Chapter 12 : Biocides and Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biocides and Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap12-2.gif


Now the antibiotic resistance is escalating to alarming proportions and the discovery of new antibiotics is waning, a greater reliance on infection prevention has evolved-from fear as well as necessity. Among personal hygiene products, the agents triclocarban and triclosan are the most common biocide components. A major group of commonly used residue producing biocides consists of the quaternary ammonium compounds (QACs) that are also known as cationic detergents. The pathogens and O157 could readily adapt to stable biocide tolerance (30 or more days), and very high triclosan tolerance could be attained in . Importantly, resistance to ciprofloxacin was expressed at clinically significant levels. The reverse phenomenon has also been reported (i.e., strains adapted to antibiotic resistance can demonstrate tolerance to biocides). QACs are widely used as disinfectants in the food industry, and there is concern over the increasing incidence of biocide resistance in food-associated bacteria. The biocide controversy has sparked an increased interest in the undertaking of prospective in situ or microcosm-based studies that would help shed greater insight into the impacts of biocide application as practiced in the community environment. Recent surveys of large numbers of species isolated from a variety of environments have revealed a range in biocide susceptibility, with small frequencies of outliers that exhibit significantly elevated tolerance.

Citation: Marshall B, McMurry L. 2005. Biocides and Resistance, p 174-190. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adolfsson-Erici, M.,, M. Pettersson,, J. Parkkonen,, and J. Sturve. 2002. Triclosan, a commonly used bactericide found in human milk and in the aquatic environment in Sweden. Chemosphere 46: 1485 1489.
2. Aiello, A. E.,, and E. L. Larson. 2002. What is the evidence for a causal link between hygiene and infections? Lancet Infect. Dis. 2: 103 110.
3. Aiello, A. E.,, B. Marshall,, S. B. Levy,, P. Della-Latta,, and E. Larson. Submitted for publication.
4. Akimitsu, N.,, H. Hamamoto,, R. Inoue,, M. Shoji,, A. Akamine,, K. Takemori,, N. Hamasaki,, and K. Sekimizu. 1999. Increase in resistance of methicillin-resistant Staphylococcus aureus to beta-lactams caused by mutations conferring resistance to benzalkonium chloride, a disinfectant widely used in hospitals. Antimicrob. Agents Chemother. 43: 3042 3043.
5. Al-Doori, Z.,, D. Morrison,, G. Edwards,, and C. Gemmell. 2003. Susceptibility of MRSA to triclosan. J. Antimicrob. Chemother. 51: 185 186.
6. al-Masaudi, S. B.,, M. J. Day,, and A. D. Russell. 1991. Effect of some antibiotics and biocides on plasmid transfer in Staphylococcus aureus. J. Appl. Bacteriol. 71: 239 243.
7.Anon. 2001. Disinfectants in Consumer Products Publication #2001/05E. Health Council of the Netherlands.
8.Anon. 1999. Four pediatric deaths from community-acquired methicillin-resistant Staphylococcus aureus: Minnesota and North Dakota 1997-1999. Morb. Mortal. Wkly. Rep. 48: 707 710.
9. Baldock, C.,, J. B. Rafferty,, S. E. Sedelnikova,, P. J. Baker,, A. R. Stuitje,, A. R. Slabas,, T. R. Hawkes,, and D. W. Rice. 1996. A mechanism of drug action revealed by structural studies of enoyl reductase. Science 274: 2107 2110.
10. Bamber, A. I.,, and T. J. Neal. 1999. An assessment of triclosan susceptibility in methicillin-resistant and methicillinsensitive Staphylococcus aureus. J. Hosp. Infect. 41: 107 109.
11. Behr, H.,, M. E. Reverdy,, C. Mabilat,, J. Freney,, and J. Fleurette. 1994. [Relationship between the level of minimal inhibitory concentrations of five antiseptics and the presence of qacA gene in Staphylococcus aureus]. Pathol. Biol. (Paris) 42: 438 444.
