1887

Chapter 4 : Genetic Manipulation of

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Genetic Manipulation of , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap04-2.gif

Abstract:

This chapter reviews historical and technical issues, achievements to date, and future possibilities with respect to transformation of blood stages. Despite the relatively low efficiency of the transfection system, it was sufficient for both gene targeting and transgene expression approaches to be developed and utilized to analyze gene function in this organism. Given the inability to transfect linear DNA and achieve fast integration into the genome, a key to the success of transfection is the somewhat mysterious ability of transfected plasmids to replicate episomally in parasites. Transfection of blood stages, using transient transfection with the reporter genes chloramphenicol acetyl transferase and luciferase, has been an important tool in the identification of functional characterization of a number of transcriptional control elements from this organism. Plasmid transfection vectors designed to express transgenes have been used extensively in , and this has been useful in a wide variety of studies. A major advance in understanding the molecular dynamics of cellular systems has derived from elegant studies in which the gene encoding green fluorescent protein (GFP) is appended to a gene encoding a protein of interest and transfected into a living cell. Since the development of transfection for and , the need for an inducible expression/conditional knockout system was recognized as a crucial next step to allow the functional analysis of many blood stage genes.

Citation: Cowman A, Crabb B. 2005. Genetic Manipulation of , p 50-67. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch4

Key Concept Ranking

Gene Expression and Regulation
0.6197216
0.6197216
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817558.chap4
1. Adisa, A.,, M. Rug,, N. Klonis,, M. Foley,, A. F. Cowman,, and L. Tilley. 2003. The signal sequence of exported protein-1 directs the green fluorescent protein to the parasitophorous vacuole of transfected malaria parasites. J. Biol. Chem. 278: 6532 6542
2. Akompong, T.,, M. Kadekoppala,, T. Harrison,, A. Oksman,, D. E. Goldberg,, H. Fujioka,, B. U. Samuel,, D. Sullivan,, and K. Haldar. 2002. trans expression of a Plasmodium falciparum histidine-rich protein II (HRPII) reveals sorting of soluble proteins in the periphery of the host erythrocyte and disrupts transport to the malarial food vacuole. J. Biol. Chem. 277: 28923- 28933.
3. Andrews, K.T. ,, L. A. Pirrit,, J.M. Przyborski,, C. P. Sanchez,, Y. Sterkers,, S. Ricken,, H. Wickert,, C. Lepolard,, M. Avril,, A. Scherf,, J. Gysin,, and M. Lanzer. 2003. Recovery of adhesion to chondroitin-4-sulphate in Plasmodium falciparum varCSA disruption mutants by antigenically similar PfEMP1 variants. Mol. Microbiol. 49: 655-6 69
4. Axelrod, D. 1977. Cell surface heating during fluorescence photobleaching recovery experiments. Biophys. J. 18: 129- 131
5. Baldi, D. L.,, K. T. Andrews,, R. F.Waller,, D. S. Roos,, R. F. Howard,, B. S. Crabb,, and A. F. Cowman. 2000. RAP1 controls rhoptry targeting of RAP2 in the malaria parasite Plasmodium falciparum. EMBO J. 19: 2435- 2443
6. Baldi, D. L.,, R. Good,, M. T. Duraisingh,, B. S. Crabb,, and A. F. Cowman. 2002. Identification and disruption of the gene encoding the third member of the low-molecular-mass rhoptry complex in Plasmodium falciparum. Infect.Immun. 70: 5236 5245
7. Ben Mamoun, C.,, I.Y. Gluzman,, S. Goyard,, S.M. Beverley,, and D. E. Goldberg. 1999.A set of independent selectable markers for transfection of the human malaria parasite Plasmodium falciparum. Proc . Natl.Acad. Sci. USA 96: 8716 8720.
8. Bozdech, Z.,, M. Llinas,, B. L. Pulliam,, E. D.Wong,, J. Zhu,, and J. L. DeRisi. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1: E5
9. Burghaus, P. A.,, and K. Lingelbach. 2001. Luciferase, when fused to an N-terminal signal peptide, is secreted from transfected Plasmodium falciparum and transported to the cytosol of infected erythrocytes. J. Biol. Chem. 276: 26838 26845
10. Carvalho, T.G.,, S.Thiberge,, H. Sakamoto,, and R. Menard. 2004. Conditional mutagenesis using sitespecific recombination in Plasmodium berghei. Proc. Natl.Acad. Sci. USA 101: 14931 14936
11. Cheresh, P.,, T. Harrison,, H. Fujioka,, and K. Haldar. 2002. Targeting the malarial plastid via the parasitophorous vacuole. J. Biol. Chem. 277: 16265- 16277
12. Claudianos, C.,, J.T. Dessens,, H. E. Trueman,, M. Arai,, J. Mendoza,, G.A. Butcher,, T. Crompton,, and R. E. Sinden. 2002. A malaria scavenger receptor- like protein essential for parasite development. Mol. Microbiol. 45: 1473 1484.
