Chapter 22 : Enterococcus

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Enterococcus, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap22-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap22-2.gif


is the species most frequently isolated in humans, accounting for 80 to 90% of enterococcal isolates, whereas represents between 5 and 10% of clinical isolates. Nearly 15 other enterococcal species may be occasionally associated with infections, including , , , , and . The lower MIC breakpoint of vancomycin (4 mg/liter) divides the bacterial population, with certain isolates being categorized as susceptible. In and , two types of mechanisms account for increased resistance to the penicillins. Enterococci can acquire resistance to aminoglycosides by three mechanisms: modification of the ribosomal target, alteration of antibiotic transport, and enzymic modification of the drugs. Oxazolidinones bind to the ribosomal peptidyltransferase center, domain V of 23S rRNA, and prevent formation of the initiation complex formed by -formyl-methionyl-tRNA, ribosomes, mRNA, and initiation factors IF2 and IF3, therefore blocking protein synthesis at an early stage. In a large number of isolates, resistance is due to diacetylation of an hydroxyl group of the molecule by chloramphenicol-acetyltransferases (CAT) encoded by genes. Similar genes are found in enterococci, streptococci, and staphylococci, confirming active exchange of resistance determinants between these species. The antiseptic resistance gene , originally isolated from gram-negative bacteria, was found by Japanese authors in 9 of 48 strains of clinical isolates of .

