Chapter 9 : The Sporozoite

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Sporozoite, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap09-2.gif


The intense interest in sporozoite biology has been richly rewarded by the progressive unravelling of the truly remarkable journey undertaken by such a simple cell. The diversity and elegance of the strategies employed are only now being revealed. The key new comprehensive technologies underpinning these advances in our understanding includes ; ; ; . The sporozoite is one of three invasive stages in the malaria life cycle. The others are the ookinete and the merozoite. Sporozoite formation is the final step of differentiation of the oocyst. Sporozoite-infected epithelial cells can be expelled from the midgut wall into the lumen of the gut in a manner highly reminiscent of the time bomb theory of ookinete-midgut interaction. The salivary glands present a significant barrier to sporozoite development. Only sporozoites isolated from salivary glands confer significant sterile protection. Sporozoite maturation correlates with a dramatic increase of gliding motility, a unique form of substrate-dependent locomotion, and infectivity to the mammalian host. Sporozoites glide extensively through the avascular dermis until they reach a capillary. Having penetrated through the basal side of the endothelial cell layer, a proportion of sporozoites invade blood vessels and get carried away by the blood flow, whereas others actively enter lymph vessels or remain as residual sporozoites in the skin tissue. The recognition of the final target cell would then switch the parasite’s program from transmigration to productive entry by simultaneous formation of a parasitophorous vacuole.

Citation: Sinden R, Matuschewski K. 2005. The Sporozoite, p 169-190. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagram illustrating the morphogenesis of one sporozoite on the surface of the sporoblast in the malarial oocyst. Initial bud formation (P. berghei day 7 to 8) (A); intermediate elongation (day 9 to 10) (B); elongate but immature sporozoite (day 11) (C).N, nucleus;A, apicoplast; Mit, mitochondrion; Rh, rhoptry (a regulated secretory vesicle); M, microneme (a regulated secretory vesicle); SPB, spindle pole body; er, endoplasmic reticulum.

Citation: Sinden R, Matuschewski K. 2005. The Sporozoite, p 169-190. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Diagram illustrating some of the separate cellular activities that make up the cell cycle of the malarial oocyst (based on a model proposed for ).The time scale is indicated at the bottom of the diagram, and the possible times at which different gene knockouts exert their impact on development are shown at the top.The diagram attempts to illustrate the difficulty in correctly assigning a point of biological impact of any gene knockout. If morphological criteria alone are used, it will depend in which subcycle the mutant acts as to when the aberrant phenotype is seen. Also noting the interdependence of the subcycles, it is perfectly feasible to ascribe a late phenotype to a mutant with an early action but with a morphological phenotype visible only following its interaction with a second and previously unaffected subcycle, for example.

Citation: Sinden R, Matuschewski K. 2005. The Sporozoite, p 169-190. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Role of the sporozoite molecular motor during host cell invasion. Sporozoites actively invade their respective host cells under simultaneous formation of a novel cellular compartment of the host cell’s own making, the parasitophorous vacuole (PV). The PV membrane is remodeled through the secretion of proteins and lipids from secretory organelles, i.e., micronemes (Mn), rhoptries (Rh), and dense granules.The sporozoite invasin TRAP interacts with as-yet-unidentified cellular receptors leading to formation of a tight moving junction. This junction acts as a molecular sieve to exclude host plasma membrane proteins.Through its conserved cytoplasmic domain,TRAP is tethered via aldolase tetramers to short actin filaments. Actin polymerization is temporarily and spatially regulated and is likely to be the rate-limiting factor for parasite locomotion. Unconventional class XIV myosins (MyoA) are immobilized via myosin A tail domain interacting protein (MTIP) and other proteins to the IMC,flattened membrane stacks that are anchored to subpellicular filaments and microtubules. This structure determines the shape of sporozoites and serves as the scaffold for actin-myosin-based motility. Plus-end-directed motility along the actin units results in backward translocation of the actin oligomers to the posterior end of the parasite and, thus, a net forward movement of the sporozoite.

Citation: Sinden R, Matuschewski K. 2005. The Sporozoite, p 169-190. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adini, A.,, M. Krugliak,, H. Ginsburg,, L. Li,, L. Lavie,, and A. Warburg. 2001. Transglutaminase in Plasmodium parasites: activity and putative role in oocysts and blood stages. Mol. Biochem. Parasitol. 117: 161 168.
2. Aikawa, M,, N. Yoshida,, R. S. Nussenzweig,, and V. Nussenzweig. 1981. The protective antigen of malarial sporozoites (Plasmodium berghei) is a differentiation antigen. Trans. R. Soc.Trop. Med. Hyg. 126: 2494 2495
3. Alavi, Y.,, M. Arai,, J. Mendoza,, M. Tuffet-Bayona,, R. Sinha,, K. Fowler,, O. Billker,, B. Franke-Fayard,, C. J. Janse,, A. Waters,, and R. E. Sinden. 2003. The dynamics of interactions between Plasmodium and the mosquito: a study of the infectivity of Plasmodium berghei and Plasmodium gallinaceum, and their transmission by Anopheles stephensi,Anopheles gambiae and Aedes aegyptii. Int. J. Parasitol. 33: 933 943.
4. Al-Olayan, E. M.,, A. L. Beetsma,, G. A. Butcher,, R. E. Sinden,, and H. Hurd. 2002. Complete development of mosquito phases of malaria parasite in vitro. Science 295: 677 679.
5. Amino, R.,, A. Genovesio,, S. Celli,, P. Roux,, J. C. Olivo-Marin,, S. L. Shorte,, R. Ménard,, and F. Frischknecht. 2004. From the skin to the liver: in vivo imaging of Plasmodium sporozoites, abst. 5C. Molecular Parasitology Meeting XV, Woods Hole, Mass.
6. Ancsin, J. B.,, and R. Kisilevsky. 2004. A binding site for highly sulphated heparan sulphate is identified at the N terminus of the circumsporozoite protein:significance for malarial sporozoite attachment to hepatocytes. J. Biol. Chem. 279: 21824 21832.
7. Anderson, R. A.,, B. G. Knols,, and J. C. Koella. 2000. Plasmodium falciparum sporozoites increase feeding-association mortality of their mosquito hosts Anopheles gambiae s.l. Parasitology 120: 329 333.
