Chapter 33 : Ecology of Antibiotic Resistance Genes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Ecology of Antibiotic Resistance Genes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap33-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap33-2.gif


This chapter starts with a brief history of the growing public interest in the ecology of resistance genes and then moves on to a survey of some of the conceptual problems that have emerged. It focuses on a few groups of bacteria that are major players in the oral and intestinal ecosystems of humans and animals, the obligate anaerobes. Perhaps the first modern example of the sudden importance of understanding the ecology of antibiotic resistance genes arose in connection with the debate over the safety of GM plants. Studies have shown that many soil bacteria are naturally transformable, although it is still unclear what significance this fact has in the overall ecology of antibiotic resistance genes. Bacteria in and on the human body have participated in the distribution of resistance genes. An interesting case in point is the population of bacteria that makes its home in the periodontal pocket, the region between the gums and the roots of the teeth. Prominent among these are the and species. These bacteria have been of particular interest in dentistry because they are thought to be instrumental in the development of periodontal disease, the main cause of tooth loss in adults. Currently, the treatment for periodontal disease is surgery that cuts into the gums, exposing the buried surface of the teeth to allow scraping of the plaque that has accumulated there and is causing inflammation.

Citation: Salyers A, Vlamakis H, Shoemaker N. 2005. Ecology of Antibiotic Resistance Genes, p 436-445. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch33
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

The intestinal bacteria as a resistance gene reservoir and the possible cycle of the bacteria and genes in the environment. Bacteria that normally reside in the human colon (on the left) are normally benign and can transfer resistance genes among themselves. Bacteria that pass through the colon will be in transit long enough to transfer or acquire genes by conjugation and/or transformation or even transduction (shown by solid arrows). The cycle on the right, indicated by dashed lines, follows bacteria that are excreted from the colon in high numbers. Once excreted the bacteria can enter the environment and/or can return to or contaminate other human sites such as skin or the mouth and interact with the microbial communities in these niches before they once again pass through the intestinal tract.