Citation: Leclercq R, Courvalin P. 2005. Enterococcus, p 299-313. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch22
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Aarestrup, F. M. 1998. Association between decreased susceptibility to a new antibiotic for treatment of human diseases, everninomicin (SCH 27899), and resistance to an antibiotic used for growth promotion in animals, avilamycin. Microb. Drug Resist. 4: 137 141.
2. Aarestrup, F. M.,, Y. Agerso,, P. Gerner-Smidt,, M. Madsen,, and L. B. Jensen. 2000. Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn. Microbiol. Infect. Dis. 37: 127 137.
3. Aarestrup, F. M.,, and L. B. Jensen. 2000. Presence of variations in ribosomal protein L16 corresponding to susceptibility of enterococci to oligosaccharides (avilamycin and evernimicin). Antimicrob. Agents Chemother. 44: 3425 3427.
4. Aarestrup, F. M.,, H. Hasman,, L. B. Jensen,, M. Moreno,, I. A. Herrero,, L. Dominguez,, M. Finn,, and A. Franklin. 2002. Antimicrobial resistance among enterococci from pigs in three European countries. Appl. Environ. Microbiol. 68: 4127 4129.
5. Adrian, P. V.,, C. Mendrick,, D. Loebenberg,, P. McNicholas,, K. J. Shaw,, K. P. Klugman,, R. S. Hare,, and T. A. Black. 2000. Evernimicin (SCH27899) inhibits a novel ribosome target site: analysis of 23S ribosomal DNA mutants. Antimicrob. Agents Chemother. 44: 3101 3106.
6. Adrian, P. V.,, W. Zhao,, T. A. Black,, K. J. Shaw,, R. S. Hare,, and K. P. Klugman. 2000. Mutations in ribosomal protein L16 conferring reduced susceptibility to evernimicin (SCH27899): implications for mechanism of action. Antimicrob. Agents Chemother. 44: 732 738.
7. Allignet, J.,, and N. El Solh. 1995. Diversity among the grampositive acetyltransferases inactivating streptogramin A and structurally related compounds and characterization of a new staphylococcal determinant, vatB. Antimicrob. Agents. Chemother. 39: 2027 2036.
8. Allignet, J.,, N. Liassine,, and N. El Solh. 1998. Characterization of a staphylococcal plasmid related to pUB110 and carrying two novel genes, vatC and vgbB, encoding resistance to streptogramins A and B and similar antibiotics. Antimicrob. Agents. Chemother. 42: 1794 1798.
9. Allignet, J.,, V. Loncle,, P. Mazodier,, and N. El Solh. 1988. Nucleotide sequence of a staphylococcal plasmid gene, vgb, encoding a hydrolase inactivating the B components of virginiamycin- like antibiotics. Plasmid 20: 271 275.
10. Allignet, J.,, V. Loncle,, C. Simenel,, M. Delepierre,, and N. El Solh. 1993. Sequence of a staphylococcal gene, vat, encoding an acetyltransferase inactivating the A-type compounds of virginiamycin-like antibiotics. Gene 130: 91 98.
11. Al-Obeid, S.,, L. Gutmann,, and R. Williamson. 1990. Modification of penicillin-binding proteins of penicillin-resistant mutants of different species of enterococci. J. Antimicrob. Chemother. 26: 613 618.
12. Asseray, N.,, J. Caillon,, N. Roux,, C. Jacqueline,, R. Bismuth,, M. F. Kergueris,, G. Potel., and D. Bugnon. 2002. Different aminoglycoside-resistant phenotypes in a rabbit Staphylococcus aureus endocarditis infection model. Antimicrob. Agents Chemother. 46: 1591 1593.
13. Auckland, C.,, L. Teare,, F. Cooke,, M. E. Kaufmann,, M. Warner,, G. Jones,, K. Bamford,, H. Ayles,, and A. P. Johnson. 2002. Linezolid-resistant enterococci: report of the first isolates in the United Kingdom. J. Antimicrob Chemother. 50: 743 746.
14. Bentorcha, F.,, G. De Cespedes,, and T. Horaud. 1991. Tetracycline resistance heterogeneity in Enterococcus faecium. Antimicrob. Agents Chemother. 35: 808 812.
15. Bonafede, M. E.,, L. L. Carias,, and L. B. Rice. 1997. Enterococcal transposon Tn5384: evolution of a composite transposon through cointegration of enterococcal and staphylococcal plasmids. Antimicrob. Agents Chemother. 41: 1854 1858.
16. Bozdogan, B.,, L. Berrezouga,, M. S. Kuo,, D. A. Yurek,, K. A. Farley,, B. J. Stockman,, and R. Leclercq. 1999. A new resistance gene, linB, conferring resistance to lincosamides by nucleotidylation in Enterococcus faecium HM1025. Antimicrob. Agents Chemother. 43: 925 929.
17. Bozdogan, B.,, and R. Leclercq. 1999. Effects of genes encoding resistance to streptogramins A and B on the activity of quinupristin-dalfopristin against Enterococcus faecium. Antimicrob. Agents Chemother. 43: 2720 2725.
18. Bozdogan, B.,, R. Leclercq,, A. Lozniewski,, and M. Weber. 1999. Plasmid-mediated coresistance to streptogramins and vancomycin in Enterococcus faecium HM1032. Antimicrob. Agents Chemother. 43: 2097 2098.
19. Brisse, S.,, A. C. Fluit,, U. Wagner,, P. Heisig,, D. Milatovic,, J. Verhoef,, S. Scheuring,, K. Kohrer,, and F. J. Schmitz. 1999. Association of alterations in ParC and GyrA proteins with resistance of clinical isolates of Enterococcus faecium to nine different fluoroquinolones. Antimicrob. Agents Chemother. 43: 2513 2516.
20. Bryan, L. E.,, and H. M. Van Den Elzen. 1977. Effects of membrane- energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob. Agents Chemother. 12: 163 177.
21. Burk, D. L.,, N. Ghuman,, L. E. Wybenga-Groot,, and A. M. Berghuis. 2003. X-ray structure of the AAC(6')-Ii antibiotic resistance enzyme at 1.8 A resolution; examination of oligomeric arrangements in GNAT superfamily members. Protein Sci. 12: 426 437.
22. Butaye, P.,, L. A. Devriese,, and F. Haesebrouck. 2003. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 16: 175 188.
