Chapter 35 : Antimicrobial Use in Plant Agriculture

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Antimicrobial Use in Plant Agriculture, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap35-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap35-2.gif


This chapter focuses on the antibiotics and fungicides in agricultural use, problems of resistance, and effects on other organisms, particularly humans. The most common antibiotics used in plant agriculture are streptomycin and oxytetracycline, either in its hydrochloride or calcium form. Antibiotic resistance is of universal concern to human health. The antibiotics used in plant agriculture, except for kasugamycin, are also used in human clinical medicine. Azoles, used in human clinical medicine, are particularly popular in plant agriculture, because they are relatively cheap, have broad spectrum systemic action in plants for both preventive and curative effects, and are relatively stable. A potential approach to obtain new alternative antibiotics for plant agriculture might be a federal program analogous to the Orphan Drug Act. Whereas one could argue that antibiotics are of limited use in agriculture, fungicides are considered vital, necessary, and highly profitable for worldwide plant pathogen control. Data acquisition, usage, and interpretation for managing antimicrobial resistance in plant agriculture and human medicine should be coordinated. Federal and international organizations should do so as well. Such cooperation is essential to minimize and cope with microbial resistance in both plant and human pathogens.

Citation: Vidaver A. 2005. Antimicrobial Use in Plant Agriculture, p 465-470. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch35
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Agrios, G. N. 1997. Plant Pathology, 4th ed. Academic Press, San Diego, Calif.
2. Dismukes, W. E. 2000. Introduction to antifungal drugs. Clinical Infect. Dis. 30: 653 657.
3. Epstein, L.,, and S. Bassein. 2003. Patterns of pesticide use in California and the implications for strategies for reduction of pesticides. Ann. Rev. Phytopathol. 41: 351 375.
4. He, J.,, R. L. Baldini,, E. Deziel,, M. Saucier,, Q. Zhang,, N. T. Liberati,, D. Lee,, J. Urbach,, H. M. Goodman,, and L. G. Rahme. 2004. The broad host range pathogen Pseudomonas aeruginosa strain PA14 carries two pathogenicity islands harboring plant and animal virulence genes. Proc. Natl. Acad. Sci. USA 101: 2530 2535.
5. Hof, H. 2001. Critical annotations to the use of azole antifungals for plant protection. Antimicrob. Agents Chemother. 45: 2987 2990.
6. Holmes, A.,, J. Govan,, and R. Goldstein. 1998. Agricultural use of Burkholderia (Pseudomonas) cepacia: a threat to human health? Emerg. Infect. Dis. 4: 221 227.
7. Huang, T.-C.,, and T. J. Burr. 1999. Characterization of plasmids that encode streptomycin-resistance in bacterial epiphytes of apple. J. Appl. Microbiol. 86: 741 751.
8. Hudson, M. M. 2001. Antifungal resistance and over-thecounter availability in the UK: a current perspective. J. Antimicrob. Chemother. 48: 345 350.
9. Knight, S. C.,, V. M. Anthony,, A. M. Brady,, A. J. Greenland,, S. P. Heaney,, D. C. Murray,, K. A. Powell,, M. A. Schulz,, C. A. Spinks,, P. A. Worthington,, and D. Youle. 1997. Rationale and perspectives on the development of fungicides. Annu. Rev. Phytopathol. 35: 349 372.
10. Lindow, S. E., 1995. Control of epiphytic ice-nucleation-active bacteria for management of plant frost injury, p. 239 256. In R. E. Lee, Jr.,, G. J. Warren,, and L. V. Gusta (ed.), Biological Ice Nucleation and Its Applications. APS Press, St., Paul, Minn.
11. Lupetti, A.,, R. Danesi,, M. Campa,, M. Del Tacca,, and S. Kelly. 2002. Molecular basis of resistance to azole antifungals. Trends Mol. Med. 8: 76 81.
12. McManus, P.S.,, V.O. Stockwell,, G.W. Sundin,,and A. L. Jones. Antibiotic use in plant agriculture. Ann. Rev. Phytopathol. 40: 443 465.
13.Meister Publishing Company. 2004. Global outlook, p. A3. Meister Pro Crop Protection and book. Meister Publishing Co., Willoughby, Ohio.
14. Nzula, S.,, P. Vandamme,, and J. R. Govan. 2002. Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. J. Antimicrob. Chemother. 50: 265 269.
15. Perea, S.,, and T. F. Patterson. 2002. Antifungal resistance in pathogenic fungi. Clinical Infect. Dis. 35: 1073 1080.
16. Ragsdale, N. N. 2000. The impact of the Food Quality Protection Act on the future of plant disease management. Annu. Rev. Phytopathol. 38: 577 596.
17. Russell, P. 1999. Fungicide resistance management: into the next millennium. Pesticide Outlook 10: 213 215.
18. Silo-Suh, L.,, S. J. Suh,, P. A. Sokol,, and D. E. Ohman. 2002. A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc. Natl. Acad. Sci. USA 99: 15699 15704.
19. Sundin, G. W. 2002. Distinct recent lineages of the StrA-StrB streptomycin resistance genes in clinical and environmental bacteria. Curr. Microbiol. 45: 63 69.
20. Taylor, L. H.,, S. M. Latham,, and M. E. Woolhouse. 2001. Risk factors for human disease emergence. Phil. Trans. R. Soc. Lond. B. 356: 983 989.
21. Van Eldere, J. 2003. Multicentre surveillance of Pseudomonas aeruginosa susceptibility patterns in nosocomial infection. J. Antimicrob. Chemother. 51: 347 352.
22. Vicedo, B.,, R. Penalver,, M. J. Asins,, and M. M. Lopez. 1993. Biological control of Agrobacterium tumefaciens, colonization, and pAGK84 transfer with Agrobacterium radiobacter K84 and the Tra(sup ) mutant strain K1026. Appl. Environ. Microbiol. 59: 309 315.
23. Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clinical Infect. Dis. 34(Suppl. 3): S107 S110.
24. Walker, T. S.,, H. P. Bais,, E. Deziel,, H. P. Schweizer,, L. G. Rahme,, R. Fall,, and J. M. Vivanco. 2004. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Plant Physiol. 134: 320 331.
25. Zarn, J. A.,, B. J. Bruschweiler,, and J. R. Schlatter. 2003. Azole fungicides affect mammalian steroidogenesis by inhibiting sterol 14α-demethylase and aromatase. Environ. Health Perspect. 111: 255 261.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error