide changes in gene expression patterns in whole specimens is now feasible, and it is expected that this will be possible with other vectors in the near future.

Citation: Marinotti O, James A. 2005. The Transcriptome of Human Malaria Vectors, p 516-530. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch27
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adelman, Z. N.,, C. D. Blair,, J. O. Carlson,, B. J. Beaty,, and K. E. Olson. 2001. Sindbis virus-induced silencing of dengue viruses in mosquitoes. Insect Mol. Biol. 10: 265 273.
2. Arca, B.,, F. Lombardo,, M. de Lara Capurro,, A. della Torre,, G. Dimopoulos,, A. A. James,, and M. Coluzzi. 1999. Trapping cDNAs encoding secreted proteins from the salivary glands of the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA 96: 1516 1521.
3. Bartholomay, L. C.,, W. L. Cho,, T. A. Rocheleau,, J. P. Boyle,, E.T. Beck,, J. F. Fuchs,, P. Liss,, M. Rusch,, K. M. Butler,, R. C. Wu,, S. P. Lin,, H.Y. Kuo,, I. Y. Tsao,, C. Y. Huang,, T. T. Liu,, K. J. Hsiao,, S. F. Tsai,, U. C. Yang,, A. J. Nappi,, N.T. Perna,, C. C. Chen,, and B. M. Christensen. 2004. Description of the transcriptomes of immune response-activated hemocytes from the mosquito vectors Aedes aegypti and Armigeres subalbatus. Infect. Immun. 72: 4114 4126.
4. Beaudoing, E.,, and D. Gautheret. 2001. Identification of alternate polyadenylation sites and analysis of their tissue distribution using EST data. Genome Res. 11: 1520 1526.
5. Besansky, N. J.,, J. A. Bedell,, M. Q. Benedict,, O. Mukabayire,, D. Hilfiker,, and F. H. Collins. 1995. Cloning and characterization of the white gene from An. gambiae. Insect Mol. Biol. 4: 217 231.
6. Biessmann, H.,, M. F. Walter,, S. Dimitratos,, and D. Woods. 2004. Isolation of cDNA clones encoding putative odourant binding proteins from the antennae of the malaria-transmitting mosquito, Anopheles gambiae. Insect Mol. Biol. 11: 123 132.
7. Blandin, S.,, L. F. Moita,, T. Kocher,, M. Wilm,, F. C. Kafatos,, and E.A. Levashina. 2002. Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep. 3: 852 856.
8. Blandin, S.,, S. H. Shiao,, L. F. Moita,, C. J. Janse,, A. P. Waters,, F.C. Kafatos,, and E.A. Levashina. 2004. Complement-like protein TEP1 is a determinant of vectorial capacity in the malaria vector Anopheles gambiae. Cell 116: 661 670.
9. Boue, S.,, I. Letunic,, and P. Bork. 2003. Alternative splicing and evolution. Bioessays 25: 1031 1034.
10. Brett, D.,, H. Pospisil,, J. Valcartel,, J. Reich,, and P. Bork. 2002. Alternative splicing and genome complexity. Nat. Genet. 30: 29 30.
11. Brown, A. E.,, L. Bugeon,, A. Crisanti,, and F. Catteruccia. 2003. Stable and heritable gene silencing in the malaria vector Anopheles stephensi. Nucleic Acids Res. 31: e85.
12. Calvo, E.,, A. G. deBianchi,, A. A. James,, and O. Marinotti. 2002. The major acid soluble proteins of adult female Anopheles darlingi salivary glands include a member of the D7-related family of proteins. Insect Biochem. Mol. Biol. 32: 1419 1427.
13. Calvo, E.,, J. Andersen,, I.M. Francischetti,, M. de L. Capurro, A.G. de Bianchi,A.A. James, J. M.C. Ribeiro, and O. Marinotti. 2004. The transcriptome of adult female Anopheles darlingi salivary glands. Insect Mol. Biol. 13: 73 88.