8. Baldacci, P.,, and R. Ménard. 2004. The elusive malaria sporozoite in the mammalian host. Mol. Microbiol. 54: 298 306.
9. Bannister, L. H.,, J. M. Hopkins,, A. R. Dluzewski,, G. Margos,, I.T. Williams,, M. J. Blackman,, C. H. Kocken,, A.W. Thomas,, and G. H. Mitchell. 2003. Plasmodium falciparum apical membrane antigen 1 (PfAMA-1) is translocated within micronemes along subpellicular microtubules during merozoite development. J. Cell Sci. 116: 3825 3834.
10. Barragan, A.,, and L. D. Sibley. 2003. Migration of Toxoplasma gondii across biological barriers. Trends Microbiol. 11: 426 30.
11. Barreau, C.,, M. Touray,, P. F. Pimenta,, L. H. Miller,, and K.D. Vernick. 1995. Plasmodium gallinaceum sporozoite invasion of Aedes aegypti salivary glands is inhibited by anti-gland antibodies and by lectins. Exp. Parasitol. 81: 332 343.
12. Beaudoin, R. L.,, C. P. A. Strome,, and T. A. Tubergen. 1974. Plasmodium berghei berghei: ectopic development of the ANKA strain in Anopheles stephensi. Exp. Parasitol. 36: 189 201.
13. Beaudoin, R. L.,, C. P. A. Strome,, T. A. Tubergen,, and F. Mitchell. 1976. Plasmodium berghei berghei: irradiated sporozoites of the ANKA strain as immunizing agents in mice. Exp. Parasitol. 39: 438 443.
14. Beier, M. S.,, J. R. Davis,, C. B. Pumpuni,, B. H. Noden,, and J. C. Beier. 1992. Ingestion of Plasmodium falciparum by anopheline mosquitoes. Am. J.Trop. Med. Hyg. 47: 195 200.
15. Bergman, L. W.,, K. Kaiser,, H. Fujioka,, I. Coppens,, T. M. Daly,, S. Fox,, K. Matuschewski,, V. Nussenzweig,, and S. H. I. Kappe. 2003. Myosin A tail domain interacting protein (MTIP) localizes to the inner membrane complex of Plasmodium sporozoites. J. Cell Sci. 116: 39 49.
16. Bhanot, P.,, K. Schauer,, I. Coppens,, and V. Nussenzweig. 2005. A surface phospholipase is involved in the migration of plasmodium sporozoites through cells. J. Biol. Chem. 280: 6752 6760.
17. Bottius, E.,, L. Ben Mohamed,, K. Brahimi,, H. Gras,, J. P. Lepers,, L. Raharimalala,, M. Aikawa,, J. Meis,, B. Slierendregt,, A. Tartar,, A. Thomas,, and P. Druilhe. 1996. A novel Plasmodium falciparum sporozoite and liver stage antigen (SALSA) defines major B,T helper, and CTL epitopes. J. Immunol. 156: 2874 2884.
18. Brennan, J. D. G.,, M. Kent,, R. Dhar,, H. Fujioka,, and N. Kumar. 2000. Anopheles gambiae salivary gland proteins as putative targets for blocking transmission of malaria parasites. Proc. Natl.Acad. Sci.USA 97: 13859 13864.
19. Carrolo, M.,, S. Giordano,, L. Cabrita-Santos,, S. Corso,, A. M. Vigario,, S. Silva,, P. Leiriao,, D. Carapau,, R. Armas-Portela,, P. M. Comoglio,, A. Rodriguez,, and M. M. Mota. 2003. Hepatocyte growth factor and its receptor are required for malaria infection. Nat. Med. 9: 1363 1369.
20. Carvalho, T.G.,, S. Thiberge,, H. Sakamoto,, and R. Ménard,, R. 2004. Conditional mutagenesis using site-specific recombination in Plasmodium berghei. Proc. Natl.Acad. Sci. USA 101: 14931 14936.
21. Cerami, C.,, U. Frevert,, P. Sinnis,, B. Takacs,, P. Clavijo,, M. J. Santos,, and V. Nussenzweig. 1992. The basolateral domain of the hepatocyte plasma membrane bears receptors for the circumsporozoite protein of Plasmodium falciparum sporozoites. Cell 70: 1021 1033.
22. Cerami, C.,, U. Frevert,, P. Sinnis,, B. Takacs,, and V. Nussenzweig. 1994. Rapid clearance of malaria circumsporozoite protein (CS) by hepatocytes. J. Exp. Med. 179: 695 701.
23. Chattopadhyay, R.,, D. Rathore,, H. Fujioka,, S. Kumar,, S., P,. de laVega,, D. Haynes,, K. Moch,, D. Fryauff,, R. Wang,, D. J. Carucci,, and S. L. Hoffman. 2003. PfSPATR, a Plasmodium falciparum protein containing an altered thrombospondin type I repeat domain is expressed at several stages of the parasite life cycle and is the target of inhibitory antibodies. J. Biol.Chem. 278: 25977 25981.
24. Claudianos, C.,, H. E. Trueman,, J.T. Dessens,, M. Arai,, J. Mendoza,, G.A. Butcher,, T. Crompton,, and R. E. Sinden. 2002. A malaria scavenger receptor- like protein essential for parasite development. Mol. Microbiol. 45: 1473 1484.
25. Coleman, R. E.,, A. K. Nath,, I. Schneider,, G. H. Song,, T.A. Klein,, and W. K. Milhous. 1994. Prevention of sporogony of Plasmodium falciparum and P. berghei in Anopheles stephensi mosquitoes by transmission-blocking antimalarials. Am.J.Trop. Med. Hyg. 50: 646 653.
26. Collins, F. H.,, R. K. Sakai,, K.D. Vernick,, S. Paskewitz,, D. C. Seeley,, L. H. Miller,, W. E. Collins,, C. C. Campbell,, and R.W. Gwadz. 1986. Genetic selection of a plasmodium refractory strain of the malaria vector Anopheles gambiae. Science 234: 607 610.
27. Coppi, A.,, C. Pinzon-Ortiz,, C. Hutter,, and P. Sinnis. 2005. The Plasmodium circumsporozoite protein is proteolytically processed during cell invasion. J. Exp. Med. 201: 27 33.