12. Bergler, H.,, P. Wallner,, A. Ebeling,, B. Leitinger,, S. Fuchsbichler,, H. Aschauer,, G. Kollenz,, G. Hogenauer,, and F. Turnowsky. 1994. Protein EnvM is the NADH-dependent enoyl-ACP reductase (FabI) of Escherichia coli. J. Biol. Chem. 269: 5493 5496.
13. Beumer, R.,, S. Bloomfield,, M. Exner,, G. Fara,, K. Nath,, and E. Scott 2003, posting date. Biocide usage and antimicrobial resistance in home settings: an update. International Scientific Forum on Home Hygiene (IFH). [Online.]
14. Beumer, R.,, S. Bloomfield,, M. Exner,, G. Fara,, K. Nath,, and E. Scott 2000, posting date. Microbial Resistance and Biocides. International Scientific Forum onHomeHygiene (IFH). [Online.]
15. Bhargava, H. N.,, and P. A. Leonard. 1996. Triclosan: applications and safety. Am. J. Infect. Control 24: 209 218.
16. Bjorland, J.,, T. Steinum,, M. Sunde,, S. Waage,, and E. Heir. 2003. Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob. Agents Chemother. 47: 3046 3052.
17. Bjorland, J.,, M. Sunde,, and S. Waage. 2001. Plasmid-borne smr gene causes resistance to quaternary ammonium compounds in bovine Staphylococcus aureus. J. Clin. Microbiol. 39: 3999 4004.
18. Bloomfield, S. F. 2002. Significance of biocide usage and antimicrobial resistance in domiciliary environments. J. Appl. Microbiol. 92: 144S 157S.
19. Braoudaki, M.,, and A. C. Hilton. 2004. Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J. Clin. Microbiol. 42: 73 78.
20. Braoudaki, M.,, and A. C. Hilton. 2004. Low level of crossresistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol. Lett. 235: 305 309.
21. Brenwald, N. P.,, and A. P. Fraise. 2003. Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA). J. Hosp. Infect. 55: 141 144.
22. Brooun, A.,, S. Liu,, and K. Lewis. 2000. A dose-response study of antibiotic resistance in Pseudomonas aeruginosa biofilms. J. Antimicrob. Chemother. 44: 640 646.
23. Bryan, J. L.,, J. Cohran,, and E. L. Larson,. 1994. Handwashing: a ritual revisited., p. 163 178. In W. A. Rutala (ed.), Chemical Germicides in Healthcare. Association for Professionals in Infection Control and Epidemiology, Inc., Washington, D.C.
24. Cantrell, F. 2001. The effect of prolonged exposure to triclosan on staphylococci. Presented at the 101st Annual Meeting of the American Society for Microbiology.
25. Chuanchuen, R.,, R. R. Karkhoff-Schweizer,, and H. P. Schweizer. 2003. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am. J. Infect. Control 31: 124 127.
26. Cogan, T. A.,, J. Slader,, S. F. Bloomfield,, and T. J. Humphrey. 2002. Achieving hygiene in the domestic kitchen: the effectiveness of commonly used cleaning procedures. J. Appl. Microbiol. 92: 885 892.
27. Cole, E. C.,, R. M. Addison,, J. R. Rubino,, K. E. Leese,, P. D. Dulaney,, M. S. Newell,, J. Wilkins,, D. J. Gaber,, T. Wineinger,, and D. A. Criger. 2003. Investigation of antibiotic and antibacterial agent cross-resistance in target bacteria from homes of antibacterial product users and nonusers. J. Appl. Microbiol. 95: 664 676.
28. Cookson, B. D.,, H. Farrelly,, P. Stapleton,, R. P. Garvey,, and M. R. Price. 1991. Transferable resistance to triclosan in MRSA. Lancet 337: 1548 1549.