14. Champagne, D. E.,, C.T. Smartt,, J. M. Ribeiro,, and A. A. James. 1995. The salivary gland-specific apyrase of the mosquito Aedes aegypti is a member of the 5′-nucleotidase family. Proc. Natl. Acad. Sci.USA 92: 694 698.
15. Coates, C. J.,, T. L. Schaub,, N. J. Besansky,, F. H. Collins,, and A. A. James. 1997. The white gene from the yellow fever mosquito Aedes aegypti. Insect Mol. Biol. 6: 291 299.
16. Coleman, P. G.,, and L. Alphey. 2004. Genetic control of vector populations: an imminent prospect. Trop. Med. Int. Health 9: 433 437.
17. Cui, L.,, S. Luckhart,, and R. Rosenberg. 2002. Molecular characterization of a prophenoloxidase cDNA from the malaria mosquito Anopheles stephensi. Insect Mol. Biol. 9: 127 137.
18. Das, M.,, I. Harvey,, L. L. Chu,, M. Sinha,, and J. Pelletier. 2001. Full-length cDNAs: more than just reaching the ends. Physiol. Genomics 6: 57 80.
19. Diatchenko, L.,, Y. C., A. P. Lau, A. Campbell, F. Chenchik, G. Moqadam, B. Huang, S. Lukyanov, K. Lukyanov, N. Gurskaya, E. D. Sverdlov, and P. D. Siebert. 1996. Suppression subtractive hybridization: a method for generating differentially regulated or tissue-specific cDNA probes and libraries. Proc. Natl. Acad. Sci. USA 93: 6025 6030.
20. Dimopoulos, G.,, G.K. Christophides,, S. Meister,, J. Schultz,, K. P. White,, C. Barillas-Mury,, and F. C. Kafatos. 2002. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc. Natl. Acad. Sci. USA 99: 8814 8819.
21. Dimopolous, G.,, A., Richman,, A. dellaTorre,, F.C. Kafatos,, and C. Louis. 1996. Identification and characterization of differentially-expressed cDNAs of the vector mosquito, An. gambiae. Proc. Natl. Acad. Sci. USA 93: 13066 13071.
22. Dimopoulos, G.,, A. Richman,, H. M. Muller,, and F. C. Kafatos. 1997. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl. Acad. Sci.USA 94: 11508 11513.
23. Dimopoulos, G.,, T. L. Casavant,, S. Chang,, T. Scheetz,, C. Roberts,, M. Donohue,, J. Schultz,, V. Benes,, P. Bork,, W. Ansorge,, M.B. Soares,, and F. C. Kafatos. 2000. An. gambiae pilot gene discovery project: identification of mosquito innate immunity genes from expressed sequence tags generated from immune-competent cell lines. Proc. Natl. Acad. Sci. USA 97: 6619 6624.
24. Dimopoulos, G.,, D. Seeley,, A. Wolf,, and F. C. Kafatos. 1998. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J. 17: 6115 6123.
25. Ding, Y.,, F. Ortelli,, L. C. Rossiter,, J. Hemingway,, and H. Ranson. 2003. The Anopheles gambiae glutathione transferase supergene family: annotation, phylogeny and expression profiles. BMC Genomics 4: 35.
26. Fox, A. N.,, R. J. Pitts,, H. M. Robertson,, J. R. Carlson,, and L. J. Zwiebel. 2001. Candidate odorant receptors from the malaria vector mosquito Anopheles gambiae and evidence of down-regulation in response to blood feeding. Proc. Natl. Acad. Sci. USA 98: 14693 14697.
27. Francischetti, I. M.,, J. G. Valenzuela,, V. M. Pham,, M. K. Garfield,, and J. M. C. Ribeiro. 2002. Toward a catalog for the transcripts and proteins (sialome) from the salivary gland of the malaria vector An. gambiae. J. Exp. Biol. 205: 2429 2451.
28. Gaunt, M.W.,, and M.A. Miles. 2002. An insect molecular clock dates the origin of the insects and accords with palaeontological and biogeographic landmarks. Mol. Biol. Evol. 19: 748 761.