28. Danforth, H.,, D.M. Aikawa,, A.H. Cochrane,, and R. S. Nussenzweig. 1980. Sporozoites of mammalian malaria: attachment to, interiorization and fate within macrophages. J. Protozool. 27: 193 202.
29. Danforth, H.D.,, R. Entzeroth,, and B. Chobotar. 1992. Scanning and transmission electron microscopy of host cell pathology associated with penetration of Eimeria papillata sporozoites. Parasitol. Res. 78: 570 573.
30. de Lara Capurro, M.,, J. Coleman,, B.T. Beerntsen,, K. M. Myles,, K. I. E. Olson,, A. U. Krettli,, and A. A. James. 2000. Virus-expressed, recombinant single-chain antibody blocks sporozoite infection of salivary glands in Plasmodium gallinaceum-infected Aedes aegypti. Am. J.Trop. Med. Hyg. 62: 427 433.
31. Dimopoulos, G.,, D. Seeley,, A. Wolf,, and F. C. Kafatos. 1998. Malaria infection of the mosquito Anopheles gambiae activates immune-responsive genes during critical transition stages of the parasite life cycle. EMBO J. 17: 6115 6123.
32. Dobrowolski, J. M.,, and L. D. Sibley. 1996. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84: 933 939.
33. do Rosario, V. E.,, A. Appiah,, J. A. Vaughan,, and M. R. Hollingdale. 1989. Plasmodium falciparum: administration of anti-sporozoite antibodies during sporogony results in production of sporozoites which are not neutralized by human anti-circumsporozoite protein vaccine sera. Trans.R.Soc.Trop. Med.Hyg. 83: 305 307.
34. Fidock, D. A.,, E. Bottius,, K. Brahimi,, I. I. M. D. Moelans,, M. Aikawa,, R. N. H. Konings,, U. Certa,, P. Olafsson,, T. Kaidoh,, A. Asavanich,, C. Guerinmarchand,, and P. Druilhe. 1994. Cloning and characterization of a novel Plasmodium falciparum sporozoite surface antigen, STARP. Mol. Biochem. Parasitol. 64: 219 232.
35. Florens, L.,, M. P. Washburn,, J.D. Raine,, R.M. Anthony,, M. Grainger,, J. D. Haynes,, J. K. Moch,, N. Muster,, J. B. Sacci,, D. L. Tabb,, A.A. Witney,, D. Wolters,, Y. Wu,, M. J. Gardner,, A.A. Holder,, R. E. Sinden,, J. R. Yates III,, and D. J. Carucci. 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419: 520 526.
36. Fowler, R. E.,, R. E. Sinden,, and M. Pudney. 1995. Inhibitory activity of the anti-malarial atovaquone (566C80) against ookinete, oocysts and sporozoites of Plasmodium berghei. J. Parasitol. 8: 454 458.
37. Frevert, U. 2004. Sneaking through the back entrance: the biology of malaria sporozoite stages. Trends Parasitol. 20: 417 424.
38. Frevert, U.,, M.R. Galinski,, F-U. Hugel,, N. Allon,, H. Schreier,, S. Smulevitch,, M. Shakibaei,, and P. Clavijo. 1998. Malaria circumsporozoite protein inhibits protein synthesis in mammalian cells. EMBO J. 17: 3816 3826.
39. Frevert, U.,, P. Sinnis,, C. Cerami,, W. Shreffler,, B. Takacs,, and V. Nussenzweig. 1993. Malaria circumsporozoite protein binds to heparan sulfate proteoglycans associated with the surface membrane of hepatocytes. J. Exp. Med. 177: 1287 1298.
40. Frevert, U.,, S. Engelmann,, S. Zougbédé,, J. Stange,, B. Ng,, K. Matuschewski,, L. Liebes,, and H. Yee. 2005. Intravital observation of Plasmodium berghei sporozoite infection of the liver. PLoS Biol. 3: e192.
41. Frischknecht, F.,, P. Baldacci,, B. Martin,, C. Zimmer,, S. Thiberge,, J.-C. Olivo-Marin,, S. L. Shorte,, and R. Ménard. 2004. Imaging movement of malaria parasites during transmission by Anopheles mosquitoes. Cell. Microbiol. 6: 687 694.
42. Gakhar, S. K.,, and H. K. Shandilya. 2001. Midgut specific immune response of vector mosquito Anopheles stephensi to malaria parasite Plasmodium. Ind. J. Exp. Biol. 39: 287 290.
43. Gantt, S.,, C. Persson,, K. Rose,, A. J. Birkett,, R. Abagayan,, and V. Nussenzweig. 2000. Antibodies against the thrombospondin-related anonymous protein do not inhibit Plasmodium sporozoite infectivity in vivo. Infect. Immun. 68: 3667 3673.
44. Garnham, P. C. C. 1966. Malaria Parasites and Other Haemosporidia. Blackwell Scientific Publications, Oxford, United Kingdom.
45. Ghosh, A. K.,, D. Jethwaney,, M. Devenport,, V. Anderson,, A. A. Sultan,, and M. Jacobs-Lorena. 2004. Molecular dissection of sporozoite-salivary gland interactions, abstr. 111. American Society of Tropical Medicine and Hygiene (ASTMH) 53rd Annual Meeting, Miami, Fla.
46. Ghosh, A. K.,, P. E. Ribolla,, and M. Jacobs-Lorena. 2001. Targeting Plasmodium ligands on mosquito salivary glands and midgut with a phage display peptide library. Proc. Natl. Acad. Sci. USA 98: 13278 13281.
47. Godson, G. N.,, J. Ellis,, J. R. Lupski,, L. S. Ozaki,, and P. Svec. 1984. Structure and organization of genes for sporozoite surface antigens. Philos.Trans.R. Soc. Lond. B Biol. Sci. 307: 129 139.
48. Godson, G.N.,, J. Ellis,, P. Svec,, D.H. Schlesinger,, and V. Nussenzweig. 1983. Identification and chemical synthesis of a tandemly repeated immunogenic region of Plasmodium knowlesi circumsporozoite protein. Nature 305: 29 33.
49. Grüner, A. C.,, K. Brahimi,, F. Letourneur,, L. Renia,, W. Eling,, G. Snounou,, and P. Druilhe. 2001. Expression of the erythrocyte-binding antigen 175 in sporozoites and in liver stages of Plasmodium falciparum. J. Infect. Dis. 184: 892 897.
