Chapter 5 : β-Lactam Resistance in the 21st Century

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

β-Lactam Resistance in the 21st Century, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap05-2.gif


The β-lactamase community currently recognizes two major classification schemes based either on function or structure. Historically, these enzymes were separated according to biochemical activities, with classification based on hydrolysis of specific substrates and the sensitivity to selected inhibitors. After penicillin was used more frequently in post-World War II medicine, the incidence of penicillinase-producing increased in one British hospital from ≥8% in 1945 to almost 60% of clinical isolates in less than five years. Examples of apparent cause and effect relationships include the discovery of cephalosporin C and subsequent introduction of cephalosporin analogs, together with the introduction of broad-spectrum penicillins, such as ampicillin, leading to the identification of plasmid-encoded broad-spectrum penicillinases such as TEM-1. This ubiquitous β-lactamase among the , with the ability to hydrolyze not only many penicillins but also the early cephalosporins such as cephalothin, became the most prevalent plasmid-encoded enzyme in epidemiological surveys of the late 1970s and early 1980s. In the compilation shown, geographical areas reasonably close to each other sometimes exhibit different regional enzyme patterns. The level of β-lactam resistance produced by an enzyme is determined by a number of factors besides its intrinsic hydrolytic activity. β-Lactamases are ancient enzymes, widespread in the microbial world, that in recent years have coevolved with β-lactam antibiotics as aminopenicillins, cephalosporins, cephamycins, oxyimino-cephalosporins, monobactams, and carbapenems have been developed to target new pathogens or to overcome existing resistance.

Citation: Jacoby G, Bush K. 2005. β-Lactam Resistance in the 21st Century, p 53-65. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch5
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

Effects of newly introduced β-lactam-containing agents on β-lactamase populations.