29. Cullinan, M. P.,, S. M. Hamlet,, B. Westerman,, J. E. Palmer,, M. J. Faddy,, and J. G. Seymour. 2003. Acquisition and loss of Porphyromonas gingivalis, Actinobacillus actinomycetemcomitans and Prevotella intermedia over a 5-year period: effect of a triclosan/copolymer dentifrice. J. Clin. Periodontol. 30: 532 541.
30. Favero, M. S. 2002. Products containing biocides: perceptions and realities. J. Appl. Microbiol. 92 ( Suppl.): 72S 77S.
31. Fraise, A. P. 2002. Biocide abuse and antimicrobial resistance—a cause for concern? J. Antimicrob. Chemother. 49: 11 12.
32. Fraise, A. P. 2002. Susceptibility of antibiotic-resistant cocci to biocides. J. Appl. Microbiol. 31: 158S 162S.
33. Furia, T. E.,, and A. G. Schenkel. 1968. New Broad Spectrum Bacteriostat. Soap and Chemical Specialties 44: 47 50, 116 122.
34. Gandhi, I.,, A. D. Sawant,, L. A. Wilson,, and D. G. Ahearn. 1993. Adaptation and growth of Serratia marcescens in contact lens disinfectant solutions containing chlorhexidine gluconate. Appl. Environ. Microbiol. 59: 183 188.
35. George, A. M.,, and S. B. Levy. 1983. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155: 531 540.
36. Gerba, C. P.,, and P. Rusin,. 2001. Relationship between the use of antiseptics/disinfectants and the development of antimicrobial resistance, p. 187 194. In W. A. Rutala (ed.), Disinfection, Sterilization and Antisepsis: Principles and Practices in Healthcare Facilities. Association for Professionals in Infection Control and Epidemiology, Washington, D.C.
37. Gilbert, P.,, A. J. McBain,, and S. F. Bloomfield. 2002. Biocide abuse and antimicrobial resistance: being clear about the issues. J. Antimicrob. Chemother. 50: 137 139; author reply 139-40.
38. Goldstein, F. W.,, C. Soria,, A. Ly,, and M. D. Kitzis. 2004. Very high prevalence of resistance to tricolsan and other antiseptics among French glycopeptide-intermediate S. aureus (GISA). Presented at the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, Washington, D.C.
39. Haines, K. A.,, D. A. Klein,, G. McDonnell,, and D. Pretzer. 1997. Could antibiotic-resistant pathogens be cross-resistant to hard-surface disinfectants? Am. J. Infect. Control 25: 439 441.
40. Hay, A. G.,, P. M. Dees,, and G. S. Sayler. 2001. Growth of a bacterial consortium on triclosan. FEMS Microbiol. Ecol. 36: 105 112.
41. Heath, R. J.,, J. Li,, G. E. Roland,, and C. O. Rock. 2000. Inhibition of the Staphylococcus aureus NADPH-dependent enoyl-acyl carrier protein reductase by triclosan and hexachlorophene. J. Biol. Chem. 275: 4654 4659.
42. Heath, R. J.,, N. Su,, C. K. Murphy,, and C. O. Rock. 2000. The enoyl-[acyl-carrier-protein] reductases FabI and FabL from Bacillus subtilis. J. Biol. Chem. 275: 40128 40133.
43. Heath, R. J.,, Y. T. Yu,, M. A. Shapiro,, E. Olson,, and C. O. Rock. 1998. Broad spectrum antimicrobial biocides target the FabI component of fatty acid synthesis. J. Biol. Chem. 273: 30316 30320.
44. Heir, E.,, G. Sundheim,, and A. L. Holck. 1999. Identification and characterization of quaternary ammonium compound resistant staphylococci from the food industry. Int J. Food Microbiol. 48: 211 219.
45. Heir, E.,, G. Sundheim,, and A. L. Holck. 1999. The qacG gene on plasmid pST94 confers resistance to quaternary ammonium compounds in staphylococci isolated from the food industry. J. Appl. Microbiol. 86: 378 388.