50. Gwadz, R.W.,, D. Kaslow,, J.Y. Lee,, W. L. Maloy,, M. Zasloff,, and L. H. Miller. 1989. Effects of magainins and cecropins on the sporogonic development of malaria parasites in mosquitoes. Infect. Immun. 57: 2628 2633.
51. Hall, N.,, M. Karras,, J.D. Raine,, J.M. Carlton,, T.W. A. Kooij,, M. Berriman,, L. Florens,, C.S. Janssen,, A. Pain,, G. K. Christophides,, K. James,, K. Rutherford,, B. Harris,, D. Harris,, C. Churcher,, M. A. Quail,, D. Ormond,, J. Doggett,, H. E. Trueman,, J. Mendoza,, S. L. Bidwell,, M.-A. Rajandream,, D. J. Carucci,, J. R. Yates III,, F. C. Kafatos,, C. J. Janse,, B. Barrell,, C.M.R. Turner,, A. P. Waters,, and R. E. Sinden. 2005. A comprehensive survey of the Plasmodium life cycle by genomic, transcriptomic,and proteomic analyses. Science 307: 82 86.
52. Hamilton, A. J.,, C. S. Davies,, and R. E. Sinden. 1988. Expression of the circumsporozoite proteins revealed in situ in the mosquito stages of Plasmodium berghei by the Lowicryl-immunogold technique. Parasitology 96: 273 280.
53. Han, Y. S.,, J. Thompson,, F. C. Kafatos,, and C. Barillas-Mury. 2000. Molecular interactions between Anopheles stephensi midgut cells and Plasmodium berghei: the time bomb theory of ookinete invasion of mosquitoes. EMBO J. 19: 6030 6039.
54. Healer, J. F.,, S. Crawford,, S. Ralph,, G. McFadden,, and A. F. Cowman. 2002. Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. Infect. Immun. 70: 5751 5758.
55. Hemler, M. E. 2003. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu. Rev. Cell. Dev. Biol. 19: 397 422.
56. Hillyer, J. F.,, S. L. Schmidt,, and B. M. Christensen. 2003. Rapid phagocytosis and melanization of bacteria and Plasmodium sporozoites by hemocytes of the mosquito Aedes aegypti. J. Parasitol. 89: 62 69.
57. Hudson-Taylor, D. E.,, S.A. Dolan,, F.W. Klotz,, H. Fujioka,, M. Aikawa,, E.V. Koonin,, and L. H. Miller. 1995. Plasmodium falciparum protein associated with the invasion junction contains a conserved oxidoreductase domain. Mol. Microbiol. 15: 463 471.
58. Ishino, T.,, K. Yano,, Y. Chinzei,, and M. Yuda. 2004. Cell-passage activity is required for the malarial parasite to cross the liver sinusoidal cell layer. PLoS Biol. 2: E4.
59. Ishino, T.,, Y. Chinzei,, and M. Yuda. 2005. A Plasmodium sporozoite protein with a membrane attack complex domain is required for breaching the liver sinusoidal cell layer prior to hepatocyte infection. Cell. Microbiol. 7: 199 208.
60. Ito, J.,, A. Ghosh,, L.A. Moreira,, E.A. Wimmer,, and M. Jacobs-Lorena. 2002. Transgenic anopheline mosquitoes impaired in transmission of a malaria parasite. Nature 417: 452 455.
61. James, A. A. 2003. Blocking malaria parasite invasion of mosquito salivary glands. J. Exp. Biol. 206: 3817 3821.
62. James, S. P. 1928. Ross’s “black spores” in the stomach and salivary glands of malaria-infected mosquitoes. Trans. R. Soc.Trop. Med. Hyg. 21: 258.
63. Jewett, T. J.,, and L. D. Sibley. 2003. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol. Cell 11: 885 894.
64. Kadota, K.,, T. Ishino,, T. Matsuyama,, Y. Chinzei,, and M. Yuda. Essential role of membrane attack protein in malarial transmission to the mosquito host. Proc. Natl.Acad. Sci. USA 101: 16310 16315.
65. Kaiser, K.,, N. Camargo,, I. Coppens,, J. M. Morrisey,, A. B. Vaidya,, and S. H. I. Kappe. 2004a. A member of a conserved Plasmodium protein family with membrane-attack complex/perforin (MACPF)-like domains localizes to the micronemes of sporozoites. Mol. Biochem. Parasitol. 133: 15 26.
66. Kaiser, K.,, K. Matuschewski,, N. Camargo,, J. Ross,, and S. H. I. Kappe. 2004b. Differential transcriptome profiling identifies Plasmodium genes encoding pre-erythrocytic stage-specific proteins. Mol. Microbiol. 51: 1221 1232.
67. Kappe, S.,, T. Bruderer,, S. Gantt,, H. Fujioka,, V. Nussenzweig,, and R. Ménard. 1999. Conservation of a gliding motility and cell invasion machinery in apicomplexan parasites. J. Cell Biol. 147: 937 944.
68. Kappe, S. H. I.,, C. A. Buscaglia,, L.W. Bergman,, I. Coppens,, and V. Nussenzweig. 2004a. Apicomplexan gliding motility and host cell invasion: overhauling the motor model. Trends Parasitol. 20: 13 16.
69. Kappe, S. H. I.,, C. A. Buscaglia,, and V. Nussenzweig. 2004b. Plasmodium sporozoite molecular cell biology. Annu. Rev. Cell Dev. Biol. 20: 29 59.
70. Kappe, S. H. I.,, M. J. Gardner,, S. M. Brown,, J. Ross,, K. Matuschewski,, J. M. Ribeiro,, J. H. Adams,, J. Quackenbush,, J. Cho,, D. J. Carucci,, S. L. Hoffman,, and V. Nussenzweig. 2001. Exploring the transcriptome of the malaria sporozoite stage. Proc. Natl.Acad. Sci. USA 98: 9895 9900.
71. Kappe, S.H. I.,, A. R. Noe,, T. S. Fraser,, P. L. Blair,, and J. H. Adams. 1998. A family of chimeric erythrocyte binding proteins of malaria parasites. Proc. Natl.Acad. Sci. USA 95: 1230 1235.
72. Kariu, T.,, M. Yuda,, K. Yano,, and Y. Chinzei. 2002. MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J. Exp. Med. 195: 1317 1323.