13. Cooke, B. M.,, K. Lingelbach,, L. H. Bannister,, and L. Tilley. 2004. Protein trafficking in Plasmodium falciparum-infected red blood cells. Trends Parasitol. 20: 581 589.
14. Corran, P. H.,, R.A. O'Donnell,, J. Todd,, C. Uthaipibull,, A. A. Holder,, B. S. Crabb,, and E. M. Riley. 2004. The fine specificity, but not the invasion inhibitory activity, of 19-kilodalton merozoite surface protein 1-specific antibodies is associated with resistance to malarial parasitemia in a cross-sectional survey in The Gambia. Infect. Immun. 72: 6185 6189
15. Cortes, A.,, M. Mellombo,, I. Mueller,, A. Benet,, J. C. Reeder,, and R. F. Anders. 2003. Geographical structure of diversity and differences between symptomatic and asymptomatic infections for Plasmodium falciparum vaccine candidate AMA1. Infect. Immun. 71: 1416 1426
16. Cowman, A. F. 2001. Functional analysis of drug resistance in Plasmodium falciparum in the post-genomic era. Int. J. Parasitol. 31: 871 878
17. Cowman, A. F.,, D. L. Baldi,, M. Duraisingh,, J. Healer,, K. E. Mills,, R.A. O'Donnell,, J. Thompson,, T. Triglia,, M. E. Wickham,, and B. S. Crabb. 2002. Functional analysis of Plasmodium falciparum merozoite antigens: implications for erythrocyte invasion and vaccine development. Philos. Trans. R. Soc. Lond. B Biol. Sci. 357: 25 33
18. Cowman, A. F.,, D. L. Baldi,, J. Healer,, K. E. Mills,, R. A. O'Donnell,, M. B. Reed,, T. Triglia,, M. E. Wickham,, and B. S. Crabb. 2000. Functional analysis of proteins involved in Plasmodium falciparum merozoite invasion of red blood cells. FEBS Lett. 476: 84 88
19. Crabb, B. S.,, and A. F. Cowman. 1996. Characterization of promoters and stable transfection by homologous and nonhomologous recombination in Plasmodium falciparum. Proc. Natl.Acad. Sci.USA. 93: 7289 7294
20. Crabb, B. S.,, B. M. Cooke,, J. C. Reeder,, R. F. Waller,, S. R. Caruana,, K. M. Davern,, M. E. Wickham,, G.V. Brown,, R. L. Coppel,, and A. F. Cowman. 1997a. Targeted gene disruption shows that knobs enable malaria-infected red cells to cytoadhere under physiological shear stress. Cell 89: 287 296
21. Crabb, B. S.,, T. Triglia,, J. G. Waterkeyn,, and A. F. Cowman. 1997b. Stable transgene expression in Plasmodium falciparum. Mol. Biochem. Parasitol. 90: 1 31– 144
22. Crewther, P. E.,, M. L. S. M. Matthew,, R. H. Flegg,, and R. F. Anders. 1996. Protective immune responses to apical membrane antigen 1 of Plasmodium chabaudi involve recognition of strain-specific epitopes. Infect. Immun. 64: 3310 3317.
23. Deitsch, K.,, C. Driskill,, and T.Wellems. 2001a. Transformation of malaria parasites by the spontaneous uptake and expression of DNA from human erythrocytes. Nucleic Acids Res. 29: 850 853.