46. Heir, E.,, G. Sundheim,, and A. L. Holck. 1995. Resistance to quaternary ammonium compounds in Staphylococcus spp. isolated from the food industry and nucleotide sequence of the resistance plasmid pST827. J. Appl. Bacteriol. 79: 149 156.
47. Heir, E.,, G. Sundheim,, and A. L. Holck. 1998. The Staphylococcus qacH gene product: a new member of the SMR family encoding multidrug resistance. FEMS Microbiol. Lett. 163: 49 56.
48. Hoang, T. T.,, and H. P. Schweizer. 1999. Characterization of Pseudomonas aeruginosa enoyl-acyl carrier protein reductase (FabI): a target for the antimicrobial triclosan and its role in acylated homoserine lactone synthesis. J. Bacteriol. 181: 5489 5497.
49. Hovander, L.,, T. Malmberg,, M. Athanasiadou,, I. Athanassiadis,, S. Rahm,, A. Bergman,, and E. K. Wehler. 2002. Identification of hydroxylated PCB metabolites and other phenolic halogenated pollutants in human blood plasma. Arch. Environ. Contam. Toxicol. 42: 105 117.
50. Hundt, K.,, D. Martin,, E. Hammer,, U. Jonas,, M. K. Kindermann,, and F. Schauer. 2000. Transformation of triclosan by Trametes versicolor and Pycnoporus cinnabarinus. Appl. Environ. Microbiol. 66: 4157 4160.
51. Ishikawa, S.,, F. Matsumura,, F. Yoshizako,, and T. Tsuchido. 2002. Characterization of a cationic surfactant-resistant mutant isolated spontaneously from Escherichia coli. J. Appl. Microbiol. 92: 261 268.
52. Jones, R. D. 1999. Bacterial resistance and topical antimicrobial wash products. Am. J. Infect. Control 27: 351 363.
53. Jones, R. D.,, H. B. Jampani,, J. L. Newman,, and A. S. Lee. 2000. Triclosan: a review of effectiveness and safety in health care settings. Am. J. Infect. Control 28: 184 196.
54. Josephson, K. L.,, J. R. Rubino,, and I. L. Pepper. 1997. Characterization and quantification of bacterial pathogens and indicator organisms in household kitchens with and without the use of a disinfectant cleaner. J. Appl. Microbiol. 83: 737 750.
55. Joynson, J. A.,, B. Forbes,, and R. J. Lambert. 2002. Adaptive resistance to benzalkonium chloride, amikacin and tobramycin: the effect on susceptibility to other antimicrobials. J. Appl. Microbiol. 93: 96 107.
56. Junker, L. M.,, and A. G. Hay. 2004. Effects of triclosan incorporation into ABS plastic on biofilm communities. J. Antimicrob. Chemother. 53: 989 996.
57. Kalyon, B. D.,, and U. Olgun. 2001. Antibacterial efficacy of polymers containing triclosan and other antimicrobial additives: REPLY. Amer. J. Infect. Cont. 29: 429 430.
58. Kuo, M. R.,, H. R. Morbidoni,, D. Alland,, S. F. Sneddon,, B. B. Gourlie,, M. M. Staveski,, M. Leonard,, J. S. Gregory,, A. D. Janjigian,, C. Yee,, J. M. Musser,, B. Kreiswirth,, H. Iwamoto,, R. Perozzo,, W. R. Jacobs, Jr.,, J. C. Sacchettini,, and D. A. Fidock. 2003. Targeting tuberculosis and malaria through inhibition of enoyl reductase: compound activity and structural data. J. Biol. Chem. 278: 20851 20859.
59. Langsrud, S.,, G. Sundheim,, and R. Borgmann-Strahsen. 2003. Intrinsic and acquired resistance to quaternary ammonium compounds in food-related Pseudomonas spp. J. Appl. Microbiol. 95: 874 882.
60. Langsrud, S.,, G. Sundheim,, and A. L. Holck. 2004. Crossresistance to antibiotics of Escherichia coli adapted to benzalkonium chloride or exposed to stress-inducers. J. Appl. Microbiol. 96: 201 208.