Citation: Salyers A, Vlamakis H, Shoemaker N. 2005. Ecology of Antibiotic Resistance Genes, p 436-445. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch33
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aminov, R. I.,, J. C. Chee-Sanford,, N. Garrigues,, B. Teferedegne,, I. J. Krapac,, B. A. White,, and R. I. Mackie. 2002. Development, validation, and application of PCR primers for detection of tetracycline efflux genes of gram-negative bacteria. Appl. Environ. Microbiol. 68: 1786 1793.
2. Aminov, R. I.,, N. Garrigues-Jeanjean,, and R. I. Mackie. 2001. Molecular ecology of tetracycline resistance: Development and validation of primers for detection of tetracycline resistance genes encoding ribosomal protection proteins. Appl. Environ. Microbiol. 67: 22 32.
3. Arzese, A. R.,, L. Tomasetig,, and G. A. Botta. 2000. Detection of tetQ and ermF antibiotic resistance genes in Prevotella and Porphyromonas isolates from clinical specimens and resident microbiota of humans. J. Antimicrob. Chemother. 45: 577 582.
4. Berbari, E. F.,, F. R. Cockerill, 3rd, and J. M. Steckelberg. 1997. Infective endocarditis due to unusual or fastidious microorganisms. Mayo Clin. Proc. 72: 532 542.
5. Beringer, J. 1999. Keeping watch over genetically modified crops and foods. Lancet 353: 605 606.
6. Brennan, M. T.,, F. Bahrani-Mougeot,, P. C. Fox,, T. P. Kennedy,, S. Hopkins,, R. C. Boucher,, and P. B. Lockhart. 2004. The role of oral microbial colonization in ventilator-associated pneumonia. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 98: 665 672.
7. Cash, H. L.,, and L. V. Hooper. 2005. Commensal bacteria shape intestinal immune system development. ASM News 71: 77 83.
8. Chee-Sanford, J. C.,, R. I. Aminov,, I. J. Krapac,, N. Garrigues- Jeanjean,, and R. I. Mackie. 2001. Occurrence and diversity of tetracycline resistance genes in lagoons and groundwater underlying two swine production facilities. Appl. Environ. Microbiol. 67: 1494 1502.
9. Chopra, I.,, and M. Roberts. 2001. Tetracycline Antibiotics: Mode of Action, Applications, Molecular Biology, and Epidemiology of Bacterial Resistance. Microbiol. Mol. Biol. Rev. 65: 232 260.
10. Chung, W. O.,, J. Gabany,, G. R. Persson,, and M. C. Roberts. 2002. Distribution of erm(F) and tet(Q) genes in 4 oral bacterial species and genotypic variation between resistant and susceptible isolates. J. Clin. Periodontol. 29: 152 158.
11. Conway, P., 1996. Development of intestinal microbiota, p. 3 38. In R. I. Mackie,, B. A. White,, and R. E. Isaacson (ed.), Gastrointestinal Microbiology, vol. 2. Chapman and Hall, London, United Kingdom.
12. Cooper, A. J.,, N. B. Shoemaker,, and A. A. Salyers. 1996. The erythromycin resistance gene from the Bacteroides conjugal transposon TcrEmr 7853 is nearly identical to ermG from Bacillus sphaericus. Antimicrob. Agents Chemother. 40: 506 508.
13. Cotta, M. A.,, T. R. Whitehead,, and R. L. Zeltwanger. 2003. Isolation, characterization, and comparison of bacteria from swine feces and manure storage pits. Environ. Microbiol. 5: 737 745.
14. Della, M.,, P. L. Palmbos,, H. M. Tseng,, L. M. Tonkin,, J. M. Daley,, L. M. Topper,, R. S. Pitcher,, A. E. Tomkinson,, T. E. Wilson,, and A. J. Doherty. 2004. Mycobacterial Ku and ligase proteins constitute a two-component NHEJ repair machine. Science 306: 683 685.
15. editorial, N. 1996. Distrust in genetically altered foods, p. 559, Nature, vol. 383.
16. Finegold, S. M. 1995. Overview of clinically important anaerobes. Clin. Infect. Dis. 20(Suppl. 2): S205 S207.
17. Guiney, D. G.,, and K. Bouic. 1990. Detection of conjugal transfer systems in oral, black-pigmented Bacteroides spp. J. Bacteriol. 172: 495 497.
18. Guiney, D. G.,, and P. Hasegawa. 1992. Transfer of conjugal elements in oral black-pigmented Bacteroides (Prevotella) spp. involves DNA rearrangements. J. Bacteriol. 174: 4853 4855.