24. Deitsch, K. W.,, M. S. Calderwood,, and T. E. Wellems. 2001b. Malaria. Cooperative silencing elements in var genes. Nature 412: 875 876
25. Deitsch, K.W.,, A. del Pinal,, and T. E. Wellems. 1999. Intra-cluster recombination and var transcription switches in the antigenic variation of Plasmodium falciparum. Mol. Biochem.Parasitol. 101: 107 116
26. de Koning-Ward, T. F.,, R. A. O'Donnell,, D. R. Drew,, R. Thomson,, T. P. Speed,, and B. S. Crabb. 2003.A new rodent model to assess bloodstage immunity to the Plasmodium falciparum antigen MSP-119 reveals a protective role for invasion inhibitory antibodies. J. Exp. Med. 198: 869 875
27. de Koning-Ward, T. F.,, A. P. Waters,, and B. S. Crabb. 2001. Puromycin- N-acetyltransferase as a selectable marker for use in Plasmodium falciparum. Mol. Biochem. Parasitol. 117: 155 160
28. Donald, R.G. K.,, and D. S. Roos. 1993. Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proc. Natl.Acad. Sci.USA 90: 11703 11707
29. Drew, D. R.,, R. A. O'Donnell,, B. J. Smith,, and B. S. Crabb. 2004. A common cross-species function for the double EGF-like modules of the highly divergent Plasmodium surface proteins MSP-1 and MSP-8. J. Biol. Chem. 279: 20147 20153
30. Duraisingh, M.,, A. Maier,, T. Triglia,, and A. F. Cowman. 2003a. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc. Natl.Acad. Sci. USA 100: 4796 4801
31. Donald, R.G. K.,, and D. S. Roos. 1993. Stable molecular transformation of Toxoplasma gondii: a selectable dihydrofolate reductase-thymidylate synthase marker based on drug-resistance mutations in malaria. Proc. Natl.Acad. Sci.USA 90: 11703 11707
32. Drew, D. R.,, R. A. O'Donnell,, B. J. Smith,, and B. S. Crabb. 2004. A common cross-species function for the double EGF-like modules of the highly divergent Plasmodium surface proteins MSP-1 and MSP-8. J. Biol. Chem. 279: 20147 20153
33. Duraisingh, M.T.,, T. Triglia,, and A. F. Cowman. 2002. Negative selection of Plasmodium falciparum reveals targeted gene deletion by double crossover recombination. Int. J. Parasitol. 32: 81 89
34. Duraisingh, M. T.,, T. Triglia,, S. A. Ralph,, J. C. Rayner,, J.W. Barnwell,, G. I. McFadden,, and A. F. Cowman. 2003b. Phenotypic variation of Plasmodium falciparum merozoite proteins directs receptor targeting for invasion of human erythrocytes. EMBO J. 22: 1047 1057
35. Eksi, S.,, B. Czesny,, D. C. Greenbaum,, M. Bogyo,, and K. C. Williamson. 2004. Targeted disruption of Plasmodium falciparum cysteine protease, falcipain 1, reduces oocyst production, not erythrocytic stage growth. Mol. Microbiol. 53: 243 250
36. Eksi, S.,, A. Stump,, S. L. Fanning,, M. I. Shenouda,, H. Fujioka,, and K. C.Williamson. 2002. Targeting and sequestration of truncated Pfs230 in an intraerythrocytic compartment during Plasmodium falciparum gametocytogenesis. Mol. Microbiol. 44: 1507 1516
37. Escalante, A. A.,, H. M. Grebert,, S. C. Chaiyaroj,, M. Magris,, S. Biswas,, B. L. Nahlen,, and A. A. Lal. 2001. Polymorphism in the gene encoding the apical membrane antigen-1 (AMA-1) of Plasmodium falciparum X. Asembo Bay Cohort Project. Mol. Biochem. Parasitol. 113: 279 287
38. Fidock, D. A.,, T. Nomura,, R. A. Cooper,, X. Su,, A. K. Talley,, and T. E.Wellems. 2000a. Allelic modifications of the cg2 and cg1 genes do not alter the chloroquine response of drug-resistant Plasmodium falciparum. Mol. Biochem. Parasitol. 110: 1 10.
39. Fidock, D. A.,, T. Nomura,, A. K. Talley,, R. A. Cooper,, S. M. Dzekunov,, M.T. Ferdig,, L. M. Ursos,, A. bir Singh Sidhu,, B. Naude,, K.W. Deitsch,, X. Su,, J.C.Wootton,, P.D. Roepe,, and T. E.Wellems. 2000b. Mutations in the P. falciparum digestive vacuole transmembrane protein PfCRT and evidence for their role in chloroquine resistance. Mol. Cell 6: 861 871.