61. Larson, E.,, A. Aiello,, L. V. Lee,, P. Della-Latta,, C. Gomez- Duarte,, and S. Lin. 2003. Short- and long-term effects of handwashing with antimicrobial or plain soap in the community. J. Commun. Hlth. 28: 139 150.
62. Larson, E. L.,, S. X. Lin,, C. Gomez-Pichardo,, and P. Della- Latta. 2004. Effect of antibacterial home cleaning and handwashing products on infectious disease symptoms: a randomized, double-blind trial. Ann. Intern. Med. 140: 321 329.
63. Leelaporn, A.,, I. T. Paulsen,, J. M. Tennent,, T. G. Littlejohn,, and R. A. Skurray. 1994. Multidrug resistance to antiseptics and disinfectants in coagulase-negative staphylococci. J. Med. Microbiol. 40: 214 220.
64. Levy, C. W.,, A. Roujeinikova,, S. Sedelnikova,, P. J. Baker,, A. R. Stuitje,, A. R. Slabas,, D. W. Rice,, and J. B. Rafferty. 1999. Molecular basis of triclosan activity. Nature 398: 383 384.
65. Levy, S. B. 2002. Active efflux, a common mechanism for biocide and antibiotic resistance. J. Appl. Microbiol. 92: 65S 71S.
66. Levy, S. B. 2001. Antibacterial household products: cause for concern. Emerg. Infect. Dis. 7: 512 515.
67. Levy, S. B. 2000. Antibiotic and antiseptic resistance: impact on public health. Pediatr. Infect. Dis. J. 19: S120 S122.
68. Levy, S. B. 2002. The Antibiotic Paradox: How the Misuse of Antibiotics Destroys Their Curative Powers. Perseus Publishing, Cambridge, Mass.
69. Levy, S. B. 2002. Antimicrobial consumer products: where’s the benefit? What’s the risk? Arch. Dermatol. 138: 1087 1088.
70. Littlejohn, T. G.,, I. T. Paulsen,, M. T. Gillespie,, J. M. Tennent,, M. Midgley,, I. G. Jones,, A. S. Purewal,, and R. A. Skurray. 1992. Substrate specificity and energetics of antiseptic and disinfectant resistance in Staphylococcus aureus. FEMS Microbiol. Lett. 74: 259 265.
71. Loughlin, M. F.,, M. V. Jones,, and P. A. Lambert. 2002. Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J. Antimicrob. Chemother. 49: 631 639.
72. Luby, S. P.,, M. Agboatwalla,, J. Painter,, A. Altaf,, W. L. Billhimer,, and R. M. Hoekstra. 2004. Effect of intensive handwashing promotion on childhood diarrhea in high-risk communities in Pakistan: a randomized controlled trial. J. Am. Med. Assoc. 291: 2547 2554.
73. Marshall, B. M.,, E. Robleto,, T. Dumont,, W. Billhimer,, K. Wiandt,, B. Keswick,, and S. B. Levy. 2003. The frequency of bacteria and antibiotic resistance in homes that use and do not use surface antibacterial agents. Presented at the Annual 103rd Meeting of the American Society for Microbiology, Washington, D.C.
74. McBain, A. J.,, R. G. Bartolo,, C. E. Catrenich,, D. Charbonneau,, R. G. Ledder,, and P. Gilbert. 2003. Effects of a chlorhexidine gluconate-containing mouthwash on the vitality and antimicrobial susceptibility of in vitro oral bacterial ecosystems. Appl. Environ. Microbiol. 69: 4770 4776.
75. McBain, A. J.,, R. G. Bartolo,, C. E. Catrenich,, D. Charbonneau,, R. G. Ledder,, and P. Gilbert. 2003. Effects of triclosancontaining rinse on the dynamics and antimicrobial susceptibility of in vitro plaque ecosystems. Antimicrob. Agents Chemother. 47: 3531 3538.