19. Gupta, A.,, H. Vlamakis,, N. Shoemaker,, and A. A. Salyers. 2003. A new Bacteroides conjugative transposon that carries an ermB gene. Appl. Environ. Microbiol. 69: 6455 6463.
20. Hauth, J. C.,, R. L. Goldenberg,, W. W. Andrews,, M. B. DuBard,, and R. L. Copper. 1995. Reduced Incidence of preterm delivery with metronidazole and erythromycin in women with bacterial vaginosis. N. Engl. J. Med. 333: 1732 1736.
21. Hillier, S. L.,, R. P. Nugent,, D. A. Eschenbach,, M. A. Krohn,, R. S. Gibbs,, D. H. Martin,, M. F. Cotch,, R. Edelman,, J. G. Pastorek,, A. V. Rao,, D. McNellis,, J. A. Regan,, J. C. Carey,, M. A. Klebanoff, and The Vaginal Infections and Prematurity Study Group. 1995. Association between bacterial vaginosis and preterm delivery of a low-birth-weight infant. N. Engl. J. Med. 333: 1737 1742.
22. Hooper, L. V. 2004. Bacterial contributions to mammalian gut development. Trends Microbiol. 12: 129 134.
23. Hooper, L. V.,, T. Midtvedt,, and J. I. Gordon. 2002. How hostmicrobial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22: 283 307.
24. Lacroix, J. M.,, and C. B. Walker. 1995. Detection and incidence of the tetracycline resistance determinant tet(M) in the microflora associated with adult periodontitis. J. Periodontol. 66: 102 108.
25. Lacroix, J. M.,, and C. B. Walker. 1996. Detection and prevalence of the tetracycline resistance determinant Tet Q in the microbiota associated with adult periodontitis. Oral Microbiol. Immunol. 11: 282 288.
26. Leng, Z.,, D. E. Riley,, R. E. Berger,, J. N. Krieger,, and M. C. Roberts. 1997. Distribution and mobility of the tetracycline resistance determinant tetQ. J. Antimicrob. Chemother. 40: 551 559.
27. Lenski, R. E.,, S. C. Simpson,, and T. T. Nguyen. 1994. Genetic analysis of a plasmid-encoded, host genotype-specific enhancement of bacterial fitness. J. Bacteriol. 176: 3140 3147.
28. Letourneau, D. K.,, G. S. Robinson,, and J. A. Hagen. 2003. Bt crops: predicting effects of escaped transgenesonthe fitness of wild plants and their herbivores. Environ. Biosafety Res. 2: 219 246.
29. Levy, S. B.,, G. B. FitzGerald,, and A. B. Macone. 1976. Changes in intestinal flora of farm personnel after introduction of a tetracycline-supplemented feed on a farm. N. Engl. J. Med. 295: 583 588.
30. Levy, S. B.,, G. B. FitzGerald,, and A. B. Macone. 1976. Spread of antibiotic-resistant plasmids from chicken to chicken and from chicken to man. Nature 260: 40 42.
31. Monod, M.,, S. Mohan,, and D. Dubnau. 1987. Cloning and analysis of ermG, a new macrolide-lincosamide-streptogramin B resistance element from Bacillus sphaericus. J. Bacteriol. 169: 340 350.
32. Moore, W. E.,, and L. V. Holdeman. 1974. Human fecal flora: the normal flora of 20 Japanese-Hawaiians. Appl. Microbiol. 27: 961 979.
33. Nikolich, M. P.,, G. Hong,, N. B. Shoemaker,, and A. A. Salyers. 1994. Evidence for natural horizontal transfer of tetQ between bacteria that normally colonize humans and bacteria that normally colonize livestock. Appl. Environ. Microbiol. 60: 3255 3260.
34. Nikolich, M. P.,, N. B. Shoemaker,, G. R. Wang,, and A. A. Salyers. 1994. Characterization of a new type of Bacteroides conjugative transposon, Tcr Emr 7853. J. Bacteriol. 176: 6606 6612.
35. Salyers, A. A. 1996. The real threal from antibiotics. Nature 384: 304.
36. Salyers, A. A.,, and C. F. Amabile-Cuevas. 1997. Why are antibiotic resistance genes so resistant to elimination? Antimicrob. Agents Chemother. 41: 2321 2325.
37. Salyers, A. A.,, A. Gupta,, and Y. Wang. 2004. Human intestinal bacteria as reservoirs for antibiotic resistance genes. Trends Microbiol. 12: 412 416.
38. Salyers, A. A.,, and P. McManus,. 2001. Possible impact on antibiotic resistance in human pathogens due to agricultural use of antibiotics. In D. Hughes, and D. I. Andersson (ed.), Antibiotic Development and Resistance. Taylor and Francis Inc, New York, N.Y.