40. Fidock, D. A.,, and T. E. Wellems. 1997. Transformation with human dihydrofolate reductase renders malaria parasites insensitive to WR99210 but does not affect the intrinsic activity of proguanil. Proc. Natl.Acad. Sci. USA 94: 10931 10936
41. Foth, B. J.,, S.A. Ralph,, C. J. Tonkin,, N. S. Struck,, M. Fraunholz,, D. S. Roos,, A. F. Cowman,, and G. I. McFadden. 2003. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299: 705 708
42. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S. A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R.W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498 511
43. Gilberger, T.,, J. Thompson,, T. Triglia,, R. Good,, M. Duraisingh,, and A. Cowman. 2003a. A novel erythrocyte binding antigen-175 paralogue from Plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J. Biol. Chem. 278: 14480 14486
44. Gilberger, T. W.,, J. K. Thompson,, M. B. Reed,, R. T. Good,, and A. F. Cowman. 2003b. The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. J. Cell Biol. 162: 317 327
45. Healer, J.,, V. Murphy,, R. Masciantonio,, A. N. Hodder,, A.W. Gemmill,, R. Anders,, A. F. Cowman,, and A. H. Batchelor. 2004. Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum. Mol. Microbiol. 52: 159 168
46. Hehl, A. B.,, C. Lekutis,, M. E. Grigg,, P. J. Bradley,, J. F. Dubremetz,, E. Ortega-Barria,, and J. C. Boothroyd. 2000. Toxoplasma gondii homologue of Plasmodium apical membrane antigen 1 is involved in invasion of host cells. Infect. Immun. 68: 7078 7086
47. Hiller, N. L.,, S. Bhattacharjee,, C. van Ooij,, K. Liolios,, T. Harrison,, C. Lopez-Estrano,, and K. Haldor. 2004. A host-targeting signal in virulence proteins reveals a secretome in malarial infection. Science 306: 1934 1937
48. Hodder, A. N.,, P. E. Crewther,, and R. F. Anders. 2001. Specificity of the protective antibody response to apical membrane antigen 1. Infect. Immun. 69: 3286 3294
49. Holder, A. A.,, and R. R. Freeman. 1984. The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J. Exp. Med. 160: 624 629
50. Horrocks, P.,, M. R. Jackson,, S. Cheesman,, J. H. White,, and B. J. Kilbey. 1996. Stage specific expression of proliferating cell nuclear antigen and DNA polymerase _ from Plasmodium falciparum. Mol. Biochem. Parasitol. 79: 177 182
51. Horrocks, P.,, and M. Lanzer. 1999. Mutational analysis identifies a five base pair cis-acting sequence essential for GBP130 promoter activity in Plasmodium falciparum. Mol. Biochem. Parasitol. 99: 77 87
52. Horrocks, P.,, R. Pinches,, N. Kriek,, and C. Newbold. 2002a. Stage-specific promoter activity from stably maintained episomes in Plasmodium falciparum. Int. J. Parasitol. 32: 1203 1206
53. Horrocks, P.,, R. Pinches,, S. Kyes,, N. Kriek,, S. Lee,, Z. Christodoulou,, and C. I. Newbold. 2002b. Effect of var gene disruption on switching in Plasmodium falciparum. Mol. Microbiol. 45: 1131 1141
54. John, C. C.,, R.A. O'Donnell,, P.O. Sumba,, A. M. Moormann,, T. F. de Koning-Ward,, C. L. King,, J.W. Kazura,, and B. S. Crabb. 2004. Evidence that invasion-inhibitory antibodies specific for MSP- 1(19) can play a protective role against blood-stage Plasmodium falciparum infection in individuals in a malaria endemic area of Africa. J. Immunol. 173: 666 672
55. Kadekoppala, M.,, P. Cheresh,, D. Catron,, D. D. Ji,, K. Deitsch,, T. E. Wellems,, H. S. Seifert,, and K. Haldar. 2001. Rapid recombination among transfected plasmids, chimeric episome formation and trans gene expression in Plasmodium falciparum. Mol. Biochem. Parasitol. 112: 211 218
56. Kadekoppala, M.,, K. Kline,, T. Akompong,, and K. Haldar. 2000. Stable expression of a new chimeric fluorescent reporter in the human malaria parasite Plasmodium falciparum. Infect.Immun. 68: 2328 2332
57. Kaneko, O.,, D. A. Fidock,, O. M. Schwartz,, and L. H. Miller. 2000. Disruption of the C-terminal region of EBA-175 in the Dd2/Nm clone of Plasmodium falciparum does not affect erythrocyte invasion. Mol. Biochem. Parasitol. 110: 135 146