23. Caillaud, F.,, P. Trieu-Cuot,, C. Carlier,, and P. Courvalin. 1987. Nucleotide sequence of the kanamycin resistance determinant of the pneumococcal transposon Tn 1545: evolutionary relationships and transcriptional analysis of aphA-3 genes. Mol. Gen. Genet. 207: 509 513.
24. Carias, L. L.,, S. D. Rudin,, C. J. Donskey,, and L. B. Rice. 1998. Genetic linkage and cotransfer of a novel, vanBcontaining transposon (Tn5382) and a low-affinity penicillinbinding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J. Bacteriol. 180: 4426 4434.
25. Carlier, C.,, and P. Courvalin. 1990. Emergence of 4',4"- aminoglycoside nucleotidyltransferase in enterococci. Antimicrob. Agents Chemother. 34: 1565 1569.
26. Charpentier, E.,, G. Gerbaud,, and P. Courvalin. 1993. Characterization of a new class of tetracycline-resistance gene tet(S) in Listeria monocytogenes BM4210. Gene 131: 27 34.
27. Charpentier, E.,, G. Gerbaud,, and P. Courvalin. 1994. Presence of the Listeria tetracycline resistance gene tet(S) in Enterococcus faecalis. Antimicrob. Agents Chemother. 38: 2330 2335.
28. Choi, S. H.,, S. O Lee,, T. H. Kim,, J. W. Chung,, E. J. Choo,, Y. G. Kwak,, M. N. Kim,, Y. S. Kim,, J. H. Woo,, J. Ryu,, and N. J. Kim. 2004. Clinical features and outcomes of bacteremia caused by Enterococcus casseliflavus and Enterococcus gallinarum: analysis of 56 cases. Clin. Infect. Dis. 38: 53 61.
29. Chow, J. W.,, V. Kak,, I. You,, S. J. Kao,, J. Petrin,, D. B. Clewell,, S. A. Lerner,, G. H. Miller,, and K. J. Shaw. 2001. Aminoglycoside resistance genes aph( 2") -Ib and aac( 6')-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob. Agents Chemother. 45: 2691 2694.
30. Chow, J. W.,, M. J. Zervos,, S. A. Lerner,, L. A. Thal,, S. M. Donabedian,, D. D. Jaworski,, S. Tsai,, K. J Shaw,, and D. B. Clewell. 1997. A novel gentamicin resistance gene in Enterococcus. Antimicrob. Agents Chemother. 41: 511 514.
31. Clark, N. C.,, O. Olsvik,, J. M. Swenson,, C. A. Spiegel,, and F. C. Tenover. 1999. Detection of a streptomycin/spectinomycin adenylyltransferase gene (aadA) in Enterococcus faecalis. Antimicrob. Agents Chemother. 43: 157 160.
32. Coque, T. M.,, K. V. Singh,, G. M. Weinstock,, and B. E. Murray. 1999. Characterization of dihydrofolate reductase genes from trimethoprim-susceptible and trimethoprim-resistant strains of Enterococcus faecalis. Antimicrob. Agents Chemother. 43: 141 147.
33. Costa, Y.,, M. Galimand,, R. Leclercq,, J. Duval,, and P. Courvalin. 1993. Characterization of the chromosomal aac( 6')- Ii gene specific for Enterococcus faecium. Antimicrob. Agents Chemother. 37: 1896 1903.
34. Courvalin, P.,, and C. Carlier. 1987. Tn 1545: a conjugative shuttle transposon. Mol. Gen. Genet. 206: 259 264.
35. Courvalin, P.,, C. Carlier,, and E. Collatz. 1980. Plasmidmediated resistance to aminocyclitol antibiotics in group D streptococci. J. Bacteriol. 143: 541 551.
36. Courvalin, P.,, C. Carlier,, and E. Collatz,. 1980. Structural and functional relationships between aminoglycoside-modifying enzymes from streptococci and staphylococci, p. 309 320. In S. Mitsuhashi,, I. Rosival,, and V. Kremery (ed.), Medical and Biological Aspects of Resistant Strains. Springer-Verlag, Berlin, Germany.
37. Daly, M. M.,, S. Doktor,, R. Flamm,, and D. Shortridge. 2004. Characterization and prevalence of MefA, MefE, and the associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J. Clin. Microbiol. 42: 3570 3574.
38. Del Campo, R.,, C. Tenorio,, C. Rubio,, J. Castillo,, C. Torres,, and R. Gomez-Lus. 2000. Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain. Int. J. Antimicrob. Agents. 15: 221 226.
39. Derbise, A.,, S. Aubert,, and N. El Solh. 1997. Mapping the regions carrying the three contiguous antibiotic resistance genes aadE, sat4, and aphA-3 in the genomes of staphylococci. Antimicrob. Agents Chemother. 41: 1024 1032.
40. Dibo, I.,, S. K. Pillai,, H. S. Gold,, M. R. Baer,, M. Wetzler,, J. L. Slack,, P. A. Hazamy,, D. Ball,, C. B. Hsiao,, P. L. McCarthy Jr.,, and B. H. Segal. 2004. Linezolid-resistant Enterococcus faecalis isolated from a cord blood transplant recipient. J. Clin. Microbiol. 42: 1843 1845.
41. Dina, J.,, B. Malbruny,, and R. Leclercq. 2003. Nonsense mutations in the lsa-like gene in Enterococcus faecalis isolates susceptible to lincosamides and Streptogramins A. Antimicrob. Agents Chemother. 47: 2307 2309.
42. Donabedian, S. M.,, L. A. Thal,, E. Hershberger,, M. B. Perri,, J. W. Chow,, P. Bartlett,, R. Jones,, K. Joyce,, S. Rossiter,, K. Gay,, J. Johnson,, C. Mackinson,, E. Debess,, J. Madden,, F. Angulo,, and M. J. Zervos. 2003. Molecular characterization of gentamicin-resistant enterococci in the United States: evidence of spread from animals to humans through food. J. Clin. Microbiol. 41: 1109 1113.
43. El Amin, N. A.,, S. Jalal,, and B. Wretlind. 1999. Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 43: 947 949.
44. Eliopoulos, G. M.,, B. F. Farber,, B. E. Murray,, C. Wennersten,, and R. C. Moellering, Jr. 1984. Ribosomal resistance of clinical enterococcal to streptomycin isolates. Antimicrob. Agents Chemother. 25: 398 399.
45. El Kharroubi, A.,, P. Jacques,, G. Piras,, J. Van Beeumen,, J. Coyette,, and J. M. Ghuysen. 1991. The Enterococcus hirae R40 penicillin-binding protein 5 and the methicillin-resistant Staphylococcus aureus penicillin-binding protein 2' are similar. Biochem. J. 280: 463 469.
46. Ferretti, J. J.,, K. S. Gilmore,, and P. Courvalin. 1986. Nucleotide sequence analysis of the gene specifying the bifunctional 6'-aminoglycoside acetyltransferase 2"-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J. Bacteriol. 167: 631 638.