29. Geley, S.,, and C. Muller. 2004. RNAi: ancient mechanism with a promising future. Exp. Gerontol. 39: 985 998.
30. Grossman, G. L.,, and A. A. James. 1993. The salivary glands of the vector mosquito, Aedes aegypti, express a novel member of the amylase gene family. Insect Mol. Biol. 1: 223 232.
31. Guo, S.,, and K. J. Kemphues. 1995. Par-1, a gene required for establishing polarity in C. elegans embryos, encodes a putative Ser/Thr kinase that is asymmetrically distributed. Cell 81: 611 620.
32. Hallem, E. A.,, F. A. Nicole,, L. J. Zwiebel,, and J. R. Carlson. 2004. Olfaction: mosquito receptor for human-sweat odorant. Nature 427: 212 213.
33. Han, Y. S.,, C. E. Salazar,, S. R. Reese-Stardy,, A. Cornel,, M. J. Gorman,, F. H. Collins,, and S. M. Paskewitz. 1997. Cloning and characterization of a serine protease from the human malaria vector, An. gambiae. Insect Mol. Biol. 6: 385 395.
34. Hemingway, J.,, and H. Ranson. 2000. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45: 371 391.
35. Holt, R.A.,, G. M. Subramanian,, A. Halpern,, G.G. Sutton,, R. Charlab,, D. R. Nusskern,, P. Wincker,, A. G. Clark,, J. M. Ribeiro,, R. Wides,, S. L. Salzberg,, B. Loftus,, M. Yandell,, W. H. Majoros,, D. B. Rusch,, Z. Lai,, C. L. Kraft,, J. F. Abril,, V. Anthouard,, P. Arensburger,, P.W. Atkinson,, H. de Baden,, V. Berardinis,, D. Baldwin,, V. Benes,, J. Biedler,, C. Blass,, R. Bolanos,, D. Boscus,, M. Barnstead,, S. Cai,, A. Center,, K. Chaturverdi,, G. K. Christophides,, M.A. Chrysta,, M. Clamp,, A. Cravchik,, V. Curwen,, A. Dana,, A. Delcher,, I. Dew,, C. A. Evans,, M. Flanigan,, A. Grundschober- Freimoser,, L. Friedli,, Z. Gu,, P. Guan,, R. Guigo,, M. E. Hillenmeyer,, S. L. Hladun,, J. R. Hogan,, Y. S. Hong,, J.O. Jaillon,, Z. Ke,, C. Kodira,, E. Kokoza,, A. Koutsos,, I. Letunic,, A. Levitsky,, Y. Liang,, J. J. Lin,, N. F. Lobo,, J. R. Lopez,, J.A. Malek,, T. C. McIntosh,, S. Meister,, J. Miller,, C. Mobarry,, E. Mongin S. D., D. A. O’ Brochta, C. Pfannkoch, R. Qi, M. A. Regier, K. Remington, H. Shao, M. V. Sharakhova, C. D. Sitter, J. Shetty,T. J. Smith, R. Strong, J. Sun, D. Thomasova, L. Q. Ton, P. Topalis, Z. Tu, M. F. Unger, B.Walenz, A.Wang, J.Wang, M.Wang, X.Wang, K. J.Woodford, J. R. Wortman, M.Wu, A.Yao, E.M. Zdobnov, H. Zhang, Q. Zhao, S. Zhao, S. C. Zhu, I. Zhimulev, M. Coluzzi, A. della Torre, C.W. Roth, C. Louis, F. Kalush, R. J. Mural, E. W. Myers, M. D. Adams, H.O. Smith, S. Broder, M. J. Gardner, C. M. Fraser, E. Birney, P. Bork, P.T. Brey, J.C. Venter, J. Weissenbach, F. C. Kafatos, F. H. Collins, and S. L. Hoffman. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298: 129 149.
36. Isawa, H.,, M. Yuda,, Y. Orito,, and Y. Chinzei. 2002. A mosquito salivary protein inhibits activation of the plasma contact system by binding to factor XII and high molecular weight kininogen. J. Biol. Chem. 277: 27651 27658.