58. Klemba, M.,, W. Beatty,, I. Gluzman,, and D. E. Goldberg. 2004. Trafficking of plasmepsin II to the food vacuole of the malaria parasite Plasmodium falciparum. J. Cell Biol. 164: 47 56
59. Klonis, N.,, M. Rug,, M. Wickham,, I. Harper,, A. F. Cowman,, and L. Tilley. 2002. Fluorescence photobleaching analysis for the study of cellular dynamics. Eur. J. Biophys. 31: 36 51
60. Kocken, C. H. M.,, A. M. van der Wel,, M. A. Dubbeld,, D. L. Narum,, F. M. van de Rijke,, G.-J. van Gemert,, X. van der Linde,, L. Bannister,, C. Janse,, A. P.Waters,, and A.W. Thomas. 1998. Precise timing of expression of a Plasmodium falciparum-derived transgene in Plasmodium berghei is a critical determinant of subsequent subcellular localization. J. Biol. Chem. 273: 15119 15124
61. Kongkasuriyachai, D.,, H. Fujioka,, and N. Kumar. 2004. Functional analysis of Plasmodium falciparum parasitophorous vacuole membrane protein (Pfs16) during gametocytogenesis and gametogenesis by targeted gene disruption. Mol. Biochem. Parasitol. 133: 275 285
62. Krnajski, Z.,, T.W. Gilberger,, R. D.Walter,, A. F. Cowman,, and S. Muller. 2002. Thioredoxin reductase is essential for the survival of Plasmodium falciparum erythrocytic stages. J. Biol. Chem. 277: 25970 25975
63. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, . A.A.. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503–1508
64. Lippincott-Schwartz, J.,, T. H. Roberts,, and K. Hirschberg. 2000. Secretory protein trafficking and organelle dynamics in living cells. Annu. Rev. Cell Dev. Biol. 16: 557 589
65. Liu, J.,, I.Y. Gluzman,, M. E. Drew,, and D. E. Goldberg. 2005. The role of Plasmodium falciparum food vacuole plasmepsins. J. Biol. Chem. 280: 1432 1437
66. Lobo, C. A.,, H. Fujioka,, M. Aikawa,, and N. Kumar. 1999. Disruption of the Pfg27 locus by homologous recombination leads to loss of the sexual phenotype in Plasmodium falciparum. Mol. Cell 3: 793 798
67. Lopez-Estrano, C.,, S. Bhattacharjee,, T. Harrison,, and K. Haldar. 2003. Cooperative domains define a unique host cell-targeting signal in Plasmodium falciparum-infected erythrocytes. Proc. Natl.Acad. Sci. USA 100: 12402 12407
68. Lucas, S. J.,, and A. A. Holder. 2004. An improved chloramphenicol acetyl transferase assay for Plasmodium falciparum transfection. Mol. Biochem. Parasitol. 136: 287 296
69. Maier, A. G.,, M.T. Duraisingh,, J. C. Reeder,, S. S. Patel,, J. W. Kazura,, P. A. Zimmerman,, and A. F. Cowman. 2003. Plasmodium falciparum erythrocyte invasion through glycophorin C and selection for Gerbich negativity in human populations. Nat. Med. 9: 87 92
70. Marti, M.,, R.T. Good,, M. Rug,, E. Knuepfer,, and A. F. Cowman. 2004. Targeting malaria virulence and remodeling proteins to the host erythrocyte. Science 306: 1930 1933
71. Meissner, M.,, D. Schluter,, and D. Soldati. 2002. Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298: 837 840
72. Meissner, M.,, E. Krejany,, P. R. Gilson,, T. F. De koning-Ward,, D. Soldati,, and B. S. Crabb. 2005. Tetracycline analogue-regulated transgene expression in Plasmodium falciparum blood stages using Toxoplasma gondii transactivators. Proc. Natl. Acad. Sci.USA 102: 2980 2985
73. Militello, K. T.,, M. Dodge,, L. Bethke,, and D. F. Wirth. 2004. Identification of regulatory elements in the Plasmodium falciparum genome. Mol. Biochem. Parasitol. 134: 75 88
74. Militello, K.T.,, and D. F.Wirth. 2003. A new reporter gene for transient transfection of Plasmodium falciparum. Parasitol. Res. 89: 154 157
75. Miller, S. K.,, R. T. Good,, D. R. Drew,, M. Delorenzi,, P. R. Sanders,, A. N. Hodder,, T. P. Speed,, A. F. Cowman,, T. F. de Koning-Ward,, and B. S. Crabb. 2002. A subset of Plasmodium falciparum SERA genes are expressed and appear to play an important role in the erythrocytic cycle. J. Biol. Chem. 277: 47524 47532