Citation: Jacoby G, Bush K. 2005. β-Lactam Resistance in the 21st Century, p 53-65. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. B 289: 321 331.
2. Andrews, J. M. 2004. BSAC standardized disc susceptibility testing method (version 3). J. Antimicrob. Chemother. 53: 713 728.
3. Arduino, S. M.,, P. H. Roy,, G. A. Jacoby,, B. E. Orman,, S. A. Pineiro,, and D. Centron. 2002. blaCTX-M-2 is located in an unusual class 1 integron (In35) which includes Orf513. Antimicrob. Agents Chemother. 46: 2303 2306.
4. Babini, G. S.,, and D. M. Livermore. 2000. Are SHV β-lactamases universal in Klebsiella pneumoniae? Antimicrob. Agents Chemother. 44: 2230.
5. Bandoh, K.,, K. Ueno,, K. Watanabe,, and N. Kato. 1993. Susceptibility patterns and resistance to imipenem in the Bacteroides fragilis group species in Japan: a 4-year study. Clin. Infect. Dis. 16 Suppl 4: S382 S386.
6. Barber, M.,, and J. E. M. Whitehead. 1949. Bacteriophage types in penicillin-resistant staphylococcal infections. Br. Med. J. 2: 565 569.
7. Barnaud, G.,, G. Arlet,, C. Verdet,, O. Gaillot,, P. H. Lagrange,, and A. Philippon. 1998. Salmonella enteritidis: AmpC plasmidmediated inducible β-lactamase (DHA-1) with an ampR gene from Morganella morganii. Antimicrob. Agents Chemother. 42: 2352 2358.
8. Bauernfeind, A.,, I. Stemplinger,, R. Jungwirth,, and H. Giamarellou. 1996. Characterization of the plasmidic β-lactamase CMY-2, which is responsible for cephamycin resistance. Antimicrob. Agents Chemother. 40: 221 224.
9. Bertrand, X.,, M. Thouverez,, P. Bailly,, C. Cornette,, and D. Talon. 2000. Clinical and molecular epidemiology of hospital Enterococcus faecium isolates in eastern France. Members of Reseau Franc-Comtois de Lutte contre les Infections Nosocomiales. J. Hosp. Infect. 45: 125 134.
10. Bonfiglio, G.,, G. Russo,, and G. Nicoletti. 2002. Recent developments in carbapenems. Expert. Opin. Investig. Drugs 11: 529 544.
11. Bonnet, R. 2004. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48: 1 14.
12. Bou, G.,, A. Oliver,, and J. Martinez-Beltran. 2000. OXA-24, a novel class D β-lactamase with carbapenemase activity in an Acinetobacter baumannii clinical strain. Antimicrob. Agents Chemother. 44: 1556 1561.
13. Bradford, P. A.,, C. E. Cherubin,, V. Idemyor,, B. A. Rasmussen,, and K. Bush. 1994. Multiply resistant Klebsiella pneumoniae strains from two Chicago hospitals: identification of the extended- spectrum TEM-12 and TEM-10 ceftazidime-hydrolyzing β-lactamases in a single isolate. Antimicrob. Agents Chemother. 38: 761 766.
14. Brenwald, N. P.,, G. Jevons,, J. M. Andrews,, J. H. Xiong,, P. M. Hawkey,, and R. Wise. 2003. An outbreak of a CTX-M-type β-lactamase-producing Klebsiella pneumoniae: the importance of using cefpodoxime to detect extended-spectrum β-lactamases. J. Antimicrob. Chemother. 51: 195 196.
15. Bush, K. 2002. The impact of β-lactamases on the development of novel antimicrobial agents. Curr. Opin. Investig. Drugs 3: 1284 1290.
16. Bush, K.,, G. A. Jacoby,, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39: 1211 1233.
17. Cardoso, O.,, R. Leitao,, A. Figueiredo,, J. C. Sousa,, A. Duarte,, and L. V. Peixe. 2002. Metallo-β-lactamase VIM-2 in clinical isolates of Pseudomonas aeruginosa from Portugal. Microb. Drug Resist. 8: 93 97.
18. Chaibi, E. B.,, D. Sirot,, G. Paul,, and R. Labia. 1999. Inhibitor-resistant TEM β-lactamases: phenotypic, genetic and biochemical characteristics. J. Antimicrob. Chemother. 43: 447 458.
19. Chanawong, A.,, F. H. M’Zali,, J. Heritage,, J. H. Xiong,, and P. M. Hawkey. 2002. Three cefotaximases, CTX-M-9, CTXM- 13, and CTX-M-14, among Enterobacteriaceae in the People’s Republic of China. Antimicrob. Agents Chemother. 46: 630 637.
20. Chow, J. W.,, M. J. Fine,, D. M. Shlaes,, J. P. Quinn,, D. C. Hooper,, M. P. Johnson,, R. Ramphal,, M. M. Wagener,, D. K. Miyashiro,, and V. L. Yu. 1991. Enterobacter bacteremia: clinical features and emergence of antibiotic resistance during therapy. Ann. Intern. Med. 115: 585 590.
21. Couture, F.,, J. Lachapelle,, and R. C. Levesque. 1992. Phylogeny of LCR-1 and OXA-5 with class A and class D β-lactamases. Mol. Microbiol. 6: 1693 1705.
22. Danel, F.,, L. M. Hall,, D. Gur,, and D. M. Livermore. 1998. OXA-16, a further extended-spectrum variant of OXA-10 β-lactamase, from two Pseudomonas aeruginosa isolates. Antimicrob. Agents Chemother. 42: 3117 3122.
23. Danel, F.,, L. M. C. Hall,, D. Gur,, and D. M. Livermore. 1995. OXA-14, another extended-spectrum variant of OXA-10 (PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39: 1881 1884.
24. Da Silva, G. J.,, M. Correia,, C. Vital,, G. Ribeiro,, J. C. Sousa,, R. Leitao,, L. Peixe,, and A. Duarte. 2002. Molecular characterization of bla(IMP-5), a new integron-borne metallo-β-lactamase gene from an Acinetobacter baumannii nosocomial isolate in Portugal. FEMS Microbiol. Lett. 215: 33 39.
25. Datta, N.,, and V. M. Hughes. 1983. Plasmids of the same Inc groups in Enterobacteria before and after the medical use of antibiotics. Nature (London) 306: 616 617.
26. Datta, N.,, and M. H. Richmond. 1966. The purification and properties of a penicillinase whose sythesis is mediated by an R-factor in Escherichia coli. Biochem. J. 98: 204 209.
27. DeLoney, C. R.,, and N. L. Schiller. 2000. Characterization of an in vitro-selected amoxicillin-resistant strain of Helicobacter pylori. Antimicrob. Agents Chemother. 44: 3368 3373.
28. Docquier, J. D.,, M. L. Riccio,, C. Mugnaioli,, F. Luzzaro,, A. Endimiani,, A. Toniolo,, G. Amicosante,, and G. M. Rossolini. 2003. IMP-12, a new plasmid-encoded metallo-β-lactamase from a Pseudomonas putida clinical isolate. Antimicrob. Agents Chemother. 47: 1522 1528.
29. Doi, Y.,, N. Shibata,, K. Shibayama,, K. Kamachi,, H. Kurokawa,, K. Yokoyama,, T. Yagi,, and Y. Arakawa. 2002. Characterization of a novel plasmid-mediated cephalosporinase (CMY-9) and its genetic environment in an Escherichia coli clinical isolate. Antimicrob. Agents Chemother. 46: 2427 2434.