47. Fontana, R.,, R. Cerini,, P. Longoni,, A. Grossato,, and P. Canepari. 1983. Identification of a streptococcal penicillinbinding protein that reacts very slowly with penicillin. J. Bacteriol. 155: 343 1350.
48. Franke, A. E.,, and D. B. Clewell. 1981. Evidence for a chromosome- borne resistance transposon (Tn 916) in Streptococcus faecalis that is capable of “conjugal” transfer in the absence of a conjugative plasmid. J. Bacteriol. 145: 494 502.
49. Gonzales, R. D.,, P. C. Schreckenberger,, M. B. Graham,, S. Kelkar,, K. DenBesten,, and J. P. Quinn. 2001. Infections due to vancomycin-resistant Enterococcus faecium resistant to linezolid. Lancet 357: 1179.
50. Goodhart, G. L. 1984. In vivo versus in vitro susceptibility of enterococcus to trimethoprim-sulfamethoxazole. A pitfall. JAMA 252: 2748 2749.
51. Gordon, S.,, J. M. Swenson,, B. C. Hill,, N. E. Pigott,, R. R. Facklam,, R. C. Cooksey,, C. Thornsberry,, W. R. Jarvis,, and F. C. Tenover. 1992. Antimicrobial susceptibility patterns of common and unusual species of enterococci causing infections in the United States. Enterococcal Study Group. J. Clin. Microbiol. 30: 2373 2378.
52. Grayson, M. L.,, C. Thauvin-Eliopoulos,, G. M. Eliopoulos,, J. D. Yao,, D. V. DeAngelis,, L. Walton,, J. L. Woolley,, and R. C. Moellering, Jr. 1990. Failure of trimethoprimsulfamethoxazole therapy in experimental enterococcal endocarditis. Antimicrob. Agents Chemother. 34: 1792 1794.
53. Hamilton-Miller, J. M. 1988. Reversal of activity of trimethoprim against gram-positive cocci by thymidine, thymine and folates. J. Antimicrob. Chemother. 22: 35 39.
54. Hanrahan, J.,, C. Hoyen,, and L. B. Rice. 2000. Geographic distribution of a large mobile element that transfers ampicillin and vancomycin resistance between Enterococcus faecium strains. Antimicrob. Agents Chemother. 44: 1349 1351.
55. Harms, J. M.,, F. Schlunzen,, P. Fucini,, H. Bartels,, and A. Yonath. 2001. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2: 4.
56. Hasman, H.,, and F. M. Aarestrup. 2002. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 46: 1410 1416.
57. Hasman H,, and F. M. Aarestrup. 2005. Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob. Agents Chemother. 49: 454 456.
58. Herrero, I. A.,, N. C. Issa,, and R. Patel. 2002. Nosocomial spread of linezolid-resistant, vancomycin-resistant Enterococcus faecium. N. Engl. J. Med. 346: 867 869.
59. Hershberger, E.,, S. Donabedian,, K. Konstantinou,, and M. J. Zervos. 2004. Quinupristin-dalfopristin resistance in gram-positive bacteria: mechanism of resistance and epidemiology. Clin. Infect. Dis. 38: 92 98.
60. Hitchins, G. H. 1973. Mechanism of action of trimethoprimsulfamethoxazole. J. Infect. Dis. 128( Suppl.): 433 436.
61. Hollingshead, S.,, and D. Vapnek. 1985. Nucleotide sequence analysis of a gene encoding a streptomycin/spectinomycin adenylyltransferase. Plasmid 13: 17 30.
62. Hon, W. C.,, G. A. McKay,, P. R. Thompson,, R. M. Sweet,, D. S. Yang,, G. D. Wright,, and A. M. Berghuis. 1997. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89: 887 895.
63. Hooper, D. C., 2000. Mechanisms of fluoroquinolone resistance, p. 685 693. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
64. Horinouchi, S.,, W. H. Byeon,, and B. Weisblum. 1983. A complex attenuator regulates inducible resistance to macrolides, lincosamides, and streptogramin type B antibiotics in Streptococcus sanguis. J. Bacteriol. 154: 1252 1262.
65. Huys, G.,, K. D’Haene,, J. M. Collard,, and J. Swings. 2004. Prevalence and molecular characterization of tetracycline resistance in Enterococcus isolates from food. Appl. Environ. Microbiol. 70: 1555 1562.
66. Jackson, C. R.,, P. J. Fedorka-Cray,, J. B. Barrett,, and S. R. Ladely. 2004. Genetic relatedness of high-level aminoglycosideresistant enterococci isolated from poultry carcasses. Avian Dis. 48: 100 107.
67. Jensen, L. B.,, A. M. Hammerum,, F. M. Aerestrup,, A. E. Van Den Bogaard,, and E. E. Stobberingh. 1998. Occurrence of satA and vgb genes in streptogramin-resistant Enterococcus faecium isolates of animal and human origins in The Netherlands. Antimicrob. Agents Chemother. 42: 3330 3331.
68. Johnson, A. P.,, L. Tysall,, M. V. Stockdale,, N. Woodford,, M. E. Kaufmann,, M. Warner,, D. M. Livermore,, F. Asboth,, and F. J. Allerberger. 2002. Emerging linezolid-resistant Enterococcus faecalis and Enterococcus faecium isolated from two Austrian patients in the same intensive care unit. Eur. J. Clin. Microbiol. Infect. Dis. 21: 751 754.
69. Jones, R. N.,, P. Della-Latta,, L. V. Lee,, and D. J. Biedenbach. 2002. Linezolid-resistant Enterococcus faecium isolated from a patient without prior exposure to an oxazolidinone: report from the SENTRY Antimicrobial Surveillance Program. Diagn. Microbiol. Infect Dis. 42: 137 139.
70. Kanematsu, E.,, T. Deguchi,, M. Yasuda,, T. Kawamura,, Y. Nishino,, and Y. Kawada. 1998. Alterations in the GyrA subunit of DNA gyrase and the ParC subunit of DNA topoisomerase IV associated with quinolone resistance in Enterococcus faecalis. Antimicrob. Agents Chemother. 42: 433 435.
71. Kao, S. J.,, I. You,, D. B. Clewell,, S. M. Donabedian,, M. J. Zervos,, J. Petrin,, K. J. Shaw,, and J. W. Chow. 2000. Detection of the high-level aminoglycoside resistance gene aph( 2")- Ib in Enterococcus faecium. Antimicrob. Agents Chemother. 44: 2876 2879.
72. Kazama, H.,, H. Hamashima,, M. Sasatsu,, and T. Arai. 1998. Distribution of the antiseptic-resistance gene qacEδ1 in grampositive bacteria. FEMS Microbiol. Lett. 165: 295 299.