76. McBain, A. J.,, R. G. Bartolo,, C. E. Catrenich,, D. Charbonneau,, R. G. Ledder,, B. B. Price,, and P. Gilbert. 2003. Exposure of sink drain microcosms to triclosan: population dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 69: 5433 5422.
77. McBain, A. J.,, R. G. Ledder,, L. E. Moore,, C. E. Catrenich,, and P. Gilbert. 2004. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial suseptibility. Appl. Environ. Microbiol. 70: 3449 3456.
78. McBain, A. J.,, R. G. Ledder,, P. Sreenivasan,, and P. Gilbert. 2004. Selection for high-level resistance by chronic triclosan exposure is not universal. J. Antimicrob. Chemother. 53: 772 777.
79. McDonnell, G.,, and A. D. Russell. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12: 147 179.
80. McMurry, L. M.,, P. F. McDermott,, and S. B. Levy. 1999. Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob. Agents. Chemother. 43: 711 713.
81. McMurry, L. M.,, M. Oethinger,, and S. B. Levy. 1998. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett. 166: 305 309.
82. McMurry, L. M.,, M. Oethinger,, and S. B. Levy. 1998. Triclosan targets lipid synthesis. Nature 394: 531 532.
83. Meade, M. J.,, R. L. Waddell,, and T. M. Callahan. 2001. Soil bacteria Pseudomonas putida and Alcaligenes xylosoxidans subsp. denitrificans inactivate triclosan in liquid and solid substrates. FEMS Microbiol. Lett. 204: 45 48.
84. Miyazaki, T.,, T. Yamagishi,, and M. Matsumoto. 1984. Residues of 4-chloro-1-(2,4-dichlorophenoxy)-2 methoxy-benzene (triclosan methyl) in aquatic biota. Contam. Toxicol. 32: 227 232.
85. Moken, M. C.,, L. M. McMurry,, and S. B. Levy. 1997. Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob. Agents Chemother. 41: 2770 2772.
86. Nishihara, T.,, T. Okamoto,, and N. Nishiyama. 2000. Biodegradation of didecyldimethylammonium chloride by Pseudomonas fluorescens TN4 isolated from activated sludge. J. Appl. Microbiol. 88: 641 647.
87. Nishiyama, N.,, Y. Toshima,, and Y. Ikeda. 1995. Biodegradation of alkyltrimethylammonium salts in activated sludge. Chemosphere 30: 593 603.
88. Noguchi, N.,, M. Hase,, M. Kitta,, M. Sasatsu,, K. Deguchi,, and M. Kono. 1999. Antiseptic susceptibility and distribution of antiseptic-resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett. 172: 247 253.
89. Noguchi, N.,, M. Tamura,, K. Narui,, K. Wakasugi,, and M. Sasatsu. 2002. Frequency and genetic characterization of multidrug- resistant mutants of Staphylococcus aureus after selection with individual antiseptics and fluoroquinolones. Biolog. Pharmaceut. Bull. 25: 1129 1132.
90. Parikh, S. L.,, G. Xiao,, and P. J. Tonge. 2000. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 39: 7645 7650.
91. Patrauchan, M. A.,, and P. J. Oriel. 2003. Degradation of benzyldimethylalkylammonium chloride by Aeromonas hydrophila sp. J. Appl. Microbiol. 94: 266 272.
92. Paulsen, I. T.,, T. G. Littlejohn,, P. Radstrom,, L. Sundstrom,, O. Skold,, G. Swedberg,, and R. A. Skurray. 1993. The 3′ conserved segment of integrons contains a gene associated with multidrug resistance to antiseptics and disinfectants. Antimicrob. Agents Chemother. 37: 761 768.
93. Pearce, H.,, S. Messager,, and J. Y. Maillard. 1999. Effect of biocides commonly used in the hospital environment on the transfer of antibiotic-resistance genes in Staphylococcus aureus. J. Hosp. Infect. 43: 101 107.