30. Doménech-Sánchez, A.,, L. Martínez-Martínez,, S. Hernández- Allés,, M. del Carmen Conejo,, A. Pascual,, J. M. Tomás,, S. Albertí,, and V. J. Benedí. 2003. Role of Klebsiella pneumoniae OmpK35 porin in antimicrobial resistance. Antimicrob. Agents Chemother. 47: 3332 3335.
31. Dumarche, P.,, C. De Champs,, D. Sirot,, C. Chanal,, R. Bonnet,, and J. Sirot. 2002. TEM derivative-producing Enterobacter aerogenes strains: dissemination of a prevalent clone. Antimicrob. Agents Chemother. 46: 1128 1131.
32. Elwell, L. P.,, J. De Graaff,, D. Seibert,, and S. Falkow. 1975. Plasmid-linked ampicillin resistance in Haemophilus influenzae type b. Infect. Immun. 12: 404 410.
33. Elwell, L. P.,, M. Roberts,, L. W. Mayer,, and S. Falkow. 1977. Plasmid-mediated beta-lactamase production in Neisseria gonorrhoeae. Antimicrob. Agents Chemother. 11: 528 533.
34. Essack, S. Y.,, L. M. Hall,, D. G. Pillay,, M. L. McFadyen,, and D. M. Livermore. 2001. Complexity and diversity of Klebsiella pneumoniae strains with extended-spectrum β-lactamases isolated in 1994 and 1996 at a teaching hospital in Durban, South Africa. Antimicrob. Agents Chemother. 45: 88 95.
35. Fluit, A. C.,, and F. J. Schmitz. 1999. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 18: 761 770.
36. Fluit, A. C.,, and F. J. Schmitz. 2004. Resistance integrons and super-integrons. Clin. Microbiol. Infect. 10: 272 288.
37. Ford, P. J.,, and M. B. Avison. 2004. Evolutionary mapping of the SHV β-lactamase and evidence for two separate IS 26- dependent blaSHV mobilization events from the Klebsiella pneumoniae chromosome. J. Antimicrob. Chemother. 54: 69 75.
38. Fortineau, N.,, L. Poirel,, and P. Nordmann. 2001. Plasmidmediated and inducible cephalosporinase DHA-2 from Klebsiella pneumoniae. J. Antimicrob. Chemother. 47: 207 210.
39. Fosse, T.,, C. Giraud-Morin,, I. Madinier,, and R. Labia. 2003. Sequence analysis and biochemical characterisation of chromosomal CAV-1 ( Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ‘FOX’ cluster. FEMS Microbiol. Lett. 222: 93 98.
40. Fournier, B.,, G. Arlet,, P. H. Lagrange,, and A. Philippon. 1994. Klebsiella oxytoca: resistance to aztreonam by overproduction of the chromosomally encoded β-lactamase. FEMS Microbiol. Lett. 116: 31 36.
41. Gaillot, O.,, C. Clement,, M. Simonet,, and A. Philippon. 1997. Novel transferable β-lactam resistance with cephalosporinase characteristics in Salmonella enteritidis. J. Antimicrob. Chemother. 39: 85 87.
42. Garau, G.,, I. García-Sáez,, C. Bebrone,, C. Anne,, P. Mercuri,, M. Galleni,, J. M. Frère,, and O. Dideberg. 2004. Update of the standard numbering scheme for class B β-lactamases. Antimicrob. Agents Chemother. 48: 2347 2349.
43. Giakkoupi, P.,, G. Petrikkos,, L. S. Tzouvelekis,, S. Tsonas,, N. J. Legakis,, and A. C. Vatopoulos. 2003. Spread of integronassociated VIM-type metallo-β-lactamase genes among imipenem-nonsusceptible Pseudomonas aeruginosa strains in Greek hospitals. J. Clin. Microbiol. 41: 822 825.
44. Giraud-Morin, C.,, and T. Fosse. 2003. A seven-year survey of Klebsiella pneumoniae producing TEM-24 extended-spectrum β-lactamase in Nice University Hospital (1994-2000). J. Hosp. Infect. 54: 25 31.
45. Girlich, D.,, T. Naas,, S. Bellais,, L. Poirel,, A. Karim,, and P. Nordmann. 2000. Biochemical-genetic characterization and regulation of expression of an ACC-1-like chromosome-borne cephalosporinase from Hafnia alvei. Antimicrob. Agents Chemother. 44: 1470 1478.
46. Goussard, S.,, W. Sougakoff,, C. Mabilat,, A. Bauernfeind,, and P. Courvalin. 1991. An IS1-like element is responsible for high-level synthesis of extended-spectrum β-lactamase TEM- 6 in Enterobacteriaceae. J. Gen. Microbiol. 137: 2681 2687.
47. Granier, S. A.,, V. Leflon-Guibout,, F. W. Goldstein,, and M. H. Nicolas-Chanoine. 2003. New Klebsiella oxytoca β-lactamase genes blaOXY-3 and blaOXY-4 and a third genetic group of K. oxytoca based on blaOXY-3. Antimicrob. Agents Chemother. 47: 2922 2928.
48. Hæggman, S.,, S. Löfdahl,, A. Paauw,, J. Verhoef,, and S. Brisse. 2004. Diversity and evolution of the class A chromosomal β-lactamase gene in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48: 2400 2408.
49. Hall, B. G.,, and M. Barlow. 2004. Evolution of the serine β-lactamases: past, present and future. Drug Resist. Updates 7: 111 123.
50. Hall, L. M. C.,, D. M. Livermore,, D. Gur,, M. Akova,, and H. E. Akalin. 1993. OXA-11, an extended-spectrum variant of OXA-10(PSE-2) β-lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37: 1637 1644.
51. Hall, R. M.,, and C. M. Collis. 1998. Antibiotic resistance in gram-negative bacteria: the role of gene cassettes and integrons. Drug Resist. Updates 1: 109 119.
52. Hanson, N. D.,, K. S. Thomson,, E. S. Moland,, C. C. Sanders,, G. Berthold,, and R. G. Penn. 1999. Molecular characterization of a multiply resistant Klebsiella pneumoniae encoding ESBLs and a plasmid-mediated AmpC. J. Antimicrob. Chemother. 44: 377 380.
53. Heath, L. S.,, H. E. Heath,, P. A. LeBlanc,, S. R. Smithberg,, M. Dufour,, R. S. Simmonds,, and G. L. Sloan. 2004. The streptococcolytic enzyme zoocin A is a penicillin-binding protein. FEMS Microbiol. Lett. 236: 205 211.
54. Hernández-Allés, S.,, S. Albertí,, D. Álvarez,, A. Doménech- Sánchez,, L. Martínez-Martínez,, J. Gil,, J. M. Tomás,, and V. J. Benedí. 1999. Porin expression in clinical isolates of Klebsiella pneumoniae. Microbiology 145: 673 679.
55. Hirakata, Y. 2001. Extended-spectrum β-lactamases (ESBLs) producing bacteria. Nippon Rinsho 59: 694 700.
56. Hsieh, S. R. 2000. Antimicrobial susceptibility and species identification for clinical isolates of enterococci. J. Microbiol. Immunol. Infect. 33: 253 257.
