Chapter 17 : Metabolic Indicators of Anaerobic Hydrocarbon Biodegradation in Petroleum-Laden Environments

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Metabolic Indicators of Anaerobic Hydrocarbon Biodegradation in Petroleum-Laden Environments, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap17-2.gif


This chapter reviews the predominant metabolites that can be expected during anaerobic hydrocarbon decay. Many reviews have steadily detailed the state of the art of how various classes of petroleum hydrocarbons are metabolized in the absence of oxygen. The chapter presents a brief overview of that understanding particularly as it relates to anaerobic alkylbenzene, alkane, and polycyclic aromatic hydrocarbon (PAH) decay. The current understanding of anaerobic hydrocarbon decay stems from laboratory studies of isolates or enrichment cultures obtained from petroleum-contaminated environments. Authoritative reports recommend that multiple lines of evidence be collected to verify in situ biodegradation activity including (i) documenting the mass loss of contaminants from the field, (ii) laboratory investigations of contaminant biodegradability, and (iii) inferential field evidence demonstrating that in situ microbial activity is linked to contaminant degradation. Two recent reports have demonstrated the potential usefulness of push-pull tests to evaluate in situ hydrocarbon biotransformation rates. In the first, benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons were injected into an aquifer in the presence of nitrate or sulfate to evaluate hydrocarbon degradation and the production of signature benzylsuccinates. In a separate study, isotopically labeled substrates were used to evaluate the rates of in situ hydrocarbon biotransformation. The lessons to date indicate that while there is a substantial amount of phylogenetic and metabolic diversity, there are also some common metabolic themes. The recognition of these themes allows for the assay and detection of signature metabolites that attest to the transformation of hydrocarbons in a wide variety of environments.

Citation: Gieg L, Suflita J. 2005. Metabolic Indicators of Anaerobic Hydrocarbon Biodegradation in Petroleum-Laden Environments, p 337-356. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abrajano, T. A., Jr.,, B. Yan, and V. O’Malley. 2004. High molecular weight petrogenic and pyrogenic hydrocarbons in aquatic environments, p. 475 509. In H. D. Holland, and K. K. Turekian (ed.), Treatise on Geochemistry, vol. 9. Elsevier, Ltd., Oxford, United Kingdom.
2. Achong, G. R.,, A. M. Rodriguez,, and A. M. Spormann. 2001. Benzylsuccinate synthase of Azoarcus sp. strain T: cloning, sequencing, transcriptional organization, and its role in anaerobic toluene and m-xylene mineralization. J. Bacteriol. 183: 6763 6770.
3. Aeckersberg, F.,, F. Bak,, and F. Widdel. 1991. Anaerobic oxidation of saturated hydrocarbons to CO 2 by a new type of sulfate-reducing bacterium. Arch. Microbiol. 156: 5 14.
4. Aitken, C. M.,, D. M. Jones,, and S. R. Larter. 2004. Evidence for anaerobic hydrocarbon biodegradation in deep sub-surface oil reservoirs. Nature 431: 291 294.
5. Alumbaugh, R. E.,, L. M. Gieg,, and J. A. Field. 2004. Determination of alkylbenzene metabolites in groundwater by solid-phase extraction and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 1042: 89 97.
6. Annweiler, E.,, A. Materna,, M. Safino wski,, A. Kappler,, H. H. Richnow,, W. Michaelis,, and R. U. Meckenstock. 2000. Anaerobic degradation of 2-methylnaphthalene by a sulfate-reducing enrichment culture. Appl. Environ. Microbiol. 66: 5329 5333.
7. Annweiler, E.,, W. Michaelis,, and R. U. Meckenstock. 2001. Anaerobic cometabolic conversion of benzothiophene by a sulfate-reducing enrichment culture and in a tar-oil-contaminated aquifer. Appl. Environ. Microbiol. 67: 5077 5083.
8. Annweiler, E.,, W. Michaelis,, and R. U. Meckenstock. 2002. Identical ring cleavage products during anaerobic degradation of naphthalene, 2- methylnaphthalene, and tetralin indicate a new metabolic pathway. Appl. Environ. Microbiol. 68: 852 858.
9. Arcangeli, J. P.,, and E. Arvin. 1995. Cometabolic transformations of o-xylene in a biofilmsystem under nitrate reducing conditions. Biodegradation 6: 19 27.