39. Salyers, A. A.,, and J. A. Shipman,. 2002. 11: Getting in touch with your prokaryotic self: mammal-microbe interactions, p. 315 341. In J. T. Staley, and A.-L. Reysenbach (ed.), Biodiversity of Microbial Life. Wiley-Liss, Inc.
40. Scannapieco, F. A.,, and J. M. Mylotte. 1996. Relationships between periodontal disease and bacterial pneumonia. J. Periodontol. 67: 1114 1122.
41. Shoemaker, N. B.,, H. Vlamakis,, K. Hayes,, and A. A. Salyers. 2001. Evidence for extensive resistance gene transfer among Bacteroides spp and between Bacteroides and other genera in the human colon. Appl. Environ. Microbiol. 67: 561 568.
42. Shoemaker, N. B.,, G. R. Wang,, and A. A. Salyers. 1992. Evidence for natural transfer of a tetracycline resistance gene between bacteria from the human colon and bacteria from the bovine rumen. Appl. Environ. Microbiol. 58: 1313 1320.
43. Tannock, G. W., 1997. Normal microbiota of the gastrointestinal tract of rodents, p. 187 215. In R. I. Mackie,, B. A. White,, and R. E. Isaacson (ed.), Gastrointestinal Microbiology: Gastrointestinal Microbes and Host Interactions, vol. 2. Chapman and Hall, New York, N.Y.
44. Valentine, P. J.,, N. B. Shoemaker,, and A. A. Salyers. 1988. Mobilization of Bacteroides plasmids by Bacteroides conjugal elements. J. Bacteriol. 170: 1319 1324.
45. Wang, Y.,, G.-R. Wang,, A. Shelby,, N. B. Shoemaker,, and A. A. Salyers. 2003. A newly discovered Bacteroides conjugative transposon, CTnGERM1, contains genes also found in Grampositive bacteria. Appl. Environ. Microbiol. 69: 4595 4603.
46. Wang, Y.,, G.-R. Wang,, N. B. Shoemaker,, T. R. Whitehead,, and A. A. Salyers. Distribution of the ermG gene in bacterial isolates from porcine intestinal contents. Appl. Environ. Microbiol., in press.
47. Wegener, H. C.,, F. M. Aarestrup,, L. B. Jensen,, A. M. Hammerum,, and F. Bager. 1999. Use of antimicrobial growth promoters in food animals and Enterococcus faecium resistance to therapeutic antimicrobial drugs in Europe. Emerg. Infect. Dis. 5: 329 335.
48. Whitehead, T. R.,, and M. A. Cotta. 2001. Characterisation and comparison of microbial populations in swine faeces and manure storage pits by 16S rDNA gene sequence analyses. Anaerobe 7: 181 187.
49. Whitehead, T. R.,, and M. A. Cotta. 2001. Sequence analyses of a broad host-range plasmid containing ermT from a tylosinresistant Lactobacillus sp. isolated from swine feces. Curr. Microbiol. 43: 17 20.
50. Whittle, G.,, N. B. Shoemaker,, and A. A. Salyers. 2002. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell. Mol. Life Sci. 59: 2044 2054.
51. Whittle, G.,, T. R. Whitehead,, N. Hamburger,, N. B. Shoemaker,, M. A. Cotta,, and A. A. Salyers. 2003. Identification of a new ribosomal protection type of tetracycline resistance gene, tet(36), from swine manure pits. Appl. Environ. Microbiol. 69: 4151 4158.
52. Wilson, K. H.,, J. S. Ikeda,, and R. B. Blitchington. 1997. Phylogenic placement of community members of human colonic biota. Clin. Infect. Dis. 25(Suppl 2): S114 S116.
53. Witte, W. 1998. Medical consequences of antibiotic use in agriculture. Science 279: 996 997.


Generic image for table
Table 1

Percentage of strains that contained antibiotic resistance genes based on a survey by Shoemaker et al. ( )

Citation: Salyers A, Vlamakis H, Shoemaker N. 2005. Ecology of Antibiotic Resistance Genes, p 436-445. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch33
Generic image for table
Table 2

Examples of genes that have been found in both gram-positive and gram-negative commensal bacteria

Citation: Salyers A, Vlamakis H, Shoemaker N. 2005. Ecology of Antibiotic Resistance Genes, p 436-445. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch33

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error