73. Kloss, P.,, L. Xiong,, D. L. Shinabarger,, and A. S. Mankin. 1999. Resistance mutations in 23 S rRNA identify the site of action of the protein synthesis inhibitor linezolid in the ribosomal peptidyl transferase center. J. Mol. Biol. 294: 93 101.
74. Kofoed, C. B.,, and B. Vester. 2002. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob. Agents Chemother. 46: 3339 3342.
75. Korten, V.,, W. M. Huang,, and B. E. Murray. 1994. Analysis by PCR and direct DNA sequencing of gyrA mutations associated with fluoroquinolone resistance in Enterococcus faecalis. Antimicrob. Agents Chemother. 38: 2091 2094.
76. LeBlanc, D. J.,, L. N. Lee,., and J. M. Inamine. 1991. Cloning and nucleotide base sequence analysis of a spectinomycin adenyltransferase AAD(9) determinant from Enterococcus faecalis. Antimicrob. Agents Chemother. 35: 1804 1810.
77. Lee, E. W.,, M. N. Huda,, T. Kuroda,, T. Mizushima,, and T. Tsuchiya. 2003. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob. Agents Chemother. 47: 3733 3738.
78. Ligozzi, M.,, M. Aldegheri,, S. C. Predari,, and R. Fontana. 1991. Detection of penicillin-binding proteins immunologically related to penicillin-binding protein 5 of Enterococcus hirae ATCC 9790 in Enterococcus faecium and Enterococcus faecalis. FEMS Microbiol. Lett. 67: 335 339.
79. Ligozzi, M.,, F. Pittaluga,, and R. Fontana. 1993. Identification of a genetic element (psr) which negatively controls expression of Enterococcus hirae penicillin-binding protein 5. J. Bacteriol. 175: 2046 2051.
80. Lim, J. A.,, A. R. Kwon,, S. K. Kim,, Y. Chong,, K. Lee,, and B. C. Choi. 2002. Prevalence of resistance to macrolide, lincosamide and streptogramin antibiotics in Gram-positive cocci isolated in a Korean hospital. J. Antimicrob. Chemother. 49: 489 495.
81. Lobritz, M.,, R. Hutton-Thomas,, S. Marshall,, and L. B. Rice. 2003. Recombination proficiency influences frequency and locus of mutational resistance to linezolid in Enterococcus faecalis. Antimicrob. Agents Chemother. 47: 3318 3320.
82. Lopes, M. de F., T. Ribeiro, M. P. Martins, R. Tenreiro, and M. T. Crespo. 2003. Gentamicin resistance in dairy and clinical enterococcal isolates and in reference strains. J. Antimicrob. Chemother. 52: 214 219.
83. Luna, V. A.,, P. Coates,, E. A. Eady,, J. H. Cove,, T. T. Nguyen,, and M. C. Roberts. 1999. A variety of gram-positive bacteria carry mobile mef genes. J. Antimicrob. Chemother. 44: 19 25.
84. Luna, V. A.,, M. Heiken,, K. Judge,, C. Ulep,, N. Van Kirk,, H. Luis,, M. Bernardo,, J. Leitao,, and M. C. Roberts. 2002. Distribution of mef(A) in gram-positive bacteria from healthy Portuguese children. Antimicrob. Agents Chemother. 46: 2513 2517.
85. Lynch, C.,, P. Courvalin,, and H. Nikaido. 1997. Active efflux of antimicrobial agents in wild-type strains of enterococci. Antimicrob. Agents Chemother. 41: 869 871.
86. Mainardi, J. L, R. Legrand, M. Arthur, B. Schoot, J. van Heijenoort, and L. Gutmann. 2000. Novel mechanism of β-lactam resistance due to by-pass of DD-transpeptidation in Enterococcus faecium. J Biol. Chem. 275: 16490 16496.
87. Mainardi, J. L.,, V. More,, M. Fourgeaud,, J. Cremniter,, D. Blanot,, R. Legrand,, C. Frehel,, M. Arthur,, J. Van Heijenoort,, and L. Gutmann. 2002. Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium. J. Biol. Chem. 277: 35801 35807.
88. Mann, P. A.,, L. Xiong,, A. S. Mankin,, A. S. Chau,, C. A. Mendrick,, D. J. Najarian,, C. A. Cramer,, D. Loebenberg,, E. Coates,, N. J. Murgolo,, F. M. Aarestrup,, R. V. Goering,, T. A. Black,, R. S. Hare,, and P. M. McNicholas. 2001. emtA, a rRNA methyltransferase conferring high-level evernimicin resistance. Mol. Microbiol. 41: 1349 1356.
89. Manson, J. M.,, S. Keis,, J. M. Smith,, and G. M. Cook. 2004. Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob. Agents Chemother. 48: 3743 3748.
90. Marshall, S. H.,, C. J. Donskey,, R. Hutton-Thomas,, R. A. Salata,, and L. B. Rice. 2002. Gene dosage and linezolid resistance in Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 46: 3334 3336.
91. Martin, P.,, P. Trieu-Cuot,, and P. Courvalin. 1986. Nucleotide sequence of the tetM tetracycline resistance determinant of the streptococcal conjugative shuttle transposon Tn 1545. Nucleic Acids Res. 14: 7047 7058.
92. McKay, G. A.,, P. R. Thompson,, and G. D. Wright. 1994. Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry 33: 6936 6944.
93. Moellering, R. C. Jr.,, O. M. Korzeniowski,, M. A. Sande,, and C. B. Wennersten. 1979. Species-specific resistance to antimicrobial synergism in Streptococcus faecium and Streptococcus faecalis. J. Infect. Dis. 140: 203 208.
94. Moellering, R. C. Jr.,, C. Wennersten,, and A. N. Weinberg. 1971. Studies on antibiotic synergism against enterococci. I. Bacteriologic studies. J. Lab. Clin Med. 77: 821 828.
95. Murphy, E. 1985. Nucleotide sequence of a spectinomycin adenyltransferase AAD(9) determinant from Staphylococcus aureus and its relationship to AAD(3") (9). Mol. Gen. Genet. 200: 33 39.
96. Murray, B. E. 1992. Beta-lactamase-producing enterococci. Antimicrob. Agents Chemother. 36: 2355 2359.
97. Najjar, A.,, and B. E. Murray. 1987. Failure to demonstrate a consistent in vitro bactericidal effect of trimethoprimsulfamethoxazole against enterococci. Antimicrob. Agents Chemother. 3: 808 810.
98. Nakanishi, N.,, S. Yoshida,, H. Wakebe,, M. Inoue,, and S. Mitsuhashi. 1991. Mechanisms of clinical resistance to fluoroquinolones in Enterococcus faecalis. Antimicrob. Agents Chemother. 35: 1053 1059.