73. Khater, E. I.,, R. E. Sinden,, and J.T. Dessens. 2004. A malaria membrane skeletal protein is essential for normal morphogenesis, motility and infectivity of sporozoites. J. Cell Biol. 167: 425 432.
74. King, C.A. 1988. Cell motility of sporozoan protozoa. Parasitol.Today 4: 315 319.
75. Klotz, F. W.,, T. J. Hadley,, M. Aikawa,, J. Leech,, R. J. Howard,, and L. H. Miller. 1989. A 60-kDa Plasmodium falciparum protein at the moving junction formed between merozoite and erythrocyte during invasion. Mol. Biochem.Parasitol. 36: 177 186.
76. Koella, J.C.,, and C. Boete. 2003. A model for the coevolution of immunity and immune evasion in vector- borne diseases with implications for the epidemiology of malaria. Am. Nat. 161: 698 707.
77. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J.D. Haynes,, P. Vega,, A.A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 12: 1487 1488.
78. Lingelbach, K.,, and K. A. Joiner. 1998. The parasitophorous vacuole membrane surrounding Plasmodium and Toxoplasma: an unusual compartment in infected cells. J. Cell Sci. 111: 1467 1475.
79. Lowenberger, C. A.,, S. Kamal,, J. Chiles,, S. Paskewitz,, P. Bulet,, J.A. Hoffmann,, and B. M. Christensen. 1999. Mosquito-Plasmodium interactions in response to immune activation of the vector. Exp. Parasitol. 1: 59 69.
80. Luckhart, S.,, Y. Vodovotz,, L.W. Cui,, and R. Rosenberg. 1998. The mosquito Anopheles stephensi limits malaria parasite development with inducible synthesis of nitric oxide. Proc. Natl. Acad. Sci. USA 95: 5700 5705.
81. Matuschewski, K.,, J. Ross,, S. M. Brown,, K. Kaiser,, V. Nussenzweig,, and S. H. I. Kappe. 2000a. Infectivity-associated changes in the transcriptional repertoire of the malaria sporozoite stage. J. Biol. Chem. 277: 41948 41953.
82. Matuschewski, K.,, A. C. Nunes,, V. Nussenzweig,, and R. Ménard. 2002b. Plasmodium sporozoite invasion into insect and mammalian cells is directed by the same dual binding system. EMBO J. 21: 1597 1606.
83. McCutchan, T. F.,, J. C. Kissinger,, M. G. Touray,, M. J. Rogers,, J. Li,, M. Sullivan,, E. M. Braga,, A. U. Krettli,, and L. H. Miller. 1996. Comparison of circumsporozoite proteins from avian and mammalian malarias: biological and phylogenetic implications. Proc. Natl. Acad. Sci. USA 93: 11889 11894.
84. Ménard, R. 2000. The journey of the malaria sporozoite through its hosts: two parasite proteins lead the way. Microbes Infect. 2: 633 642.
85. Ménard, R.,, A.A. Sultan,, C. Cortes,, R. Altszuler,, M. R. van Dijk,, C. J. Janse,, A. P. Waters,, R. S. Nussenzweig,, and V. Nussenzweig. 1997. Circumsporozoite protein is required for development of malaria sporozoites in mosquitoes. Nature 385: 336 340.
86. Mitchell, G. H.,, A.W. Thomas,, G. Margos,, A. R. Dluzewski,, and L. H. Bannister. 2004. Apical membrane antigen 1, a major malaria vaccine candidate, mediates the close attachment of invasive merozoites to host red blood cells. Infect. Immun. 72: 154 158.
87. Mota, M. M.,, G. Pradel,, J. P. Vanderberg,, J. C. R. Hafalla,, U. Frevert,, R. S. Nussenzweig,, V. Nussenzweig,, and A. Rodriguez. 2001. Migration of Plasmodium sporozoites through cells before infection. Science 291: 141 144
88. Mota, M. M.,, J. C. Hafalla,, and A. Rodriguez. 2002. Migration through host cells activates Plasmodium sporozoites for infection. Nat Med. 8: 1318 1322.
89. Motard, A.,, I. Landau,, A. Nussler,, G. Grau,, D. Baccam,, D. Mazier,, and G.A.T. Targett. 1993. The role of reactive nitrogen intermediates in modulation of gametocyte infectivity of rodent malaria parasites. Parasite Immunol. 15: 21 26.
90. Mueller, A.-K.,, M. Labaied,, S. H. I. Kappe,, and K. Matuschewski. 2005a. Genetically modified Plasmodium parasites as a protective experimental malaria vaccine. Nature 433: 164 167.
91. Mueller, A.-K.,, N. Camargo,, K. Kaiser,, C. Andorfer,, U. Frevert,, K. Matuschewski,, and S. H. I. Kappe. 2005. Plasmodium liver stage developmental arrest by depletion of a protein at the parasite-host interface. Proc. Natl.Acad. Sci.USA 102: 3022 3027.
92. Myung, J. M.,, P. Marshall,, and P. Sinnis. 2004. The Plasmodium circumsporozoite protein is involved in most salivary gland invasion by sporozoites. Mol. Biochem. Parasitol. 133: 53 59.
93. Naotunne, T. S.,, N. D. Karunaweera,, K. N. Mendis,, and R. Carter. 1993. Cytokine-mediated inactivation of malarial gametocytes is dependent on the presence of white blood cells and involves reactive nitrogen intermediates. Immunology 78: 555 562.
94. Natarajan, R.,, V. Thathy,, M. M. Mota,, J.C. Hafala,, R. Ménard,, and K.D. Vernick. 2001. Fluorescent Plasmodium berghei sporozoites and pre-erythrocytic stages: a new tool to study mosquito and mammalian host interactions with malaria parasites. Cell Microbiol. 3: 371 379.
95. Nirmala, X.,, and A. A. James. 2003. Engineering Plasmodium-refractory phenotypes in mosquitoes. Trends Parasitol. 19: 384 387.
96. Nussenzweig, R. S.,, and F. Zavala. 1997. A malaria vaccine based on a sporozoite antigen. N. Engl. J. Med. 336: 128 130.
97. Nussenzweig, R. S.,, J. P. Vanderberg,, H. Most,, and C. Orton. 1967. Protective immunity produced by injection of X-irradiated sporozoites of Plasmodium berghei. Nature 216: 160 162.