57. Ito, H.,, Y. Arakawa,, S. Ohsuka,, R. Wacharotayankun,, N. Kato,, and M. Ohta. 1995. Plasmid-mediated dissemination of the metallo-β-lactamase gene blaIMP among clinically isolated strains of Serratia marcescens. Antimicrob. Agents Chemother. 39: 824 829.
58. Iyobe, S.,, H. Kusadokoro,, A. Takahashi,, S. Yomoda,, T. Okubo,, A. Nakamura,, and K. O’Hara. 2002. Detection of a variant metallo-β-lactamase, IMP-10, from two unrelated strains of Pseudomonas aeruginosa and an Alcaligenes xylosoxidans strain. Antimicrob. Agents Chemother. 46: 2014 2016.
59. Jacoby, G.,, and K. Bush. Amino acid sequences for TEM, SHV and OXA extended-spectrum and inhibitor resistant β-lactamases, http://www.lahey.org/studies/webt.htm.
60. Jacoby, G. A.,, and P. Han. 1996. Detection of extended-spectrum β-lactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J. Clin. Microbiol. 34: 908 911.
61. Jacoby, G. A.,, D. M. Mills,, and N. Chow. 2004. Role of β-lactamases and porins in resistance to ertapenem and other β-lactams in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48: 3203 3206.
62. Jaurin, B.,, and T. Grundström. 1981. ampC cephalosporinase of Escherichia coli K-12 has a different evolutionary origin from that of β-lactamases of the penicillinase type. Proc. Natl. Acad. Sci. USA 78: 4897 4901.
63. Jeong, S. H.,, I. K. Bae,, J. H. Lee,, S. G. Sohn,, G. H. Kang,, G. J. Jeon,, Y. H. Kim,, B. C. Jeong,, and S. H. Lee. 2004. Molecular characterization of extended-spectrum β-lactamases produced by clinical isolates of Klebsiella pneumoniae and Escherichia coli from a Korean nationwide survey. J. Clin. Microbiol. 42: 2902 2906.
64. Joris, B.,, J. M. Ghuysen,, G. Dive,, A. Renard,, O. Dideberg,, P. Charlier,, J. M. Frère,, J. A. Kelly,, J. C. Boyington,, P. C. Moews,, and J. R. Knox. 1988. The active-site-serine penicillin-recognizing enzymes as members of the Streptomyces R61 DD-peptidase family. Biochem. J. 250: 313 324.
65. Katsanis, G. P.,, J. Spargo,, M. J. Ferraro,, L. Sutton,, and G. A. Jacoby. 1994. Detection of Klebsiella pneumoniae and Escherichia coli strains producing extended-spectrum β-lactamases. J. Clin. Microbiol. 32: 691 696.
66. Kim, Y. K.,, H. Pai,, H. J. Lee,, S. E. Park,, E. H. Choi,, J. Kim,, J. H. Kim,, and E. C. Kim. 2002. Bloodstream infections by extended- spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in children: epidemiology and clinical outcome. Antimicrob. Agents Chemother. 46: 1481 1491.
67. Koh, T. H.,, G. S. Babini,, N. Woodford,, L. H. Sng,, L. M. Hall,, and D. M. Livermore. 1999. Carbapenem-hydrolysing IMP-1 beta-lactamase in Klebsiella pneumoniae from Singapore. Lancet 353: 2162. (Letter.)
68. Lartigue, M. F.,, V. Leflon-Guibout,, L. Poirel,, P. Nordmann,, and M. H. Nicolas-Chanoine. 2002. Promoters P3, Pa/Pb, P4, and P5 upstream from blaTEM genes and their relationship to β-lactam resistance. Antimicrob. Agents Chemother. 46: 4035 4037.
69. Lauretti, L.,, M. L. Riccio,, A. Mazzariol,, G. Cornaglia,, G. Amicosante,, R. Fontana,, and G. M. Rossolini. 1999. Cloning and characterization of blaVIM, a new integron-borne metallo-β-lactamase gene from a Pseudomonas aeruginosa clinical isolate. Antimicrob. Agents Chemother. 43: 1584 1590.
70. Lee, K.,, Y. S. Lim,, D. Yong,, J. H. Yum,, and Y. Chong. 2003. Evaluation of the Hodge test and the imipenem-EDTA doubledisk synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 41: 4623 4629.
71. Levesque, R. C.,, and G. A. Jacoby. 1988. Molecular structure and interrelationships of multiresistance β-lactamase transposons. Plasmid 19: 21 29.
72. Levison, M. E.,, Y. V. Mailapur,, S. K. Pradham,, G. A. Jacoby,, P. D. Adams,, C. L. Emery,, P. L. May,, and P. G. Pitsakis. 2002. Regional occurrence of plasmid-mediated SHV-7, an extended-spectrum β-lactamase, in Enterobacter cloacae in Philadelphia teaching hospitals. Clin. Infect. Dis. 35: 1551 1554.
73. Levy, S. B. 2002. The 2000 Garrod lecture. Factors impacting on the problem of antibiotic resistance. J. Antimicrob. Chemother. 49: 25 30.
74. Li, X. Z.,, L. Zhang,, and K. Poole. 2000. Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. J. Antimicrob. Chemother. 45: 433 436.
75. Liu, P. Y.,, D. Gur,, L. M. Hall,, and D. M. Livermore. 1992. Survey of the prevalence of 7beta;-lactamases amongst 1000 gram-negative bacilli isolated consecutively at the Royal London Hospital. J. Antimicrob. Chemother. 30: 429 447.
76. Livermore, D. M.,, and D. F. Brown. 2001. Detection of β-lactamase-mediated resistance. J. Antimicrob. Chemother. 48 Suppl 1: 59 64.
77. Livermore, D. M.,, T. G. Winstanley,, and K. P. Shannon. 2001. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J. Antimicrob. Chemother. 48 Suppl 1: 87 102.
78. Martínez-Martínez, L.,, M. C. Conejo,, A. Pascual,, S. Hernández- Allés,, S. Ballesta,, E. Ramírez De Arellano-Ramos,, V. J. Benedí,, and E. J. Perea. 2000. Activities of imipenem and cephalosporins against clonally related strains of Escherichia coli hyperproducing chromosomal β-lactamase and showing altered porin profiles. Antimicrob. Agents Chemother. 44: 2534 2536.
79. Martínez-Martínez, L.,, A. Pascual,, S. Hernández-Allés,, D. Alvarez-Díaz,, A. I. Suárez,, J. Tran,, V. J. Benedí,, and G. A. Jacoby. 1999. Roles of β-lactamases and porins in activities of carbapenems and cephalosporins against Klebsiella pneumoniae. Antimicrob. Agents Chemother. 43: 1669 1673.
80. Materon, I. C.,, A. M. Queenan,, T. M. Koehler,, K. Bush,, and T. Palzkill. 2003. Biochemical characterization of β-lactamases Bla1 and Bla2 from Bacillus anthracis. Antimicrob. Agents Chemother. 47: 2040 2042.
81. Matthew, M. 1979. Plasmid-mediated β-lactamases of gram-negative bacteria: properties and distribution. J. Antimicrob. Chemother. 5: 349 358.
82. Matthew, M.,, R. W. Hedges,, and J. T. Smith. 1979. Types of 7beta;-lactamase determined by plasmids in gram-negative bacteria. J. Bacteriol. 138: 657 662.
83. Medeiros, A. 1997. Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics. Clin. Infect. Dis. 24: S19 S45.
