Chapter 6 : The Proteome

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Proteome, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap06-2.gif


Proteome-wide studies of malaria have also lent a great deal of insight into protein-protein and protein-drug interactions, subcellular localization, functional characterization of unknown genes, and mechanisms of posttranscriptional regulation through comparisons with mRNA expression profiles. The work outlined in this chapter focuses on bottom-up approaches to study the malaria proteome. In October 2002, the genome sequence of was released, paving the way not only for genome-wide studies of mRNA but also for protein profiling. The accumulation of data collected from large-scale profiling experiments has also demonstrated ways that proteome data can aid the annotation of recently sequenced genomes. The genome showed markedly different properties from any other organism, namely, that it is the most A-T-rich genome sequenced to date, making the bioinformatic prediction of gene products from the genome sequence difficult based heavily on knowledge from other organisms. While proteome-wide studies of whole-cell lysates lend a great deal of information about an organism from a holistic perspective, it is equally informative to combine cell fractionation methods with high-throughput protein identifications to define the proteome of a particular subcellular location or organelle. Most significantly, correlating mRNA and protein expression profiles for individual genes revealed particular genes and families of functionally related genes that appeared to observe similar patterns of mRNA and protein accumulation.

Citation: Johnson J, Yates J. 2005. The Proteome, p 85-94. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Subtractive analysis of rhoptry-enriched proteins. Plotted is the percent difference in sequence coverage between proteome analyses of rhoptry-enriched proteins and whole cell extracts of asexual blood stages. Transmembrane domains and signal peptides are indicated, as are proteins representative of the rhoptry-enriched fraction.

Citation: Johnson J, Yates J. 2005. The Proteome, p 85-94. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Scatterplots of mRNA and protein fold changes during trophozoite-to-schizont transitions. Quadrants are indicated by Roman numerals. Data points falling into quadrants I and III are shown by open squares, and data points falling into quadrants II and IV are shown by closed squares. Data points that fell into quadrants II and IV were replotted (inset) as the mRNA fold change of the transition indicated versus the protein fold change of the following transition (i.e., the inset is a plot of the fold change in mRNA abundance for the trophozoite-toschizont versus the fold change in protein abundance for the schizont-to-merozoite transition).