98. Opitz, C.,, and D. Soldati. 2002. ‘The glideosome’: a dynamic complex powering gliding motion and host cell invasion by Toxoplasma gondii. Mol. Microbiol. 45: 597 604.
99. Oren, R.,, S. Takahashi,, C. Doss,, R. Levy,, and S. Levy. 1990. TAPA-1, the target of the antiproliferative antibody, defines a new family of transmembrane proteins. Mol. Cell. Biol. 10: 4007 4015.
100. Persson, C.,, G.A. Oliveira,, A.A. Sultan,, P. Ghanot,, V. Nussenzweig,, and E. Nardin. 2002. Cutting Edge: a new tool to evaluate human pre-erythrocytic malaria vaccines: rodent parasites bearing a hybrid Plasmodium falciparum circumsporozoite protein. J. Immunol. 169: 6681 6685.
101. Pimenta, P. F.,, M. Touray,, and L. Miller. 1994. The journey of malaria sporozoites in the mosquito salivary gland. J. Euk. Microbiol. 41: 608 624.
102. Ponnudurai, T.,, A. H.W. Lensen,, G. J. A. Vangemert,, M. G. Bolmer,, and J. H. E.T. Meuwissen. 1991. Feeding behaviour and sporozoite ejection by infected Anopheles stephensi. Trans. R. Soc. Trop. Med. Hyg. 85: 175 180.
103. Pradel, G.,, and U. Frevert. 2001. Malaria sporozoites actively enter and pass through rat Kupffer cells prior to hepatocyte invasion. Hepatology 33: 1154 1165.
104. Pradel, G.,, S. Garapaty,, and U. Frevert. 2002. Proteoglycans mediate malaria sporozoite targeting to the liver. Mol. Microbiol. 45: 637 651.
105. Pradel, G.,, K. Hayton,, L. Aravind,, L. M. Iyer,, M. S. Abrahamsen,, A. Bonawitz,, C. Mejia,, and T. J. Templeton. A multidomain adhesion protein family expressed in Plasmodium falciparum is essential for transmission to the mosquito. J. Exp. Med. 199: 1533 1544.
106. Preiser, P.,, L. Renia,, N. Singh,, B. Balu,, W. Jarra,, T. Voza,, O. Kaneko,, P. Blair,, M. Torii,, I. Landau,, and J. H. Adams. 2004. Antibodies against MAEBL ligand domains M1 and M2 inhibit sporozoite development in vitro. Infect. Immun. 72: 3604 3608.
107. Roberts, W. L.,, C.A. Speer,, and D. M. Hammond. 1971. Penetration of Eimeria larimerensis sporozoites into cultured cells as observed with the light and electron microscopes. J. Parasitol. 57: 615 625.
108. Robson, K. J. H.,, U. Frevert,, I. Reckmann,, G. Cowan,, J. Beier,, I. G. Scragg,, K. Takehara,, D. H. L. Bishop,, G. Pradel,, R. Sinden,, S. Saccheo,, H. M. Muller,, and A. Crisanti. 1995. Thrombospondin-related adhesive protein (TRAP) of plasmodium falciparum:expression during sporozoite ontogeny and binding to human hepatocytes. EMBO J. 14: 3883 3894.
109. Rosenberg, R. 1992. Ejection of malaria sporozoites by feeding mosquitoes. Trans.R. Soc.Trop. Med. Hyg. 86: 109.
110. Rosenberg, R. 1985. Inability of Plasmodium knowlesi sporozoites to invade Anopheles freeborni salivary glands. Am. J.Trop. Med. Hyg. 34: 687 691.
111. Rossignol, P.A.,, J. M.C. Ribeiro,, and A. Spielman. 1986. Increased biting rate and reduced fertility in sporozoite-infected mosquitoes. Am. J.Trop. Med. Hyg. 35: 277 279.
112. Rossignol, P.A.,, J. M.C. Ribeiro,, and A. Spielman. 1984. Increased intradermal probing time in sporozoite- infected mosquitoes. Am.J.Trop. Med. Hyg. 33: 17 20.
113. Russell, D.G. 1983. Host cell invasion by Apicomplexa: an expression of the parasite’s contractile system. Parasitology 87: 199 209.
114. Russell, D. G.,, and R. E. Sinden. 1981. The role of the cytoskeleton in the motility of coccidian sporozoites. J. Cell Sci. 50: 345 359.
115. Schaudin, F. 1903. Studien ueber krankheitserregende Protozoen. II. Plasmodium vivax (Grassi und Feletti), der Erreger des Tertien-Fiebers beim Menschen. Arb. Kaiserlichen Gesundheitsamte 19: 169 250.
116. Schneider, D.,, and M. Shahabuddin. 2000. Malaria parasite development in a Drosophila model. Science 288: 2376 2379.
117. Schüler, H.,, A.-K. Mueller,, and K. Matuschewski. 2005. Unusual properties of Plasmodium falciparum actin: new insights into microfilament dynamics of apicomplexan parasites. FEBS Lett. 579: 655 660.
118. Shahabuddin, M.,, I. Fields,, P. Bulet,, J. A. Hoffmann,, and L. H. Miller. 1998. Plasmodium gallinaceum: differential killing of some mosquito stages of the parasite by insect defensin. Exp. Parasitol. 89: 103 112.
119. Shaw, M. K.,, and L.G. Tilney. 1999. Induction of an acrosomal process in Toxoplasma gondii: visualization of actin filaments in a protozoan parasite. Proc. Natl. Acad. Sci. USA 96: 9095 9099.
120. Shin, S. C. J.,, J. P. Vanderberg,, and J. A. Terzakis. 1982. Direct infection of hepatocytes by sporozoites of Plasmodium berghei. J. Protozool. 29: 448 454.
121. Sibley, L.D. 2004. Intracellular parasite invasion strategies. Science 304: 248 253.
122. Sidjanski, S.,, and J. P. Vanderberg. 1997. Delayed migration of Plasmodium sporozoites from the mosquito bite site to the blood. Am. J.Trop. Med. Hyg. 57: 426 429.
123. Sidjanski, S. P.,, J. P. Vanderberg,, and P. Sinnis. 1997. Anopheles stephensi salivary glands bear receptors for region I of the circumsporozoite protein of Plasmodium falciparum. Mol. Biochem. Parasitol. 90: 33 41.