37. James, A. A.,, K. Blackmer,, and J. V. Racioppi. 1989. A salivary gland-specific, maltase-like gene of the vector mosquito Aedes aegypti. Gene 75: 73 83.
38. James, A. A.,, K. Blackmer,, O. Marinotti,, C. R. Ghosn,, and J.V. Racioppi. 1991. Isolation and characterization of the gene expressing the major salivary gland protein of the female mosquito Aedes aegypti. Mol. Biochem. Parasitol. 44: 245 253.
39. James, A. A.,, B.T. Beerntsen,, M. de L. Capurro, C. J. Coates, J. Coleman,N. Jasinskiene, and A. U. Krettli. 1999. Controlling malaria transmission with genetically-engineered, Plasmodium-resistant mosquitoes: milestones in a model system. Parassitologia 41: 461 471.
40. Jiang, H.,, Y. Wang,, S. E. Korochkina,, H. Benes,, and M. R. Kanost. 1997. Molecular cloning of cDNAs for two pro-phenol oxidase subunits from the malaria vector, An. gambiae. Insect Biochem. Mol. Biol. 27: 693 699.
41. Johnson, B.W.,, K. E. Olson,, T. Allen-Miura,, J. O. Carlson,, C. J. Coates,, N. Jasinskiene,, A. A. James,, B. J. Beaty,, and S. Higgs. 1999. Inhibition of luciferase expression in transgenic Aedes aegypti mosquitoes by Sindbis virus expression of antisense luciferase RNA. Proc. Natl.Acad. Sci.USA 96: 13399 13403.
42. Justice, R.W.,, S. Dimitratos,, M. F. Walter,, D. F. Woods,, and H. Biessmann. 2003. Sexual dimorphic expression of putative antennal carrier protein genes in the malaria vector An. gambiae. Insect Mol. Biol. 12: 581 594.
43. Kennerdell, J. R.,, and R.W. Carthrew. 2000. Heritable gene silencing in Drosophila using double-stranded RNA. Nat. Biotechnol. 17: 896 898.
44. Korochkina, S. E.,, A.V. Gordadze,, J. L. York,, and H. Benes. 1997. Mosquito hexamerins: characterization during larval development. Insect Mol. Biol. 6: 11 21.
45. Kumar, S.,, G. K. Christophides,, R. Cantera,, B. Charles,, Y. S. Han,, S. Meister,, G. Dimopoulos,, F. C. Kafatos,, and C. Barillas-Mury. 2003. The role of reactive oxygen species on Plasmodium melanotic encapsulation in Anopheles gambiae. Proc. Natl. Acad. Sci. USA 100: 14139 14144.
46. Levashina, E.A.,, L. F. Moita,, S. Blandin,, G. Vriend,, M. Lagueux,, and F.C. Kafatos. 2001. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito, Anopheles gambiae. Cell 104: 709 718.
47. Liang, P.,, and A. B. Pardee. 1992. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction. Science 257: 967 971.
48. Liang, P.,, and A. B. Pardee. 1998. Differential display. A general protocol. Mol. Biotechnol. 10: 261 267.
49. Marinotti, O.,, Q.K. Nguyen,, E. Calvo,, A.A. James,, and J. M.C. Ribeiro. Microarray analysis of genes showing variable expression following a blood meal in Anopheles gambiae. Insect. Mol. Biol., in press.
50. Martinez-Torres, D.,, F. Chandre,, M. S. Williamson,, F. Darriet,, J. B. Berge,, A. L. Devonshire,, P. Guillet,, N. Pasteur,, and D. Pauron. 1998. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s. s. Insect Mol. Biol. 7: 179 184.
51. Meredith, S. E.O.,, and A.A. James. 1990. Biotechnology as applied to vectors and vector control. Ann. Parasitol. Hum. Comp. 65: 113 118.