Citation: Johnson J, Yates J. 2005. The Proteome, p 85-94. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Carlton, J. M.,, S. V. Angiuoli,, B. B. Suh,, T. W. Kooij,, M. Pertea,, J. C. Silva,, M. D. Ermolaeva,, J. E. Allen,, J. D. Selengut,, H. L. Koo,, J. D. Peterson,, M. Pop,, D. S. Kosack,, M. F. Shumway,, S. L. Bidwell,, S. J. Shallom,, S. E. van Aken,, S. B. Riedmuller,, T. V. Feldblyum,, J. K. Cho,, J. Quackenbush,, M. Sedegah,, A. Shoaibi,, L. M. Cummings,, L. Florens,, J. R. Yates,, J. D. Raine,, R. E. Sinden,, M. A. Harris,, D. A. Cunningham,, P. R. Preiser,, L. W. Bergman,, A. B. Vaidya,, L. H. van Lin,, C. J. Janse,, A. P. Waters,, H. O. Smith,, O. R. White,, S. L. Salzberg,, J. C. Venter,, C. M. Fraser,, S. L. Hoffman,, M. J. Gardner,, and D. J. Carucci. 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419: 512 519.
2. Coulson, R. M.,, N. Hall,, and C. A. Ouzounis. 2004. Comparative genomics of transcriptional control in the human malaria parasite Plasmodium falciparum. Genome Res. 14: 1548 1554.
3. Dechering, K. J.,, J. Thompson,, H. J. Dodemont,, W. Eling,, and R. N. Konings. 1997. Developmentally regulated expression of pfs16, a marker for sexual differentiation of the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 89: 235 244.
4. Doolan, D. L.,, S. Southwood,, D. A. Freilich,, J. Sidney,, N. L. Graber,, L. Shatney,, L. Bebris,, L. Florens,, C. Dobano,, A. A. Witney,, E. Appella,, S. L. Hoffman,, J. R. Yates III,, D. J. Carucci,, and A. Sette. 2003. Identification of Plasmodium falciparum antigens by antigenic analysis of genomic and proteomic data. Proc. Natl. Acad. Sci. USA. 100: 9952 9957.
5. Durr, E.,, J. Yu,, K. M. Krasinska,, L. A. Carver,, J. R. Yates,, J. E. Testa,, P. Oh,, and J. E. Schnitzer. 2004. Direct proteomic mapping of the lung microvascular endothelial cell surface in vivo and in cell culture. Nat. Biotechnol. 22: 985 992.
6. Eng, J. K.,, A. L. McCormack,, and J. R. Yates III. 1994. An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J. Am. Soc. Mass Spectrom. 5: 976 989.
7. Fenn, J. B.,, M. Mann,, C. K. Meng,, S. F. Wong,, and W. C. Whitehouse. 1989. Electrospray ionization for the mass spectrometry of large biomolecules. Science 246: 64 71.
8. Florens, L.,, X. Liu,, Y. Wang,, S. Yang,, O. Schwartz,, M. Peglar,, D. J. Carucci,, J. R. Yates III,, and Y. Wu. 2004. Proteomics approach reveals novel antigens on the surface of malaria-infected erythrocytes. Mol. Biochem. Parasitol. 135: 1 11.
9. Florens, L.,, M. P. Washburn,, J. D. Raine,, R. M. Anthony,, M. Grainger,, J. D. Haynes,, J. K. Moch,, N. Muster,, J. B. Sacci,, D. L. Tabb,, A. A. Witney,, D. Wolters,, Y. Wu,, M. J. Gardner,, A. A. Holder,, R. E. Sinden,, J. R. Yates,, and D. J. Carucci. 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419: 520 526.
10. Gao, J.,, G. J. Opiteck,, M. S. Friedrichs,, A. R. Dongre,, and S. A. Hefta. 2003. Changes in the protein expression of yeast as a function of carbon source. J. Proteome Res. 2: 643 649.
11. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R. W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S. A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R.W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498 511.
12. Gygi, S. P.,, B. Rist,, S. A. Gerber,, F. Turecek,, M. H. Gelb,, and R. Aebersold. 1999. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17: 994 999.
13. Jewett, T. J.,, and L. D. Sibley. 2003. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol. Cell 11: 885 894.
14. Joiner, K. A.,, and D. S. Roos. 2002. Secretory traffic in the eukaryotic parasite Toxoplasma gondii: less is more. J. Cell Biol. 157: 557 563.
15. Karas, M.,, and F. Hillencamp. 1988. Laser desorption ionization of proteins with molecular mass exceeding 10000 daltons. Anal. Chem. 60: 2299 2301.
16. Lanzer, M.,, S. P. Wertheimer,, D. de Bruin,, and J. V. Ravetch. 1993. Plasmodium: control of gene expression in malaria parasites. Exp. Parasitol. 77: 121 128.
17. Lasonder, E.,, Y. Ishihama,, J. S. Andersen,, A. M. Vermunt,, A. Pain,, R. W. Sauerwein,, W. M. Eling,, N. Hall,, A. P. Waters,, H. G. Stunnenberg,, and M. Mann. 2002. Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419: 537 542.
18. Le Roch, K.G.,, J.R. Johnson,, L. Florens,, Y. Zhou,, A. Santrosyan,, M. Grainger,, S. F. Yan,, K. C. Williamson,, A. A. Holder,, D. J. Carucci,, J. R. Yates,, and E. A. Winzeler. 2004. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 14: 2308 2318.
19. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, A. A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503 1508.
20. Levitt, A.,, F.O. Dimayuga,, and V. R. Ruvolo. 1993. Analysis of malarial transcripts using cDNA-directed polymerase chain reaction. J. Parasitol. 79: 653 662.
21. Liu, H.,, R. G. Sadygov,, and J. R. Yates III. 2004. A model for random sampling and estimation of relative protein abundance in shotgun proteomics. Anal. Chem. 76: 4193 4201.
22. Ong, S. E.,, B. Blagoev,, I. Kratchmarova,, D. B. Kristensen,, H. Steen,, A. Pandey,, and M. Mann. 2002. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1: 376 386.
23. Rehkopf, D. H.,, D. E. Gillespie,, M. I. Harrell,, and J. E. Feagin. 2000. Transcriptional mapping and RNA processing of the Plasmodium falciparum mitochondrial mRNAs. Mol. Biochem. Parasitol. 105: 91 103.
24. Sam-Yellowe, T.,, L. Florens,, J. R. Johnson,, T. Wang,, J. A. Drazba,, K. G. Le Roch,, Y. Zhou,, S. Batalov,, D. J. Carucci,, E. A. Winzeler,, and J. R. Yates. 2004a. A Plasmodium gene family encoding Maurer's cleft membrane proteins: structural properties and expression profiling. Genome Res. 14: 1052 1059.
25. Sam-Yellowe, T.Y.,, L. Florens,, T. Wang,,J.D. Raine,, D. J. Carucci,, R. E. Sinden,, and J. R. Yates. 2004b. Proteome analysis of rhoptry-enriched fractions isolated from Plasmodium merozoites. J. Proteome Res. 3: 995 1001.
26. Sam-Yellowe, T.Y.,, H. Fujioka,, M. Aikawa,, T. Hall,, and J. A. Drazba. 2001. A Plasmodium falciparum protein located in Maurer's clefts underneath knobs and protein localization in association with Rhop- 3 and SERA in the intracellular network of infected erythrocytes. Parasitol Res 87: 173 185.
27. Sam-Yellowe, T. Y.,, H. Fujioka,, M. Aikawa,, and D. G. Messineo. 1995. Plasmodium falciparum rhoptry proteins of 140/130/110 kd (Rhop-H) are located in an electron lucent compartment in the neck of the rhoptries. J. Eukaryot. Microbiol. 42: 224–231.
28. Sam-Yellowe, T. Y.,, and M. M. Ndengele. 1993. Monoclonal antibody epitope mapping of Plasmodium falciparum rhoptry proteins. Exp. Parasitol. 76: 46 58.
29. Vervenne, R. A.,, R. W. Dirks,, J. Ramesar,, A. P. Waters,, and C. J. Janse. 1994. Differential expression in blood stages of the gene coding for the 21-kilodalton surface protein of ookinetes of Plasmodium berghei as detected by RNA in situ hybridisation. Mol. Biochem. Parasitol. 68: 259 266.
30. Washburn, M. P.,, D. Wolters,, and J. R. Yates III. 2001. Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol. 19: 242 247.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error