124. Silvie, O.,, J.-F. Franetich,, S. Charrin,, M. S. Mueller,, A. Siau,, M. Bodescot,, E. Rubinstein,, L. Hannoun,, Y. Charoenvit,, C. H. Kocken,, A. W. Thomas,, G. J. Van Gemert,, R.W. Sauerwein,, M. J. Blackman,, R. F. Anders,, G. Plüschke,, and D. Mazier. 2004. A role for apical membrane antigen 1 during invasion of hepatocytes by Plasmodium falciparum sporozoites. J. Biol. Chem. 279: 9490 9496.
125. Silvie, O.,, E. Rubinstein,, J. F. Franetich,, M. Prenant,, E. Belnoue,, L. Renia,, L. Hannoun,, W. Eling,, S. Levy,, C. Boucheix,, and D. Mazier. 2003. Hepatocyte CD81 is required for Plasmodium falciparum and Plasmodium yoelii sporozoite infectivity. Nat. Med. 9: 93 96.
126. Sinden, R. E. 1974a. Excystment by sporozoites of malaria parasites. Nature 252: 314 310.
127. Sinden, R. E. 1974b. The sporogonic cycle of Plasmodium yoelii nigeriensis: a scanning electron microscope study. Protistologica 11: 31 39.
128. Sinden, R. E.,, Y. I. H. Alavi,, G. A. Butcher,, J.T. Dessens,, J. D. Raine,, H. E. Trueman,. 2004. Chapter 15. Ookinete cell biology, p. 475 500. In A.P. Waters, and C. J. Janse (ed.), Genomes and the Molecular Cell Biology of Malaria Parasites. Caister Academic Press, Wymondham, United Kingdom.
129. Sinden, R. E.,, and P.C.C. Garnham. 1973. A comparative study of the ultrastructure of Plasmodium sporozoites within the oocyst and salivary glands, with particular reference to the incidence of the micropore. Trans.R. Soc.Trop. Med.Hyg. 67: 631 637.
130. Sinden, R. E.,, and J. E. Smith. 1982. The role of the Kupffer cell in the infection of rodents by sporozoites of Plasmodium: uptake of sporozoites by perfused liver and the establishment of infection in vivo. Acta Trop. 39: 11 27.
131. Singh, N.,, P. Preiser,, L. Renia,, B. Balu,, J. Barnwell,, P. Blair,, W. Jarra,, T. Voza,, I. Landau,, and J. H. Adams. 2004. Conservation and developmental control of alternative splicing in maebl among malaria parasites. J. Mol. Biol. 343: 589 599.
132. Sinnis, P.,, P. Clavijo,, D. Fenyö,, B.T. Chait,, C. Cerami,, and V. Nussenzweig. 1994. Structural and functional properties of region II-plus of the malaria circumsporozoite protein. J.Exp. Med. 180: 297 306.
133. Sinnis, P.,, and E. Nardin. 2002. Sporozoite antigens: biology and immunology of the circumsporozoite protein and thrombospondin-related anonymous protein. Chem. Immunol. 80: 70 96.
134. Smith, J. E.,, and J. Alexander. 1986. Evasion of macrophage microbicidal mechanisms by mature sporozoites of Plasmodium yoelii yoelii. Parasitology 93: 33 38.
135. Smith, J. E.,, and R. E. Sinden,. 1982. On the relationship between Kupffer cell activity and the uptake and infectivity of sporozoites of Plasmodium yoelii nigeriensis, p. 437 444. In D. L. Knook, and E. Wisse (ed.), Sinusoidal Liver Cells. Elsevier Biomedical Press Amsterdam, The Netherlands.
136. Speer, C.A.,, J. P. Dubey,, J.A. Blixt,, and K. Prokop. 1997. Time lapse video microscopy and ultrastructure of penetrating sporozoites, types 1 and 2 parasitophorous vacuoles, and the transformation of sporozoites to tachyzoites of the VEG strain of Toxoplasma gondii. J. Parasitol. 83: 565 574.
137. Srinivasan, P.,, E. G. Abraham,, A. K. Ghosh,, J. Valenzuela,, J. M. Ribeiro,, G. Dimopoulos,, F.C. Kafatos,, J. H. Adams,, H. Fujioka,, and M. Jacobs- Lorena. 2004. Analysis of the Plasmodium and Anopheles transcriptomes during oocyst differentiation. J. Biol. Chem. 279: 5581 5587.
138. Sterling, C. R.,, M. Aikawa,, and J. P. Vanderberg. 1973. Passage of Plasmodium berghei sporozoites through the salivary glands of Anopheles stephensi: an electron microscope study. J. Parasitol. 59: 593 605.
139. Stewart, M. J.,, R. Nawrot,, S. Schulman,, and J. P. Vanderberg. 1986. Plasmodium berghei sporozoite invasion is blocked in vitro by sporozoite-immobilizing antibodies. Infect. Immun. 51: 859 864.
140. Stewart, M. J.,, and J. P. Vanderberg. 1988. Malaria sporozoites leave behind a trail of circumsporozoite protein during gliding motility. J. Protozool. 35: 389 393.
141. Sultan, A. A.,, V. Thathy,, U. Frevert,, K. J. Robson,, A. Crisanti,, V. Nussenzweig,, R. Nussenzweig,, and R. Ménard. 1997. TRAP is necessary for gliding motility and infectivity of Plasmodium sporozoites. Cell 90: 511 522.
142. Templeton, T. J.,, and D. C. Kaslow. 1997. Cloning and cross-species comparison of the thrombospondin- related anonymous protein (TRAP) gene from Plasmodium knowlesi, Plasmodium vivax and Plasmodium gallinaceum. Mol. Biochem. Parasitol. 84: 13 24.
143. Tewari, R.,, R. Spaccapelo,, F. Bistoni,, A.A. Holder,, and A. Crisanti. 2002. Function of region I and II adhesive motifs of Plasmodium falciparum circumsporozoite protein in sporozoite motility and infectivity. J. Biol. Chem. 277: 47613 47618.
144. Thathy, V.,, H. Fujioka,, S. Gantt R. Nussenzweig, V. Nussenzweig, and R. Ménard. 2002. Levels of circumsporozoite protein in the Plasmodium oocyst determine sporozoite morphology. EMBO J. 21: 1586 1596.