99. Novick, R. P., and Roth C. 1968 Plasmid-linked resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95: 1335 1342.
100. Odermatt, A.,, H. Suter,, R. Krapf,, and M. Solioz. 1993. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268: 12775 12779.
101. Oh, T. G.,, A. R. Kwon,, and E. C. Choi. 1998. Induction of ermAMR from a clinical strain of Enterococcus faecalis by 16- membered-ring macrolide antibiotics. J. Bacteriol. 180: 5788 5791.
102. Onodera, Y.,, J. Okuda,, M. Tanaka,, and K. Sato. 2002. Inhibitory activities of quinolones against DNA gyrase and topoisomerase IV of Enterococcus faecalis. Antimicrob. Agents Chemother. 46: 1800 1804.
103. Ounissi, H.,, and P. Courvalin,. 1987. Nucleotide sequence of streptococcal genes, p. 275. In J. Feretti, and R. Curtiss III (ed.), Streptococcal Genetics. American Society for Microbiology, Washington, D.C.
104. Ounissi, H.,, E. Derlot,, C. Carlier,, and P. Courvalin. 1990. Gene homogeneity for aminoglycoside-modifying enzymes in gram-positive cocci. Antimicrob. Agents Chemother. 34: 2164 2168.
105. Pan, X.-S.,, and L. M. Fisher. 1997. Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones. Antimicrob. Agents Chemother. 41: 471 474.
106. Pepper, K.,, T. Horaud,, C. Le Bouguenec,, and G. de Cespedes. 1987. Location of antibiotic resistance markers in clinical isolates of Enterococcus faecalis with similar antibiotypes. Antimicrob Agents Chemother. 31: 1394 1402.
107. Petersen, A.,, and L. B. Jensen. 2004. Analysis of gyrA and parC mutations in enterococci from environmental samples with reduced susceptibility to ciprofloxacin. FEMS Microbiol. Lett. 231: 73 76.
108. Portillo, A.,, F. Ruiz-Larrea,, M. Zarazaga,, A. Alonso,, J. L. Martinez,, and C. Torres. 2000. Macrolide resistance genes in Enterococcus spp. Antimicrob. Agents Chemother. 44: 967 971.
109. Prystowsky, J.,, F. Siddiqui,, J. Chosay,, D. L. Shinabarger,, J. Millichap,, L. R. Peterson,, and G. A. Noskin. 2001. Resistance to linezolid: characterization of mutations in rRNA and comparison of their occurrences in vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 45: 2154 2156.
110. Rahim, S.,, S. K. Pillai,, H. S. Gold,, L. Venkataraman,, K. Inglima,, and R. A. Press. 2003. Linezolid-resistant, vancomycinresistant Enterococcus faecium infection in patients without prior exposure to linezolid. Clin. Infect. Dis. 36: E146 E148.
111. Raze, D.,, O. Dardenne,, S. Hallut,, M. Martinez-Bueno,, J. Coyette,, and J. M. Ghuysen. 1998. The gene encoding the low-affinity penicillin-binding protein 3r in Enterococcus hirae S185R is borne on a plasmid carrying other antibiotic resistance determinants. Antimicrob. Agents Chemother. 42: 534 539.
112. Rende-Fournier, R.,, R. Leclercq,, M. Galimand,, J. Duval,, and P. Courvalin. 1993 Identification of the satA gene encoding a streptogramin A acetyltransferase in Enterococcus faecium BM4145. Antimicrob. Agents Chemother. 37: 2119 2125.
113. Reynolds, R.,, N. Potz,, M. Colman,, A. Williams,, D. Livermore,, A. MacGowan A, and BSAC Extended Working Party on Bacteraemia Resistance Surveillance. 2004. Antimicrobial susceptibility of the pathogens of bacteraemia in the UK and Ireland 2001-2002: the BSAC Bacteraemia Resistance Surveillance Programme. J. Antimicrob. Chemother. 53: 1018 1032.
114. Rice, L. B.,, S. Bellais,, L. L. Carias,, R. Hutton-Thomas,, R. A. Bonomo,, P. Caspers,, M. G. Page,, and L. Gutmann. 2004. Impact of specific pbp5 mutations on expression of beta-lactam resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 48: 3028 3032.
115. Richards, M. J.,, J. R. Edwards,, D. H. Culver,, and R. P. Gaynes. 2000. Nosocomial infections in combined medical-surgical intensive care units in the United States. Infect. Control Hosp. Epidemiol. 21: 510 515.
116. Ridenhour, M. B.,, H. M. Fletcher,, J. E. Mortensen,, and L. Daneo- Moore. 1996. A novel tetracycline-resistant determinant, tet(U), is encoded on the plasmid pKq10 in Enterococcus faecium. Plasmid 35: 71 80.
117. Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19: 1 24.
118. Roberts, M. C.,, J. Sutcliffe,, P. Courvalin,, L. B. Jensen,, J. Rood,, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrob. Agents Chemother. 43: 2823 2830.
119. Rosato, A.,, H. Vicarini,, and R. Leclercq. 1999. Inducible or constitutive expression of resistance in clinical isolates of streptococci and enterococci cross-resistant to erythromycin and lincomycin. J. Antimicrob. Chemother. 43: 559 562.
120. Ross, J. I.,, E. A. Eady,, J. H. Cove,, W. J. Cunliffe,, S. Baumberg,, and J. C. Wootton. 1990. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super-gene family. Mol. Microbiol. 4: 1207 1214.
121. Ruggero, K. A.,, L. K. Schroeder,, P. C. Schreckenberger,, A. S. Mankin,, and J. P. Quinn. 2003. Nosocomial superinfections due to linezolid-resistant Enterococcus faecalis: evidence for a gene dosage effect on linezolid MICs. Diagn. Microbiol. Infect. Dis. 47: 511 513.
122. Rybkine, T.,, J. L. Mainardi,, W. Sougakoff,, E. Collatz,, and L. Gutmann. 1998. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of beta-lactam resistance. J. Infect. Dis. 178: 159 163.
123. Schnappinger, D.,, and W. Hillen. 1996. Tetracyclines: antibiotic action, uptake, and resistance mechanisms. Arch. Microbiol. 165: 359 369.
124. Sifaoui, F.,, M. Arthur,, L. Rice,, and L. Gutmann. 2001. Role of penicillin-binding protein 5 in expression of ampicillin resistance and peptidoglycan structure in Enterococcus faecium. Antimicrob. Agents Chemother. 45: 2594 2597.
125. Silver, S.,, and L. T. Phung. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753 789.