76. Mills, K. E.,, J. A. Pearce,, B. S. Crabb,, and A. F. Cowman. 2002. Truncation of merozoite surface protein 3 disrupts its trafficking and that of acidicbasic repeat protein to the surface of Plasmodium falciparum merozoites. Mol. Microbiol. 43: 1401 1411
77. Mitchell, G. H.,, A.W. Thomas,, G. Margos,, A. R. Dluzewski,, and L. H. Bannister. 2004. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect. Immun. 72: 154 158
78. Moskes, C.,, P.A. Burghaus,, B.Wernli,, U. Sauder,, M. Durrenberger,, and B. Kappes. 2004. Export of Plasmodium falciparum calcium-dependent protein kinase 1 to the parasitophorous vacuole is dependent on three N-terminal membrane anchor motifs. Mol. Microbiol 54: 676 691
79. O'Donnell, R. A.,, L. H. Freitas-Junior,, P. R. Preiser,, D. H. Williamson,, M. Duraisingh,, T. F. McElwain,, A. Scherf,, A. F. Cowman,, and B. S. Crabb. 2002. A genetic screen for improved plasmid segregation reveals a role for Rep20 in the interaction of Plasmodium falciparum chromosomes. EMBO J. 21: 1231 1239
80. O'Donnell, R. A.,, T. F. de Koning-Ward,, R. A. Burt,, M. Bockarie,, J.C. Reeder,, A. F.Cowman,, and B. S. Crabb. 2001a. Antibodies against merozoite surface protein (MSP)-119 are a major component of the invasion-inhibitory response in individuals immune to malaria. J. Exp. Med. 193: 1403 1412
81. > O'Donnell, R. A.,, P. R. Preiser,, D. H. Williamson,, P. W. Moore,, A. F. Cowman,, and B. S. Crabb. 2001b. An alteration in concatameric structure is associated with efficient segregation of plasmids in transfected Plasmodium falciparum parasites. Nucleic Acids Res. 29: 716 724
82. O'Donnell, R. A.,, A. Saul,, A. F. Cowman,, and B. S. Crabb. 2000. Functional conservation of the malaria vaccine antigen MSP-119 across distantly related Plasmodium species. Nat. Med. 6: 91 95.
83. Omara-Opyene, A. L.,, P. A. Moura,, C. R. Sulsona,, J. A. Bonilla,, C. A.Yowell,, H. Fujioka,, D. A. Fidock,, and J. B. Dame. 2004. Genetic disruption of the Plasmodium falciparum digestive vacuole plasmepsins demonstrates their functional redundancy. J. Biol. Chem. 279: 54088 54096
84. Osta, M.,, L. Gannoun-Zaki,, S. Bonnefoy,, C. Roy,, and H. J.Vial. 2002. A 24 bp cis-acting element essential for the transcriptional activity of Plasmodium falciparum CDP-diacylglycerol synthase gene promoter. Mol. Biochem. Parasitol. 121: 87 98
85. Polley, S. D.,, and D. J. Conway. 2001. Strong diversifying selection on domains of the Plasmodium falciparum apical membrane antigen 1 gene. Genetics 158: 1505 1512
86. Pradel, G.,, K. Hayton,, L. Aravind,, L. M. Iyer,, M. S.Abrahamsen,, A. Bonawitz,, C. Mejia,, and T. J. Templeton. 2004. A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito. J. Exp. Med. 199: 1533 1544
87. Ralph, S. A.,, G. G. Van Dooren,, R. F.Waller,, M. J. Crawford,, M. J. Fraunholz,, B. J. Foth,, C. J. Tonkin,, D. S. Roos,, and G. I. McFadden. 2004. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2: 203 216
88. Reed, M. B.,, S.R. Caruana,, A. H. Batchelor,, J. K. Thompson,, B. S. Crabb,, and A. F. Cowman. 2000a. Targeted disruption of an erythrocyte binding antigen in Plasmodium falciparum is associated with a switch toward a sialic acid independent pathway of invasion. Proc. Natl.Acad. Sci.USA 97: 7509 7514
89. Reed, M. B.,, K. J. Saliba,, S. R. Caruana,, K. Kirk,, and A. F. Cowman. 2000b. Pgh1 modulates sensitivity and resistance to multiple antimalarials in Plasmodium falciparum. Nature 403: 906 909
90. Rug, M.,, M. E.Wickham,, M. Foley,, A. F. Cowman,, and L. Tilley. 2004. Correct promoter control is needed for trafficking of the ring-infected erythrocyte surface antigen to the host cytosol in transfected malaria parasites. Infect. Immun. 72: 6095 6105
91. Sato, S.,, B. Clough,, L. Coates,, and R. J.Wilson. 2004. Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum. Protist 155: 117 125
92. Sato, S.,, K. Rangachari,, and R. J.Wilson. 2003. Targeting GFP to the malarial mitochondrion. Mol. Biochem. Parasitol. 130: 155 158.