84. Medeiros, A. A. 1984. β-lactamases. Br. Med. Bull. 40: 18 27.
85. Meyer, K. S.,, C. Urban,, J. A. Eagan,, B. J. Berger,, and J. J. Rahal. 1993. Nosocomial outbreak of Klebsiella infection resistant to late-generation cephalosporins. Ann. Intern. Med. 119: 353 358.
86. Miriagou, V.,, L. S. Tzouvelekis,, L. Villa,, E. Lebessi,, A. C. Vatopoulos,, A. Carattoli,, and E. Tzelepi. 2004. CMY-13, a novel inducible cephalosporinase encoded by an Escherichia coli plasmid. Antimicrob. Agents Chemother. 48: 3172 3174.
87. Mittl, P. R.,, L. Luthy,, P. Hunziker,, and M. G. Grutter. 2000. The cysteine-rich protein A from Helicobacter pylori is a β-lactamase. J. Biol. Chem. 275: 17693 17699.
88. Moland, E. S.,, J. A. Black,, A. Hossain,, N. D. Hanson,, K. S. Thomson,, and S. Pottumarthy. 2003. Discovery of CTX-Mlike extended-spectrum 7beta;-lactamases in Escherichia coli isolates from five US States. Antimicrob. Agents Chemother. 47: 2382 2383.
89. Mulvey, M. R.,, E. Bryce,, D. Boyd,, M. Ofner-Agostini,, S. Christianson,, A. E. Simor,, and S. Paton. 2004. Ambler class A extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. in Canadian hospitals. Antimicrob. Agents Chemother. 48: 1204 1214.
90. Murray, B. E. 1992. β-lactamase-producing enterococci. Antimicrob. Agents Chemother. 36: 2355 2359.
91. Murray, B. E.,, and B. D. Mederski-Samoraj. 1983. Transferable β-lactamase: a new mechanism for in vitro penicillin resistance in Streptococcus faecalis. J. Clin. Invest. 72: 1168 1171.
92. Mushtaq, S.,, N. Woodford,, N. Potz,, and D. M. Livermore. 2003. Detection of CTX-M-15 extended-spectrum β-lactamase in the United Kingdom. J. Antimicrob. Chemother. 52: 528 529.
93. Nakano, R.,, R. Okamoto,, Y. Nakano,, K. Kaneko,, N. Okitsu,, Y. Hosaka,, and M. Inoue. 2004. CFE-1, a novel plasmid-encoded AmpC β-lactamase with an ampR gene originating from Citrobacter freundii. Antimicrob. Agents Chemother. 48: 1151 1158.
94. Naumovski, L.,, J. P. Quinn,, D. Miyashiro,, M. Patel,, K. Bush,, S. B. Singer,, D. Graves,, T. Palzkill,, and A. M. Arvin. 1992. Outbreak of ceftazidime resistance due to a novel extended-spectrum β-lactamase in isolates from cancer patients. Antimicrob. Agents Chemother. 36: 1991 1996.
95.NCCLS. 2003. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 6th ed. Approved standard M7-A6. National Committee for Clinical Laboratory Standards, Wayne, Pa.
96.NCCLS. 2003. Performance standards for antimicrobial disk susceptibility tests— eighth edition. Approved standard. NCCLS document M2-A8. National Committee for Clinical Laboratory Standards, Wayne, Pa.
97. Neu, H. C.,, and N. X. Chin. 1985. A perspective on the present contribution of β-lactamases to bacterial resistance with particular reference to induction of β-lactamase and its clinical significance. Chemioterapia 4: 63 70.
98. Newton, G. G. F.,, and E. P. Abraham. 1956. Isolation of cephalosporin C, a penicillin-like antibiotic containing Dalpha aminoadipic acid. Biochem. J. 62: 651 658.
99. Nikaido, H. 1996. Multidrug efflux pumps of gram-negative bacteria. J. Bacteriol. 178: 5853 5859.
100. Normark, S.,, S. Lindquist,, and F. Lindberg. 1986. Chromosomal β-lactam resistance in enterobacteria. Scand. J. Infect. Dis. Suppl. 49: 38 45.
101. Okusu, H.,, D. Ma,, and H. Nikaido. 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178: 306 308.
102. Ouellette, M.,, L. Bissonnette,, and P. H. Roy. 1987. Precise insertion of antibiotic resistance determinants into Tn21-like transposons: nucleotide sequence of the OXA-1 β-lactamase gene. Proc. Natl. Acad. Sci. USA 84: 7378 7382.
103. Pai, H.,, C. I. Kang,, J. H. Byeon,, K. D. Lee,, W. B. Park,, H. B. Kim,, E. C. Kim,, M. D. Oh,, and K. W. Choe. 2004. Epidemiology and clinical features of bloodstream infections caused by AmpC-type-β-lactamase-producing Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48: 3720 3728.
104. Papanicolaou, G. A.,, A. A. Medeiros,, and G. A. Jacoby. 1990. Novel plasmid-mediated β-lactamase (MIR-1) conferring resistance to oxyimino- and α-methoxy β-lactams in clinical isolates of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 34: 2200 2209.
105. Parry, C. M. 2003. Antimicrobial drug resistance in Salmonella enterica. Curr. Opin. Infect. Dis. 16: 467 472.
106. Paterson, D. L. 2001. Extended-spectrum β-lactamases: the European experience. Curr. Opin. Infect. Dis. 14: 697 701.
107. Paterson, D. L.,, K. M. Hujer,, A. M. Hujer,, B. Yeiser,, M. D. Bonomo,, L. B. Rice,, and R. A. Bonomo. 2003. Extended-spectrum β-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type β-lactamases. Antimicrob. Agents Chemother. 47: 3554 3560.
108. Paterson, D. L.,, W. C. Ko,, A. Von Gottberg,, J. M. Casellas,, L. Mulazimoglu,, K. P. Klugman,, R. A. Bonomo,, L. B. Rice,, J. G. McCormack,, and V. L. Yu. 2001. Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum β-lactamases: implications for the clinical microbiology laboratory. J. Clin. Microbiol. 39: 2206 2212.
109. Paterson, D. L.,, W. C. Ko,, A. Von Gottberg,, S. Mohapatra,, J. M. Casellas,, H. Goossens,, L. Mulazimoglu,, G. Trenholme,, K. P. Klugman,, R. A. Bonomo,, L. B. Rice,, M. M. Wagener,, J. G. McCormack,, and V. L. Yu. 2004. Antibiotic therapy for Klebsiella pneumoniae bacteremia: implications of production of extended-spectrum β-lactamases. Clin. Infect. Dis. 39: 31 37.
110. Paterson, D. L.,, W. C. Ko,, A. Von Gottberg,, S. Mohapatra,, J. M. Casellas,, H. Goossens,, L. Mulazimoglu,, G. Trenholme,, K. P. Klugman,, R. A. Bonomo,, L. B. Rice,, M. M. Wagener,, J. G. McCormack,, and V. L. Yu. 2004. International prospective study of Klebsiella pneumoniae bacteremia: implications of extended-spectrum β-lactamase production in nosocomial Infections. Ann. Intern. Med. 140: 26 32.