94. Price, C. T.,, V. K. Singh,, R. K. Jayaswal,, B. J. Wilkinson,, and J. E. Gustafson. 2002. Pine oil cleaner-resistant Staphylococcus aureus: reduced susceptibility to vancomycin and oxacillin and involvement of SigB. Appl. Environ. Microbiol. 68: 5417 5421.
95. Randall, L. P.,, S. W. Cooles,, L. J. Piddock,, and M. J. Woodward. 2004. Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. J. Antimicrob. Chemother. 54: 621 627.
96. Randall, L. P.,, and M. J. Woodward. 2002. The multiple antibiotic resistance (mar) locus and its significance. Res. Vet. Sci. 72: 87 93.
97. Regos, J.,, and H. R. Hitz. 1974. Investigations on the mode of action of Triclosan, a broad spectrum antimicrobial agent. Zbl. Bakt. Hyg. 226: 390 401.
98. Reynolds, H. S.,, P. K. Sreenivasan,, R. Subramanyam,, V. I. Haraszthy,, D. Cummins,, and J. J. Zambon. 2003. Media and method-dependent variations in minimal inhibitory concentrations of triclosan and 2-t-butyl-5-(4-t-butylphenyl)-phenol. Presented at the Annual Meeting of the American Society for Microbiology, Washington D.C.
99. Russell, A. D. 2002. Introduction of biocides into clinical practice and the impact on antibiotic-resistant bacteria. Symp. Ser. Soc. Appl. Microbiol. 31: 121S 135S.
100. Russell, A. D.,, U. Tattawasart,, J. Y. Maillard,, and J. R. Furr. 1998. Possible link between bacterial resistance and use of antibiotics and biocides. Antimicrob. Agents Chemother. 42: 2151.
101. Sanchez, P.,, E. Moreno,, and J. L. Martinez. 2005. The biocide triclosan selects Stenotrophomonas maltophilia mutants that overproduce the SmeDEF multidrug efflux pump. Antimicrob. Agents Chemother. 49: 781 782.
102. Saunders, K. A.,, J. Greenman,, and C. McKenzie. 2000. Ecological effects of triclosan and triclosan monophosphate on defined mixed cultures of oral species grown in continuous culture. J. Antimicrob. Chemother. 45: 447 452.
103. Schweizer, H. P. 1998. Intrinsic resistance to inhibitors of fatty acid biosynthesis in Pseudomonas aeruginosa is due to efflux: application of a novel technique for generation of unmarked chromosomal mutations for the study of efflux systems. Antimicrob. Agents Chemother. 42: 394 398.
104. Sharma, S.,, T. N. Ramya,, A. Surolia,, and N. Surolia. 2003. Triclosan as a systemic antibacterial agent in a mouse model of acute bacterial challenge. Antimicrob. Agents Chemother. 47: 3859 3866.
105. Shimizu, M.,, K. Okuzumi,, A. Yoneyama,, T. Kunisada,, M. Araake,, H. Ogawa,, and S. Kimura. 2002. In vitro antiseptic susceptibility of clinical isolates from nosocomial infections. Dermatol. 204( Suppl. 1): 21 27.
106. Sidhu, M. S.,, E. Heir,, T. Leegaard,, K. Wiger,, and A. Holck. 2002. Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 46: 2797 2803.
107. Sidhu, M. S.,, E. Heir,, H. Sorum,, and A. Holck. 2001. Genetic linkage between resistance to quaternary ammonium compounds and beta-lactam antibiotics in food-related Staphylococcus spp. Microb. Drug Resist. 7: 363 71.
108. Sidhu, M. S.,, S. Langsrud,, and A. Holck. 2001. Disinfectant and antibiotic resistance of lactic acid bacteria isolated from the food industry. Microb. Drug. Resist. 7: 73 83.
109. Sidhu, M. S.,, H. Sorum,, and A. Holck. 2002. Resistance to quaternary ammonium compounds in food-related bacteria. Microb. Drug Resist. 8: 393 399.