93. Sato, S.,, and R. J.Wilson. 2004. The use of DsRED in single- and dual-color fluorescence labeling of mitochondrial and plastid organelles in Plasmodium falciparum. Mol. Biochem. Parasitol. 134: 175 179
94. Sidhu, A. B.,, D.Verdier-Pinard,, and D.A. Fidock. 2002. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science 298: 210 213
95. Sijwali, P. S.,, K. Kato,, K. B. Seydel,, J. Gut,, J. Lehman,, M. Klemba,, D. E. Goldberg,, L. H. Miller,, and P. J. Rosenthal. 2004. Plasmodium falciparum cysteine protease falcipain-1 is not essential in erythrocytic stage malaria parasites. Proc. Natl. Acad. Sci. USA 101: 8721 8726
96. Sijwali, P. S.,, and P. J. Rosenthal. 2004. Gene disruption confirms a critical role for the cysteine protease falcipain-2 in hemoglobin hydrolysis by Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 101: 4384 4389.
97. Singh, S.,, M. C. Kennedy,, C.A. Long,, A. J. Saul,, L. H. Miller,, and A. W. Stowers. 2003. Biochemical and immunological characterization of bacterially expressed and refolded Plasmodium falciparum 42-kilodalton C-terminal merozoite surface protein 1. Infect. Immun. 71: 6766 6774
98. Templeton, T. J.,, D. C. Kaslow,, and D. A. Fidock. 2000. Developmental arrest of the human malaria parasite Plasmodium falciparum within the mosquito midgut via CTRP gene disruption. Mol. Microbiol. 36: 1 9
99. Tonkin, C. J.,, G. G. van Dooren,, T. P. Spurck,, N. S. Struck,, R.T. Good,, E. Handman,, A. F. Cowman,, and G. I. McFadden. 2004. Localization of organellar proteins in Plasmodium falciparum using a novel set of transfection vectors and a new immunofluorescence fixation method. Mol. Biochem. Parasitol. 137: 13 21
100. Trager, W.,, and J. B. Jensen. 1976. Human malaria parasites in continuous culture. Science 193: 673 675
101. Trenholme, K. R.,, D. L.Gardiner,, D.C. Holt,, E.A. Thomas,, A. F. Cowman,, and D. J. Kemp. 2000. clag9: a cytoadherence gene in Plasmodium falciparum essential for binding of parasitized erythrocytes to CD36. Proc. Natl.Acad. Sci. USA 97: 4029 4033.
102. Triglia, T.,, M. Duraisingh,, R. Good,, and A. F. Cowman. 2005. Reticulocyte-binding protein homologue 1 is required for sialic acid-dependent invasion into human erythrocytes by Plasmodium falciparum. Mol. Microbiol. 55: 162 174
103. Triglia,T.,, J.Healer,, S. R. Caruana,, A.N. Hodder,, R. F. Anders,, B. S. Crabb,, and A. F. Cowman. 2000. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol. Microbiol. 38: 706 718.
104. Triglia,T.,, J. G.T. Menting,, C.Wilson,, and A. F. Cowman. 1997. Mutations of dihydropteroate synthase are responsible for sulfone and sulfonamide resistance in Plasmodium falciparum. Proc. Natl. Acad. Sci. USA 94: 13944 13949
105. Triglia, T.,, P. Wang,, P. F. G. Sims,, J. E. Hyde,, and A. F. Cowman. 1998. Allelic exchange at the endogenous genomic locus in Plasmodium falciparum proves the role of dihydropteroate synthase in sulfadoxine- resistant malaria. EMBO J. 17: 3807 3815.
106. Trottein, F.,, T.Triglia,, and A. F. Cowman. 1995. Molecular cloning of a gene from Plasmodium falciparum that codes for a protein sharing motifs found in adhesive molecules from mammals and plasmodia. Mol. Biochem. Parasitol. 74: 129 141.