52. Misra, S. M.,, A. Crosby,, C. J. Mungall,, B. B. Matthews,, K. S. Campbell,, P. Hradecky,, Y. Huang,, J. S. Kaminker,, G. H. Millburn,, S. E. Prochnik,, C.D. Smith,, J. L. Tupy,, E. J. Whitfied,, L. Bayraktaroglu,, B. P. Berman,, B. R. Bettencourt,, S. E. Celniker,, A. D. Grey,, R. A. Drysdale,, N. L. Harris,, J. Richter,, S. Russo,, A. J. Schroeder,, S.Q. Shu,, M. Stapleton,, C. Yamada,, M. Ashburner,, W. M. Gelbart,, G. M. Rubin,, and S. E. Lewis. 2002. Annotation of the Drosophila melanogaster euchromatic genome: a systematic review. Genome Biol. 3: RESEARCH0083.
53. Mongin, E.,, C. Louis,, R. A. Holt,, E. Birney,, and F. H. Collins. 2004. The Anopheles gambiae genome: an update. Trends Parasitol. 20: 49 52.
54. Montero-Solis, C.,, L. Gonzalez-Ceron,, M. H. Rodriguez,, B. E. Cirerol,, F. Zamudio,, L. C. Possanni,, A. A. James,, and F. de la Cruz Hernandez-Hernandez. 2004. Identification and characterization of gp65, a salivary-gland-specific molecule expressed in the malaria vector Anopheles albimanus. Insect Mol. Biol. 13: 155 164.
55. Moreira-Ferro, C. K.,, S. Daffre,, A. A. James,, and O. Marinotti. 1998. A lysozyme in the salivary glands of the malaria vector Anopheles darlingi. Insect Mol. Biol. 7: 257 264.
56. Noriega, F. G.,, and M. S. Wells. 1999. A molecular view of trypsin synthesis in the midgut of Aedes aegypti. J. Insect Physiol. 45: 613 620.
57. Oduol, F.,, J. Xu,, O. Niare,, R. Natarajan,, and K.D. Vernick. 2000. Genes identified by an expression screen of the vector mosquito Anopheles gambiae display differential molecular immune response to malaria parasites and bacteria. Proc. Natl. Acad. Sci. USA 97: 11397 11402.
58. Osta, M. A.,, G. K. Christophides,, D. Vlachou,, and F. C. Kafatos. 2004a. Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics. J.Exp. Biol. 207: 2551 2563.
Osta, M. A.,, G. K. Christophides,, and K. C. Kafatos. 2004b.. Effects of mosquito genes on Plasmodium development. Science 303: 2030 2032.
60. Ribeiro, J. M.,, and I. M. Francischetti. 2003. Role of arthropod saliva in blood feeding: sialome and post-sialome perspectives. Annu. Rev. Entomol. 48: 73 88.
61. Ribeiro, J. M.,, R. Charlab,, V. M. Pham,, M. Garfield,, and J. G. Valenzuela. 2004. An insight into the salivary transcriptome and proteome of the adult female mosquito Culex pipiens quinquefasciatus. Insect Biochem. Mol. Biol. 34: 543 563.
62. Ribeiro, J. M. 2003. A catalogue of Anopheles gambiae transcripts significantly more or less expressed following a blood meal. Insect Biochem. Mol. Biol. 33: 865 882.
63. Rogojina, A.T.,, W. E. Orr,, B. K. Song,, and E. E. Geisert, Jr. 2003. Comparing the use of Affymetrix to spotted oligonucleotide microarrays using two retinal pigment epithelium cell lines. Mol. Vis. 9: 482 496.
64. Salazar, C. E.,, D. M. Hamm,, D. M. Wesson,, C. B. Beard,, V. Kumar,, and F. H. Collins. 1994. A cytoskeletal actin gene in the mosquito An. gambiae. Insect Mol. Biol. 3: 1 13.
65. Sanders, H. R.,, A. M. Evans,, L. S. Ross,, and S. S. Gill. 2003. Blood meal induces global changes in midgut gene expression in the disease vector, Aedes aegypti. Insect Biochem. Mol. Biol. 33: 1105 1122.