110. Singer, H.,, S. Muller,, C. Tixier,, and L. Pillonel. 2002. Triclosan: occurrence and fate of a widely used biocide in the aquatic environment: field measurements in wastewater treatment plants, surface waters, and lake sediments. Environ. Sci. Technol. 36: 4998 5004.
111. Sivaji, Y.,, and A. Mandal. 1987. Antibiotic resistance & serotypic variations in Escherichia coli induced by disinfectants. Indian J. Med. Res. 86: 165 172.
112. Sreenivasan, P.,, and A. Gaffar. 2002. Antiplaque biocides and bacterial resistance: a review. J. Clin. Periodon. 29: 965 974.
113. Suller, M.T.,, and A. D. Russell. 1999. Antibiotic and biocide resistance in methicillin-resistant Staphylococcus aureus and vancomycin- resistant enterococcus. J. Hosp. Infect. 43: 281 291.
114. Suller, M. T.,, and A. D. Russell. 2000. Triclosan and antibiotic resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 46: 11 8.
115. Sullivan, A.,, B. Wretlind,, and C. E. Nord. 2003. Will triclosan in toothpaste select for resistant oral streptococci? Clin. Microbiol. Infect. 9: 306 309.
116. Surolia, N.,, and A. Surolia. 2001. Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat. Med. 7: 167 173.
117. Sutton, L.,, and G. A. Jacoby. 1978. Plasmid-determined resistance to hexachlorophene in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 13: 634 636.
118. Tabata, A.,, H. Nagamune,, T. Maeda,, K. Murakami,, Y. Miyake,, and H. Kourai. 2003. Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob. Agents Chemother. 47: 2093 2099.
119. Tan, L.,, N. H. Nielsen,, D. C. Young,, Z. Trizna, and A. M. A. Council on Scientific Affairs. 2002. Use of antimicrobial agents in consumer products. Arch. Dermatol. 138: 1082 1086.
120. Tennent, J. M.,, B. R. Lyon,, M. T. Gillespie,, J. W. May,, and R. A. Skurray. 1985. Cloning and expression of Staphylococcus aureus plasmid-mediated quaternary ammonium resistance in Escherichia coli. Antimicrob. Agents Chemother. 27: 79 83.
121. Villalain, J.,, C. R. Mateo,, F. J. Aranda,, S. Shapiro,, and V. Micol. 2001. Membranotropic effects of the antibacterial agent Triclosan. Arch. Biochem. Biophys. 390: 128 136.
122. Vischer, W. A.,, and J. Regos. 1974. Antimicrobial spectrum of Triclosan, a broad-spectrum antimicrobial agent for topical application. Zentralbl. Bakteriol. 226: 376 389.
123. Walsh, S. E.,, J. Y. Maillard,, A. D. Russell,, C. E. Catrenich,, D. L. Charbonneau,, and R. G. Bartolo. 2003. Development of bacterial resistance to several biocides and effects on antibiotic susceptibility. J. Hosp. Infect. 55: 98 107.
124. Webber, M. A.,, and L. J. Piddock. 2003. The importance of efflux pumps in bacterial antibiotic resistance. J. Antimicrob. Chemother. 51: 9 11.
125. White, D. G.,, J. D. Goldman,, B. Demple,, and S. B. Levy. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179: 6122 6126.


Generic image for table
Table 1

Biocides and their mechanisms of action

Compiled from references , and .

Citation: Marshall B, McMurry L. 2005. Biocides and Resistance, p 174-190. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch12
Generic image for table
Table 2

In vitro biocide adaptation/mutation and cross-resistance to unrelated biocides and antibiotics

Partially or fully resistant to one or more of the stated agents.

QAC, quaternary ammonium compounds.

MRSA, methicillin-resistant

Citation: Marshall B, McMurry L. 2005. Biocides and Resistance, p 174-190. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error