111. Patzer, J.,, M. A. Toleman,, L. M. Deshpande,, W. Kaminska,, D. Dzierzanowska,, P. M. Bennett,, R. N. Jones,, and T. R. Walsh. 2004. Pseudomonas aeruginosa strains harbouring an unusual blaVIM-4 gene cassette isolated from hospitalized children in Poland (1998-2001). J. Antimicrob. Chemother. 53: 451 456.
112. Perez-Moreno, M. O.,, M. Perez-Moreno,, M. Carulla,, C. Rubio,, A. M. Jardi,, and J. Zaragoza. 2004. Mechanisms of reduced susceptibility to amoxycillin-clavulanic acid in Escherichia coli strains from the health region of Tortosa (Catalonia, Spain). Clin. Microbiol. Infect. 10: 234 241.
113. Perilli, M.,, E. Dell’Amico,, B. Segatore,, M. R. de Massis,, C. Bianchi,, F. Luzzaro,, G. M. Rossolini,, A. Toniolo,, G. Nicoletti,, and G. Amicosante. 2002. Molecular characterization of extended-spectrum β-lactamases produced by nosocomial isolates of Enterobacteriaceae from an Italian nationwide survey. J. Clin. Microbiol. 40: 611 614.
114. Philippon, A.,, G. Arlet,, and G. A. Jacoby. 2002. Plasmid-determined AmpC-type β-lactamases. Antimicrob. Agents Chemother. 46: 1 11.
115. Pitout, J. D.,, K. S. Thomson,, N. D. Hanson,, A. F. Ehrhardt,, E. S. Moland,, and C. C. Sanders. 1998. β-Lactamases responsible for resistance to expanded-spectrum cephalosporins in Klebsiella pneumoniae, Escherichia coli, and Proteus mirabilis isolates recovered in South Africa. Antimicrob. Agents Chemother. 42: 1350 1354.
116. Poirel, L.,, J. W. Decousser,, and P. Nordmann. 2003. Insertion sequence ISE cp1B is involved in expression and mobilization of a bla(CTX-M) β-lactamase gene. Antimicrob. Agents Chemother. 47: 2938 2945.
117. Poirel, L.,, M. Magalhaes,, M. Lopes,, and P. Nordmann. 2004. Molecular analysis of metallo-β-lactamase gene bla SPM-1- surrounding sequences from disseminated Pseudomonas aeruginosa isolates in Recife, Brazil. Antimicrob. Agents Chemother. 48: 1406 1409.
118. Poirel, L.,, T. Naas,, D. Nicolas,, L. Collet,, S. Bellais,, J. D. Cavallo,, and P. Nordmann. 2000. Characterization of VIM-2, a carbapenem-hydrolyzing metallo-β-lactamase and its plasmid- and integron-borne gene from a Pseudomonas aeruginosa clinical isolate in France. Antimicrob. Agents Chemother. 44: 891 897.
119. Pollock, M. R. 1967. Origin and function of penicillinase: a problem in biochemical evolution. Br. Med. J. 4: 71 77.
120. Preston, K. E.,, and R. A. Venezia. 2002. Chromosomal sequences from Klebsiella pneumoniae flank the SHV-5 extended- spectrum β-lactamase gene in pACM1. Plasmid 48: 73 76.
121. Preston, K. E.,, R. A. Venezia,, and K. A. Stellrecht. 2004. The SHV-5 extended-spectrum β-lactamase gene of pACM1 is located on the remnant of a compound transposon. Plasmid 51: 48 53.
122. Queenan, A. M.,, B. Foleno,, C. Gownley,, E. Wira,, and K. Bush. 2004. Effects of inoculum and β-lactamase activity in AmpC- and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae clinical isolates tested by using NCCLS ESBL methodology. J. Clin. Microbiol. 42: 269 275.
123. Quinteros, M.,, M. Radice,, N. Gardella,, M. M. Rodriguez,, N. Costa,, D. Korbenfeld,, E. Couto,, and G. Gutkind. 2003. Extended- spectrum β-lactamases in Enterobacteriaceae in Buenos Aires, Argentina, public hospitals. Antimicrob. Agents Chemother. 47: 2864 2867.
124. Raskine, L.,, I. Borrel,, G. Barnaud,, S. Boyer,, B. Hanau-Bercot,, J. Gravisse,, R. Labia,, G. Arlet,, and M. J. Sanson-Le-Pors. 2002. Novel plasmid-encoded class C β-lactamase (MOX-2) in Klebsiella pneumoniae from Greece. Antimicrob. Agents Chemother. 46: 2262 2265.
125. Rasmussen, B. A.,, and K. Bush. 1997. Carbapenemhydrolyzing β-lactamases. Antimicrob. Agents Chemother. 41: 223 232.
126. Rasmussen, B. A.,, Y. Yang,, N. Jacobus,, and K. Bush. 1994. Contribution of enzymatic properties, cell permeability, and enzyme expression to microbiological activities of beta-lactams in three Bacteroides fragilis isolates that harbor a metallobeta- lactamase gene. Antimicrob. Agents Chemother. 38: 2116 2120.
127. Reisbig, M. D.,, and N. D. Hanson. 2002. The ACT-1 plasmid-encoded AmpC β-lactamase is inducible: detection in a complex β-lactamase background. J. Antimicrob. Chemother. 49: 557 560.
128. Rice, L. B.,, and S. H. Marshall. 1992. Evidence of incorporation of the chromosomal β-lactamase gene of Enterococcus faecalis CH19 into a transposon derived from staphylococci. Antimicrob. Agents Chemother. 36: 1843 1846.
129. Rice, L. B.,, S. H. Willey,, G. A. Papanicolaou,, A. A. Medeiros,, G. M. Eliopoulos,, R. C. Moellering, Jr., and G. A. Jacoby. 1990. Outbreak of ceftazidime resistance caused by extended-spectrum β-lactamases at a Massachusetts chronic-care facility. Antimicrob. Agents Chemother. 34: 2193 2199.
130. Richmond, M. H.,, and R. B. Sykes. 1973. The β-lactamases of gram-negative bacteria and their possible physiological roles. Adv. Microb. Physiol. 9: 31 88.
131. Rottman, M.,, Y. Benzerara,, B. Hanau-Bercot,, C. Bizet,, A. Philippon,, and G. Arlet. 2002. Chromosomal ampC genes in Enterobacter species other than Enterobacter cloacae, and ancestral association of the ACT-1 plasmid-encoded cephalosporinase to Enterobacter asburiae. FEMS Microbiol. Lett. 210: 87 92.
132. Sabate, M.,, F. Navarro,, E. Miro,, S. Campoy,, B. Mirelis,, J. Barbe,, and G. Prats. 2002. Novel complex sul1-type integron in Escherichia coli carrying blaCTX-M-9. Antimicrob. Agents Chemother. 46: 2656 2661.
133. Sanders, C. C.,, and W. E. Sanders, Jr. 1979. Emergence of resistance to cefamandole: possible role of cefoxitin-inducible beta-lactamases. Antimicrob. Agents Chemother. 15: 792 797.
134. Sardelic, S.,, L. Pallecchi,, V. Punda-Polic,, and G. M. Rossolini. 2003. Carbapenem-resistant Pseudomonas aeruginosa carrying VIM-2 metallo-β-lactamase determinants, Croatia. Emerg. Infect. Dis. 9: 1022 1023.
135. Schwaber, M. J.,, P. M. Raney,, J. K. Rasheed,, J. W. Biddle,, P. Williams,, J. E. McGowan, Jr., and F. C. Tenover. 2004. Utility of NCCLS guidelines for identifying extended-spectrum β-lactamases in non- Escherichia coli and Non- Klebsiella spp. of Enterobacteriaceae. J. Clin. Microbiol. 42: 294 298.