107. Tsai,Y. L.,, R. E. Hayward,, R. C. Langer,, D. A. Fidock,, and J. M. Vinetz. 2001. Disruption of Plasmodium falciparum chitinase markedly impairs parasite invasion of mosquito midgut. Infect.Immun. 69: 4048 4054
108. van Dijk, M. R.,, C. J. Janse,, J.Thompson,, A. P. Waters,, J. A. Braks,, H. J. Dodemont,, H. G. Stunnenberg,, G. J. van Gemert,, R.W. Sauerwein,, and W. Eling. 2001. A central role for P48/45 in malaria parasite male gamete fertility. Cell 104: 153 164.
109. van Dijk, M. R.,, C. J. Janse,, and A. P.Waters. 1996. Expression of a Plasmodium gene introduced into subtelomeric regions of Plasmodium berghei chromosomes. Science 271: 662 664
110. van Dijk, M. R.,, A. P. Waters,, and C. J. Janse. 1995. Stable transfection of malaria parasite blood stages. Science 268: 1358 1362
111. Voss, T. S.,, J. K. Thompson,, J. Waterkeyn,, I. Felger,, N. Weiss,, A. F. Cowman,, and H. P. Beck. 2000. Genomic distribution and functional characterisation of two distinct and conserved Plasmodium falciparum var gene 5′ flanking sequences. Mol. Biochem. Parasitol. 107: 103 115
112. Waller, K. L.,, R. A. Muhle,, L. M. Ursos,, P. Horrocks,, D. Verdier-Pinard,, A. B. Sidhu,, H. Fujioka,, P. D. Roepe,, and D. A. Fidock. 2003. Chloroquine resistance modulated in vitro by expression levels of the Plasmodium falciparum chloroquine resistance transporter. J. Biol. Chem. 278: 33593 33601
113. Waller, R. F.,, M. B. Reed,, A. F. Cowman,, and G. I. McFadden. 2000. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19: 1794 1802
114. Wang, P.,, Q. Wang,, T.V. Aspinall,, P. F. Sims,, and J. E. Hyde. 2004. Transfection studies to explore essential folate metabolism and antifolate drug synergy in the human malaria parasite Plasmodium falciparum. Mol. Microbiol. 51: 1425 1438
115. Wang, P.,, Q. Wang,, P. F. Sims,, and J. E. Hyde. 2002. Rapid positive selection of stable integrants following transfection of Plasmodium falciparum. Mol. Biochem. Parasitol. 123: 1 10
116. Waterkeyn, J. F.,, M. E. Wickham,, K. Davern,, B. M. Cooke,, J.C. Reeder,, J. G. Culvenor,, R. F. Waller,, and A. F. Cowman. 2000. Targeted mutagenesis of Plasmodium falciparum erythrocyte membrane protein 3 (PfEMP3) disrupts cytoadherence of malaria-infected red blood cells. EMBO J. 19: 2813 2823
117. Wellems, T. E.,, L. J. Panton,, I. Y. Gluzman,, R. V. do Rosario,, R. W. Gwadz,, J. A. Walker,, and D. J. Krogstad. 1990. Chloroquine resistance not linked to mdr-like genes in a Plasmodium falciparum cross. Nature 345: 253 255
118. Wickham, M. E.,, M. Rug,, S. A. Ralph,, N. Klonis,, G. I. McFadden,, L. Tilley,, and A. F. Cowman. 2001. Trafficking and assembly of the cytoadherence complex in Plasmodium falciparum-infected human erythrocytes. EMBO J. 20: 5636 5649.
119. Wickham, M. E.,, J. K. Thompson,, and A. F. Cowman. 2003. Characterisation of the merozoite surface protein-2 promoter using stable and transient transfection in Plasmodium falciparum. Mol. Biochem. Parasitol. 129: 147 156
120. Williamson, D. H.,, P. R. Preiser,, P.W. Moore,, S. McCready,, M. Strath,, and R. J. Wilson. 2002. The plastid DNA of the malaria parasite Plasmodium falciparum is replicated by two mechanisms. Mol. Microbiol. 45: 533 542
121. Wu, Y.,, L. A. Kirkman,, and T. E. Wellems. 1996. Transformation of Plasmodium falciparum malaria parasites by homologous integration of plasmids that confer resistance to pyrimethamine. Proc. Natl.Acad. Sci. USA 93: 1130 1134
122. Wu, Y.,, C. D. Sifri,, H.-H. Lei,, X.-S. Su,, and T. E. Wellems. 1995. Transfection of Plasmodium falciparum within human red blood cells. Proc. Natl.Acad. Sci. USA 92: 973 977

Tables

Generic image for table
TABLE 1

Biological processes investigated by transfection

Citation: Cowman A, Crabb B. 2005. Genetic Manipulation of , p 50-67. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error