126. Sinclair, A.,, C. Arnold,, and N. Woodford. 2003. Rapid detection and estimation by pyrosequencing of 23S rRNA genes with a single nucleotide polymorphism conferring linezolid resistance in enterococci. Antimicrob. Agents Chemother. 47: 3620 3622.
127. Singh, K. V.,, K. Malathum,, and B. E. Murray. 2001. Disruption of an Enterococcus faecium species-specific gene, a homologue of acquired macrolide resistance genes of staphylococci, is associated with an increase in macrolide susceptibility. Antimicrob. Agents Chemother. 45: 263 266.
128. Singh, K. V.,, and B. E. Murray. 2005. Differences in the Enterococcus faecalis lsa locus that influence susceptibility to quinupristin-dalfopristin and clindamycin. Antimicrob. Agents Chemother. 49: 32 39.
129. Singh, K. V.,, G. M. Weinstock,, and B. E. Murray. 2002. An Enterococcus faecalis ABC homologue (Lsa) is required for the resistance of this species to clindamycin and quinupristindalfopristin. Antimicrob. Agents Chemother. 46: 1845 1850.
130. Sougakoff, W.,, B. Papadopoulou,, P. Nordman,, and P. Courvalin. 1987. Nucleotide sequence and distribution of tet(O) gene encoding tetracycline resistance in Campylobacter coli. FEMS Microbiol. Lett. 44: 153 159.
131. Tankovic, J.,, F. Mahjoubi,, P. Courvalin,, J. Duval,, and R. Leclercq. 1996. Development of fluoroquinolone resistance in Enterococcus faecalis and role of mutations in the DNA gyrase gyrA gene. Antimicrob. Agents Chemother. 40: 2558 2561.
132. Thauvin, C.,, G. M. Eliopoulos,, C. Wennersten,, and R. C. Moellering, Jr. 1985. Antagonistic effect of penicillin-amikacin combinations against enterococci. Antimicrob. Agents Chemother. 28: 78 83.
133. Tomayko, J. F.,, K. K. Zscheck,, K. V. Singh,, and B. E. Murray. 1996. Comparison of the beta-lactamase gene cluster in clonally distinct strains of Enterococcus faecalis. Antimicrob. Agents Chemother. 40: 1170 1174.
134. Tomayko, J. F.,, and B. E. Murray. 1995. Analysis of Enterococcus faecalis isolates from intercontinental sources by multilocus enzyme electrophoresis and pulsed-field gel electrophoresis. J. Clin. Microbiol. 33: 2903 2907.
135. Torell, E.,, I. Kuhn,, B. Olsson-Liljequist,, S. Haeggman,, B. M. Hoffman,, C. Lindahl,, and L. G. Burman. 2003. Clonality among ampicillin-resistant Enterococcus faecium isolates in Sweden and relationship with ciprofloxacin resistance. Clin. Microbiol. Infect. 9: 1011 1019.
136. Trieu-Cuot, P.,, and P. Courvalin. 1983. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5″- aminoglycoside phosphotransferase type III. Gene 23: 331 341.
137. Trieu-Cuot, P.,, G. de Cespedes,, F. Bentorcha,, Delbos F,, E. Gaspar,, and T. Horaud. 1993 Study of heterogeneity of chloramphenicol acetyltransferase (CAT) genes in streptococci and enterococci by polymerase chain reaction: characterization of a new CAT determinant. Antimicrob. Agents Chemother. 37: 2593 2598.
138. Tsai, S. F.,, M. J. Zervos,, D. B. Clewell,, S. M. Donabedian,, D. F. Sahm,, and J. W. Chow. 1998. A new high-level gentamicin resistance gene, aph( 2″) -Id, in Enterococcus spp. Antimicrob. Agents Chemother. 42: 1229 1232.
139. Werner, G.,, B. Hildebrandt,, and W. Witte. 2001. The newly described msrC gene is not equally distributed among all isolates of Enterococcus faecium. Antimicrob. Agents Chemother. 45: 3672 3673.
140. Werner, G.,, and W. Witte. 1999. Characterization of a new enterococcal gene, satG, encoding a putative acetyltransferase conferring resistance to streptogramin A compounds. Antimicrob. Agents Chemother. 43: 1813 1814.
141. Williamson, R.,, L. Gutmann,, T. Horaud,, F. Delbos,, and J. F. Acar. 1986. Use of penicillin-binding proteins for the identification of enterococci. J. Gen. Microbiol. 132: 1929 1937.
142. Williamson, R.,, C. le Bouguenec,, L. Gutmann,, and T. Horaud. 1985. One or two low affinity penicillin-binding proteins may be responsible for the range of susceptibility of Enterococcus faecium to benzylpenicillin. J. Gen. Microbiol. 131: 1933 1940.
143. Wright, G. D.,, and P. Ladak. 1997. Overexpression and characterization of the chromosomal aminoglycoside 6'-Nacetyltransferase from Enterococcus faecium. Antimicrob. Agents Chemother. 41: 956 960.
144. Xiong, L.,, P. Kloss,, S. Douthwaite,, N. M. Andersen,, S. Swaney,, D. L. Shinabarger,, and A. S. Mankin. 2000. Oxazolidinone resistance mutations in 23S rRNA of Escherichia coli reveal the central region of domain V as the primary site of drug action. J. Bacteriol. 182: 5325 5331.
145. Zhanel, G. G.,, N. M. Laing,, K. A. Nichol,, L. P. Palatnick,, A. Noreddin,, T. Hisanaga,, J.L. Johnson,, D.J. Hoban, and NAVRESS Group. 2003 Antibiotic activity against urinary tract infection (UTI) isolates of vancomycin-resistant enterococci (VRE): results from the 2002 North American Vancomycin Resistant Enterococci Susceptibility Study (NAVRESS). J. Antimicrob. Chemother. 52: 382 388.
146. Zilhao, R.,, B. Papadopoulou,, and P. Courvalin. 1988. Occurrence of the Campylobacter resistance gene tetO in Enterococcus and Streptococcus spp. Antimicrob. Agents Chemother. 32: 1793 1796.
147. Zorzi, W.,, X. Y. Zhou,, O. Dardenne,, J. Lamotte,, D. Raze,, J. Pierre,, L. Gutmann,, and J. Coyette. 1996. Structure of the lowaffinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J. Bacteriol. 178: 4948 4957.
148. Zscheck, K. K.,, and B. E. Murray. 1990 Evidence for a staphylococcal- like mercury resistance gene in Enterococcus faecalis. Antimicrob. Agents Chemother. 34: 1287 1289.