136. Shannon, K.,, P. Stapleton,, X. Xiang,, A. Johnson,, H. Beattie,, F. El Bakri,, B. Cookson,, and G. French. 1998. Extended-spectrum β-lactamase-producing Klebsiella pneumoniae strains causing nosocomial outbreaks of infection in the United Kingdom. J. Clin. Microbiol. 36: 3105 3110.
137. Shibata, N.,, Y. Doi,, K. Yamane,, T. Yagi,, H. Kurokawa,, K. Shibayama,, H. Kato,, K. Kai,, and Y. Arakawa. 2003. PCR typing of genetic determinants for metallo-β-lactamases and integrases carried by gram-negative bacteria isolated in Japan, with focus on the class 3 integron. J. Clin. Microbiol. 41: 5407 5413.
138. Stevenson, K. B.,, M. Samore,, J. Barbera,, J. W. Moore,, E. Hannah,, P. Houck,, F. C. Tenover,, and J. L. Gerberding. 2003. Detection of antimicrobial resistance by small rural hospital microbiology laboratories: comparison of survey responses with current NCCLS laboratory standards. Diagn. Microbiol. Infect. Dis. 47: 303 311.
139. Tenover, F. C.,, M. J. Mohammed,, T. S. Gorton,, and Z. F. Dembek. 1999. Detection and reporting of organisms producing extended-spectrum β-lactamases: survey of laboratories in Connecticut. J. Clin. Microbiol. 37: 4065 4070.
140. Toleman, M. A.,, D. Biedenbach,, D. Bennett,, R. N. Jones,, and T. R. Walsh. 2003. Genetic characterization of a novel metallo-β-lactamase gene, blaIMP-13, harboured by a novel Tn 5051-type transposon disseminating carbapenemase genes in Europe: report from the SENTRY worldwide antimicrobial surveillance programme. J. Antimicrob. Chemother. 52: 583 590.
141. Toleman, M. A.,, K. Rolston,, R. N. Jones,, and T. R. Walsh. 2004. blaVIM-7, an evolutionarily distinct metallo-β-lactamase gene in a Pseudomonas aeruginosa isolate from the United States. Antimicrob. Agents Chemother. 48: 329 332.
142. Tzouvelekis, L. S.,, E. Tzelepi,, and A. F. Mentis. 1994. Nucleotide sequence of a plasmid-mediated cephalosporinase gene ( blaLAT-1) found in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 38: 2207 2209.
143. Urban, C.,, K. S. Meyer,, N. Mariano,, J. J. Rahal,, R. Flamm,, B. A. Rasmussen,, and K. Bush. 1994. Identification of TEM- 26 β-lactamase responsible for a major outbreak of ceftazidime- resistant Klebsiella pneumoniae. Antimicrob. Agents Chemother. 38: 392 395.
144. Verdet, C.,, G. Arlet,, G. Barnaud,, P. H. Lagrange,, and A. Philippon. 2000. A novel integron in Salmonella enterica serovar Enteritidis, carrying the blaDHA-1 gene and its regulator gene ampR, originated from Morganella morganii. Antimicrob. Agents Chemother. 44: 222 225.
145. Voladri, R. K.,, D. L. Lakey,, S. H. Hennigan,, B. E. Menzies,, K. M. Edwards,, and D. S. Kernodle. 1998. Recombinant expression and characterization of the major β-lactamase of Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 42: 1375 1381.
146. Wachino, J.,, Y. Doi,, K. Yamane,, N. Shibata,, T. Yagi,, T. Kubota,, H. Ito,, and Y. Arakawa. 2004. Nosocomial spread of ceftazidime- resistant Klebsiella pneumoniae strains producing a novel class A β-lactamase, GES-3, in a neonatal intensive care unit in Japan. Antimicrob. Agents Chemother. 48: 1960 1967.
147. Walsh, T. R.,, A. Bolmstrom,, A. Qwarnstrom,, and A. Gales. 2002. Evaluation of a new Etest for detecting metallo-β-lactamases in routine clinical testing. J. Clin. Microbiol. 40: 2755 2759.
148. Wang, W.,, P. S. Mezes,, Y. Q. Yang,, R. W. Blacher,, and J. O. Lampen. 1985. Cloning and sequencing of the β-lactamase I gene of Bacillus cereus 5/B and its expression in Bacillus subtilis. J. Bacteriol. 163: 487 492.
149. Wong-Beringer, A.,, J. Hindler,, M. Loeloff,, A. M. Queenan,, N. Lee,, D. A. Pegues,, J. P. Quinn,, and K. Bush. 2002. Molecular correlation for the treatment outcomes in bloodstream infections caused by Escherichia coli and Klebsiella pneumoniae with reduced susceptibility to ceftazidime. Clin. Infect. Dis. 34: 135 146.
150. Yagi, T.,, H. Kurokawa,, N. Shibata,, K. Shibayama,, and Y. Arakawa. 2000. A preliminary survey of extended-spectrum β-lactamases (ESBLs) in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Japan. FEMS Microbiol. Lett. 184: 53 56.
151. Yan, J. J.,, W. C. Ko,, and J. J. Wu. 2001. Identification of a plasmid encoding SHV-12, TEM-1, and a variant of IMP-2 metallo-β-lactamase, IMP-8, from a clinical isolate of Klebsiella pneumoniae. Antimicrob. Agents Chemother. 45: 2368 2371.
152. Yang, Y.,, N. Bhachech,, P. A. Bradford,, B. D. Jett,, D. F. Sahm,, and K. Bush. 1998. Ceftazidime-resistant Klebsiella pneumoniae and Escherichia coli isolates producing TEM-10 and TEM-43 β-lactamases from St. Louis, Missouri. Antimicrob. Agents Chemother. 42: 1671 1676.
153. Yatsuyanagi, J.,, S. Saito,, S. Harata,, N. Suzuki,, Y. Ito,, K. Amano,, and K. Enomoto. 2004. Class 1 integron containing metallo-β-lactamase gene blaVIM-2 in Pseudomonas aeruginosa clinical strains isolated in Japan. Antimicrob. Agents Chemother. 48: 626 628.
154. Yomoda, S.,, T. Okubo,, A. Takahashi,, M. Murakami,, and S. Iyobe. 2003. Presence of Pseudomonas putida strains harboring plasmids bearing the metallo-β-lactamase gene blaIMP in a hospital in Japan. J. Clin. Microbiol. 41: 4246 4251.
155. Yoshimura, F.,, and H. Nikaido. 1985. Diffusion of β-lactam antibiotics through the porin channels of Escherichia coli K- 12. Antimicrob. Agents Chemother. 27: 84 92.
156. Yuan, M.,, H. Aucken,, L. M. C. Hall,, T. L. Pitt,, and D. M. Livermore. 1998. Epidemiological typing of klebsiella with extended- spectrum β-lactamases from European intensive care units. J. Antimicrob. Chemother. 41: 527 539.
157. Zscheck, K. K.,, and B. E. Murray. 1991. Nucleotide sequence of the β-lactamase gene from Enterococcus faecalis HH22 and its similarity to staphylococcal β-lactamase genes. Antimicrob. Agents Chemother. 35: 1736 1740.