10. Ball, H. A.,, H. A. Johnson,, M. Reinhard,, and A. M. Spormann. 1996. Initial reactions in anaerobic ethylbenzene oxidation by a denitrifying bacterium, strain EB1. J. Bacteriol. 178: 5755 5761.
11. Barker, J. F.,, G. C. Patrick,, and D. Major. 1987. Natural attenuation of aromatic hydrocarbons in a shallow sand aquifer. Groundwater Monit. Rev. Winter: 64 71.
12. Beller, H. R. 2000. Metabolic indicators for detecting in situ anaerobic alkylbenzene degradation. Biodegradation 11: 125 139.
13. Beller, H. R. 2002. Analysis of benzylsuccinates in groundwater by liquid chromatography/tandem mass spectrometry and its use for monitoring in situBTEXbiodegradation. Environ. Sci. Technol. 36: 2724 2728.
14. Beller, H. R.,, M. Reinhard,, and D. Grbic´-Galic´ . 1992. Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures. Appl. Environ. Microbiol. 58: 3192 3195.
15. Beller, H. R.,, W.-H. Ding,, and M. Reinhard. 1995. Byproducts of anaerobic alkylbenzene metabolism useful as indicators of in situ bioremediation. Environ. Sci. Technol. 29: 2864 2870.
16. Beller, H. R.,, A. M. Spormann,, P. K. Sharma,, J. R. Cole,, and M. Reinhard. 1996. Isolation and characterization of a novel toluene-degrading sulfate-reducing bacterium. Appl. Environ. Microbiol. 62: 1188 1196.
17. Beller, H. R.,, and A. M. Spormann. 1997a. Anaerobic activation of toluene and o-xylene by addition to fumarate in denitrifying strain T. J. Bacteriol. 179: 670 676.
18. Beller, H. R.,, and A. M. Spormann. 1997b. Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1. Appl. Environ. Microbiol. 63: 3729 3731.
19. Beller, H. R.,, and A. M. Spormann. 1998. Analysis of the novel benzylsuccinate synthase reaction for anaerobic toluene activation based on structural studies of the product. J. Bacteriol. 180: 5454 5457.
20. Beller, H. R.,, and E. A. Edwards. 2000. Anaerobic toluene activation by benzylsuccinate synthase in a highly enriched methanogenic culture. Appl. Environ. Microbiol. 66: 5503 5505.
21. Beller, H. R.,, S. R. Kane,, T. C. Legler,, and P. J. J. Alvarez. 2002. A real-time polymerase chain reaction method for monitoring anaerobic, hydrocarbon- degrading bacteria based on a catabolic gene. Environ. Sci. Technol. 36: 3977 3984.
22. Biegert, T.,, G. Fuchs,, and J. Heider. 1996. Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from toluene and fumarate. Eur. J. Biochem. 238: 661 668.
23. Boll, M.,, G. Fuchs,, and J. Heider. 2002. Anaerobic oxidation of aromatic compounds and hydrocarbons. Curr. Opin. Chem. Biol. 6: 604 611.
24. Callaghan, A. V.,, L. M. Gieg,, K. G. Kropp,, J. M. Suflita,, and L. Y. Young. 2003. Fumarate addition during hexadecane degradation by the sulfate-reducer AK-01, abstr. Q-038, p. 521. Abstr. 103rd Gen. Meet. Am. Soc. Microbiol. 2003. American Society for Microbiology, Washington, D.C..
25. Chakraborty, R.,, and J. D. Coates. 2004. Anaerobic degradation of monoaromatic compounds. Appl. Environ. Biotechnol. 64: 437 446.
26. Chee-Sanford, J. C.,, J. W. Frost,, M. R. Fries,, J. Zhou,, and J. M. Tiedje. 1996. Evidence for acetyl coenzyme A and cinnamoyl coenzyme A in the anaerobic toluene mineralization pathway in Azoarcus tolulyticus Tol-4. Appl. Environ. Microbiol. 62: 964 973.
27. Coates, J. D.,, R. Chakraborty,, J. G. Lack,, S. M. O’Connor,, K. A. Cole,, K. S. Bender,, and L. A. Achenback. 2001. Anaerobic benzene oxidation coupled to nitrate reduction by two strains of Dechloromonas. Nature 411: 1039 1043.