Generic image for table
Table 1

Intrinsic resistance in enterococci

Citation: Leclercq R, Courvalin P. 2005. Enterococcus, p 299-313. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch22
Generic image for table
Table 2

Aminoglycoside-modifying enzymes in enterococci

AMI, amikacin; BUT, butirosin; FOR, fortimicin; GENC1, gentamicin C1; KAN, kanamycin; ISE, isepamycin; KM, kanamycin; LIV, lividomycin; NEO, neomycin; NET, netilmicin; RIB, ribostamycin; SIS, sisomicin; SPE, spectinomycin; STR, streptomycin; TOB, tobramycin.

Part of the bifunctional enzyme AAC(6′)-APH(2″).

Intrinsic resistance in .

Citation: Leclercq R, Courvalin P. 2005. Enterococcus, p 299-313. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch22
Generic image for table
Table 3

Macrolide-lincosamide-streptogramin resistance genes in enterococci

MLS, macrolides-lincosamides-streptogramins B; M, 14-, 15-membered-ring macrolides; MS, macrolides-streptogramins B; L, lincosamides; LS, lincosamides-streptogramins A; S, streptogramins A-type; S, streptogramins B type.

Citation: Leclercq R, Courvalin P. 2005. Enterococcus, p 299-313. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch22

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error