66. Schaefer, B. C. 1995. Revolutions in rapid amplification of cDNA ends: new strategies for polymerase chain reaction cloning of full-length cDNA ends. Anal. Biochem. 227: 255 273.
67. Shen, Z.,, and M. Jacobs-Lorena. 1997. Characterization of a novel gut-specific chitinase gene from the human malaria vector Anopheles gambiae. J. Biol. Chem. 272: 28895 288909.
68. Shen, Z.,, and M. Jacobs-Lorena. 1998. A type I peritrophic matrix protein from the malaria vector An. gambiae binds to chitin. Cloning, expression, and characterization. J. Biol. Chem. 273: 17665 17670.
69. Shen, Z.,, G. Dimopoulos,, and F.C. Kafatos. 1999. A cell surface mucin specifically expressed in the midgut of the malaria mosquito Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 96: 5610 5615.
70. Shen, Z.,, M. J. Edwards,, and M. Jacobs-Lorena. 2000. A gut-specific serine protease from the malaria vector Anopheles gambiae is down-regulated after blood ingestion. Insect Mol. Biol. 9: 223 229.
71. Shiao, H.,, S. Higgs,, Z. Adelman,, B. M. Christensen,, S. H. Liu,, and C. C. Chen. 2001. Effect of prophenoloxidase expression knockout on the melanization of microfilariae in the mosquito Armigeres subalbatus. Insect Mol. Biol. 10: 315 321.
72. Shin, S.W.,, V.A. Kokoza,, and A.A. Raikhel. 2003. Transgenesis and reverse genetics of mosquito innate immunity. J. Exp. Biol. 206: 3835 3843.
73. Siden-Kiamos, I.,, G. Skavdis,, J. Rubio,, G. Papaginnakis,, and C. Louis. 1996. Isolation and characterization of three serine protease genes in the mosquito An. gambiae. Insect Mol. Biol. 5: 61 71.
74. Stark, K. R.,, and A. A. James,. 1996. The salivary glands of disease vectors, p. 333 348. In W. C. Marquardt, and B. Beaty (ed.), The Biology of Disease Vectors. University Press of Colorado, Boulder, Colo.
75. St. John, T. P.,, and R.W. Davis. 1979. Differential screening of cDNA clones. Cell 16: 443 452.
76. Tashiro, K.,, H. Tada,, R. Heilker,, M. Shirozu,, T. Nakanol,, and T. Honjo. 1993. Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science 261: 600 603.
77. Thompson, M.,, R. Shotkoski,, and R. ffrench- Constant. 1993. Cloning and sequencing of the cyclodiene insecticide resistance gene from the yellow fever mosquito Aedes aegypti. Conservation of the gene and resistance associated mutation with Drosophila. FEBS Lett. 325: 187 190.
78. Travanty, E.A.,, Z.N. Adelman,, A.W. Franz,, K. M. Keene,, B. J. Beaty,, C.D. Blair,, A.A. James,, and K. E. Olson. 2004. Using RNA interference to develop dengue virus resistance in genetically-modified Aedes aegypti. Insect Biochem. Mol. Biol. 34: 607 613.
79. Tuteja, R.,, and N. Tuteja. 2004. Serial analysis of gene expression (SAGE): unraveling the bioinformatics tools. Bioessays 26: 916 922.
80. Ullu, E.,, C. Tschudi,, and T. Chakraborty. 2004. RNA interference in protozoan parasites. Cell Microbiol. 6: 509 519.
81. Valenzuela, J. G. 2002. High-throughput approaches to study salivary proteins and genes from vectors of disease. Insect Biochem. Mol. Biol. 32: 1199 1209.
82. Valenzuela, J.G.,, I.M. Francischetti,, V. M. Pham,, M. K. Garfield,, and J. M. Ribeiro. 2003. Exploring the salivary gland transcriptome and proteome of the Anopheles stephensi mosquito. Insect Biochem. Mol. Biol. 33: 717 732.
83. Valenzuela, J. G.,, I. M. Francischetti,, and J. M. Ribeiro. 1999. Purification, cloning, and synthesis of a novel salivary anti-thrombin from the mosquito Anopheles albimanus. Biochemistry 38: 11209 11215.