145. Touray, M. G.,, A. Warburg,, A. Laughinghouse,, A. U. Krettli,, and L. H. Miller. 1992. Developmentally regulated infectivity of malaria sporozoites for mosquito salivary glands and the vertebrate host. J. Exp. Med. 175: 1607 1612.
146. Triglia, T.,, J. Healer,, S. R. Cruana,, A. N. Hodder,, R. F. Anders,, B. S. Crabb,, and A. F. Cowman. 2000. Apical membrane antigen 1 plays a central role in erythrocyte invasion by Plasmodium species. Mol. Microbiol. 38: 706 718.
147. Trueman, H. E.,, J. D. Raine,, L. Florens,, J. T. Dessens,, J. Mendoza,, J. Johnson C,. C. Waller,, I. Delrieu,, A. A. Holder,, J. Langhorne,, D. J. Carucci,, J. R. Yates III,, and R. E. Sinden. 2004. Functional characterisation of an LCCL/ lectin-domain containing protein family in Plasmodium berghei. J. Parasitol. 90: 1062 1071.
148. Vanderberg, J. P. 1975. Development of infectivity by the Plasmodium berghei sporozoite. J. Parasitol. 61: 43 50.
149. Vanderberg, J. P. 1974. Studies on the motility of Plasmodium sporozoites. J. Protozool. 21: 527 537.
150. Vanderberg, J. P. 1977. Plasmodium berghei: quantitation of sporozoites injected by mosquitoes feeding on a rodent host. Exp. Parasitol. 42: 169 181.
151. Vanderberg, J. P. 1990. Plasmodium sporozoite interactions with macrophages in vitro: a videomicroscopic analysis. J. Protozool. 37: 528 536.
152. Vanderberg, J. P.,, R. S. Nussenzweig,, Y. Sanabria,, R. Nawrot,, and H. Most. 1972. Stage specificity of anti-sporozoite antibodies in rodent malaria and its relationship to protective immunity. Proc. Helminthol. Soc.Washington 39: 514 525.
153. Vanderberg, J. P.,, and U. Frevert. 2004. Intravital microscopy demonstrating antibody-mediated immobilisation of Plasmodium berghei sporozoites injected into skin by mosquitoes. Int. J. Parasitol. 34: 991 996.
154. Vreden, S.G. S.,, R.W. Sauerwein,, J. P. Verhave,, N. Vanrooijen,, J. H. E. T. Meuwissen,, and M. F. Vandenbroek. 1993. Kupffer cell elimination enhances development of liver schizonts of Plasmodium berghei in rats. Infect. Immun. 61: 1936 1939.
155. Warburg, A.,, M. Touray,, A. U. Krettli,, and L. H. Miller. 1992. Plasmodium gallinaceum—antibodies to circumsporozoite protein prevent sporozoites from invading the salivary glands of Aedes aegypti. Exp. Parasitol. 75: 303 307.
156. Wengelnik, K.,, R. Spaccapelo,, S. Naitza,, K. J. H. Robson,, C. J. Janse,, F. Bistoni,, A. P. Waters,, and A. Crisanti. 1999. The A-domain and the thrombospondin-related motif of Plasmodium falciparum TRAP are implicated in the invasion process of mosquito salivary glands. EMBO J. 18: 5195 5204.
157. Ying, P.,, M. Shakibaei,, M. S. Patankar,, P. Clavijo,, R. C. Beavis,, G. F. Clark,, and U. Frevert. 1997. The malaria circumsporozoite protein: interaction of the conserved regions I and II-plus with heparin-like oligosaccharides in heparan sulfate. Exp. Parasitol. 85: 168 182.
158. Yoshida, N.,, P. Potocnjak,, V. Nussenzweig,, and R. S. Nussenzweig. 1981. Biosynthesis of Pb44, the protective antigen of sporozoites of Plasmodium berghei. J. Exp. Med. 154: 1225 1236.
159. Yuda, M., andT. Ishino. 2004. Liver invasion by malarial parasites—how do malarial parasites break through the host barrier? Cell. Microbiol. 6: 1119 1125.


Generic image for table

Characteristics of some proteins expressed in sporozoites

Note that the table is a nonexhaustive list of sporozoite proteins. Predicted molecular weights are shown in brackets and may vary between and other species. Predicted primary structures are not to scale; stripes indicate repeat regions, grey and black boxes indicate putative cleavable signal peptides and transmembrane spans, respectively. Cellular location is typically assigned by fluorescence microscopy and stage specificity by Western and/or reverse transcription-PCR. Putative function is based on reverse genetic data (italics) or recombinant protein expression and/or antibody inhibition studies (Roman). References are listed for sporozoite expression studies only.Abbreviations: I to III,AMA-1 domains; 6-Cys, six-cysteine motif;A-domain, von Willebrand factor A domain;AMA- 1, apical membrane antigen 1;ATSR, altered thrombospondin repeat;CSP, circumsporozoite protein;CTD,TRAP family cytoplasmic tail domain; Cys, cysteine-rich domain; GPI, gycosylphospatidylinositol anchor; IMC1a, inner membrane complex protein 1a;LCAT, lecithincholesterol acyltransferase;LCCL, factor C; Coch-5b2, Lgl1 domain; LH2, lipoxygenase domain; M1 and M2, MAEBL ligand domains; MACPF, membrane attack complex/perforin; MAEBL, apical membrane antigen/erythrocyte binding-like protein; MCP1, merozoite- capping protein 1; P52, six-cysteine family protein of 52 kDa; PL, phospholipase; PLP1, perforin-like protein 1; PR, peroxiredoxin; PTX, pentraxin domain; RI, region I; RIII, region III; SPATR, secreted protein with altered thrombospondin repeat; SPECT, sporozoite microneme protein essential for cell traversal; SR, scavenger receptor-like protein; SRCR, scavenger receptor cysteine rich; STARP, sporozoite threonine and asparagine-rich protein;TRAP, thrombospondin-related anonymous protein;TSR, thrombospondin type I repeat; UIS3 and UIS4, upregulated in infective sporozoites proteins 3 and 4.

Citation: Sinden R, Matuschewski K. 2005. The Sporozoite, p 169-190. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error