Generic image for table
Table 1

Functional groups of (3-lactamases based on Bush, Jacoby, and Medeiros scheme (16)

With exceptions for particular enzymes.

IC of clavulanic acid that were >10 µM were considered to be Clav( —). IC that were <1 µM were considered to be Clav(+). IC that were <1 µM for tazobactam are TZB (+).

ESBL, extended-spectrum β-lactamase.

IRTs, inhibitor-resistant TEM β-lactamases.

New group not included in reference 16. Note that functional group 4 enzymes are not included, as this group has not been fully characterized.

Citation: Jacoby G, Bush K. 2005. β-Lactam Resistance in the 21st Century, p 53-65. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch5
Generic image for table
Table 2

Known cassette-associated β-lactamase genes

Citation: Jacoby G, Bush K. 2005. β-Lactam Resistance in the 21st Century, p 53-65. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch5
Generic image for table
Table 3

Likely origin of some plasmid-mediated genes

Citation: Jacoby G, Bush K. 2005. β-Lactam Resistance in the 21st Century, p 53-65. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch5
Generic image for table
Table 4

Reported regional occurrence of plasmid-encoded β-lactamases or β-lactamase families

Includes Croatia, France, Greece, Italy, and Portugal.

Two different enzymes in geographically separated regions (141; Quinn and Queenan, personal communication).

Citation: Jacoby G, Bush K. 2005. β-Lactam Resistance in the 21st Century, p 53-65. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch5
Generic image for table
Table 5

Susceptibility (S) and resistance (R) breakpoints for dilutional or disk susceptibility testing and recommended screening parameters for ESBL detection by the CLSI and British Society for Antimicrobial Chemotherapy (BSAC)

For E. coli and Klebsiella spp. (2).

Citation: Jacoby G, Bush K. 2005. β-Lactam Resistance in the 21st Century, p 53-65. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error