84. Valenzuela, J.G.,, V.M. Pham,, M. K. Garfield,, I. M. Francischetti,, and J. M. Ribeiro. 2002. Toward a description of the sialome of the adult female mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 32: 1101 1122.
85. Vizioli, J.,, F. Catteruccia,, A. della Torre,, I. Reckmann,, and H. M. Muller. 2001. Blood digestion in the malaria mosquito Anopheles gambiae: molecular cloning and biochemical characterization of two inducible chymotrypsins. Eur. J. Biochem. 268: 4027 4035.
86. Vlachou, D.,, G. Lycett,, I. Siden-Kiamos,, C. Blass,, R. E. Sinden,, and C. Louis. 2001. Anopheles gambiae laminin interacts with the P25 surface protein of Plasmodium berghei ookinetes. Mol. Biochem. Parasitol. 112: 229 237.
87. Vogt, R. G.,, M. E. Rogers,, M. D. Franco,, and M. Sun. 2002. A comparative study of odorant binding protein genes: differential expression of the PBP1- GOBP2 gene cluster in Manduca sexta (Lepidoptera) and the organization of OBP genes in Drosophila melanogaster (Diptera). J. Exp. Biol. 205: 719 744.
88. World Health Organization. 1991. Prospects for malaria control by genetic manipulation of its vectors (TDR/BCV/MAL-ENT/91.3). World Health Organization, Geneva, Switzerland.
89. Wu, H.-W.,, H.-S. Tian,, G.-L. Wu,, G. Langdon,, J. Kurtis,, B. Shen,, L. Ma,, X.-K. Li,, Y. Gu,, X.-B. Hu,, and C.-L. Zhu. 2004. Culex pipiens pallens: identification of genes differentially expressed in deltamethrin-resistant and -susceptible strains. Pestic. Biochem. Physiol. 79: 75 83.
90. Ying, S.-Y. 2004. Complementary DNA libraries: an overview. Mol. Biotechnol. 27: 245 252.
91. Zdobnov, E. M.,, C. von Mering,, I. Letunic,, D. Torrents,, M. Suyama,, R. R. Copley,, G. K. Christophides,, D. Thomasova,, R.A. Holt,, G. M. Subramanian,, H. M. Mueller,, G. Dimopoulos,, J. H. Law,, M. A. Wells,, E. Birney,, R. Charlab,, A. L. Halpern,, R. Kokoza,, C. L. Kraft,, Z. Lai,, S. Lewis,, C. Louis,, C. Barillas-Mury,, D. Nussker,, G. M. Rubin,, S. L. Salzberg,, G. G. Sutton,, P. Topalis,, R. Wides,, P. Wincker,, M. Yandell,, F. H. Collins,, J. Ribeiro,, W. M. Gelbart,, F.C. Kafatos,, and P. Bork. 2002. Comparative genome and proteome analysis of Anopheles gambiae and Drosophila melanogaster. Science 298: 149 159.
92. Zhang, D.,, G. Dimopoulos,, A. Wolf,, B. Minana,, F. C. Kafatos,, and J. J. Winzerling. 2002. Cloning and molecular characterization of two mosquito iron regulatory proteins. Insect Biochem. Mol. Biol. 32: 579 589.
93. Zheng, L.,, L. H. Whang,, V. Kumarm,, and F. C. Kafatos. 1995. Two genes encoding midgut-specific maltase-like polypeptides from An. gambiae. Exp.Parasitol. 81: 272 283.
94. Zurita, M.,, E. Reynaud,, and F. C. Kafatos. 1997. Cloning and characterization of cDNAs preferentially expressed in the ovary of the mosquito, Anopheles gambiae. Insect Mol. Biol. 6: 55 62.


Generic image for table

Number of NCBI entries for RNAs indexed by the keyword

Citation: Marinotti O, James A. 2005. The Transcriptome of Human Malaria Vectors, p 516-530. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch27

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error