28. Coates, J. D.,, R. Chakraborty,, and M. J. McInerney. 2002. Anaerobic benzene biodegradation— a new era. Res. Microbiol. 153: 621 628.
29. Coschigano, P. W.,, T. S. Wehrman,, and L. Y. Young. 1998. Identification and analysis of genes involved in anaerobic toluene metabolism by strain T1: putative role of a glycine free radical. Appl. Environ. Microbiol. 64: 1650 1656.
30. Cozzarelli, I. M.,, R. P. Eganhouse,, and M. J. Baedecker. 1990. Transformation of monoaromatic compounds to organic acids in anoxic groundwater environment. Environ. Geol. Water Sci. 16: 135 141.
31. Cozzarelli, I. M.,, M. J. Baedecker,, R. P. Eganhouse,, and D. F. Goerlitz. 1994. The geochemical evolution of low-molecular-weight organic acids derived from the degradation of petroleum contaminants in groundwater. Geochim. Cosmochim. Acta 58: 863 877.
32. Cozzarelli, I. M.,, J. S. Herman,, and M. J. Baedecker. 1995. Fate of microbial metabolites of hydrocarbons in a coastal plain aquifer: the role of electron acceptors. Environ. Sci. Technol. 29: 458 469.
33. Cozzarelli, I. M.,, and A. L. Baehr,. 2004. Volatile fuel hydrocarbons and MTBE in the environment, p. 433 474. In H. D. Holland, and K. K. Turekian (ed.), Treatise on Geochemistry, vol. 9. Elsevier, Ltd., Oxford, United Kingdom.
34. Davis, J. W.,, N. J. Klier,, and C. L. Carpenter. 1994. Natural biological attenuation of benzene in groundwater beneath a manufacturing facility. Ground Water 32: 215 226.
35. Elshahed, M. A.,, L. M. Gieg,, M. J. McInerney,, and J. M. Suflita. 2001. Signature metabolites attesting to the in situ attenuation of alkylbenzenes in anaerobic environments. Environ. Sci. Technol. 35: 682 689.
36. Energy Information Administration. 2004. International Energy Outlook 2004. [Online.] Energy Information Administration, Washington, D.C. http://www.eia.doe.gov/oiaf/ieo/index.html.
37. Evans, P. J.,, W. Ling,, B. Goldschmidt,, E. R. Ritter,, and L. Y. Young. 1992. Metabolites formed during anaerobic transformation of toluene and o-xylene and their proposed relationship to the initial steps of toluene mineralization. Appl. Environ. Microbiol. 58: 496 501.
38. Gieg, L. M.,, R. V. Kolhatkar,, M. J. McInerney,, R. S. Tanner,, S. H. Harris,, K. L. Sublette,, and J. M. Suflita. 1999. Evidence for intrinsic bioremediation in a gas condensate-contaminated aquifer. Environ. Sci. Technol. 33: 2550 2560.
39. Gieg, L. M.,, and J. M. Suflita. 2002. Detection of anaerobic metabolites of saturated and aromatic hydrocarbons in petroleum-contaminated aquifers. Environ. Sci. Technol. 36: 3755 3762.
40. Grbić-Galić , D.,, and T. M. Vogel. 1987. Transformation of toluene and benzene by mixed methanogenic cultures. Appl. Environ. Microbiol. 53: 254 260.
41. Griebler, C.,, M. Safinowski,, A. Vieth,, H. H. Richnow,, and R. U. Meckenstock. 2004. Combined application of stable carbon isotope analysis and specific metabolites determination for assessing in situ degradation of aromatic hydrocarbons in a tar oil-contaminated aquifer. Environ. Sci. Technol. 38: 617 631.
42. Harwood, C. S.,, G. Burchhardt,, H. Herrmann,, and G. Fuchs. 1999. Anaerobic metabolism of aromatic compounds via the benzoyl-CoA pathway. FEMS Microbiol. Rev. 22: 439 458.
43. Head, I. M.,, D. M. Jones,, and S. R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 246: 344 352.
44. Hermuth, K.,, B. Leuthner,, and J. Heider. 2002. Operon structure and expression of the genes for benzylsuccinate synthase in Thauera aromatica strain K172. Arch. Microbiol. 177: 132 138.
45. Horstad, I.,, S. R. Larter,, and N. A. Mills. 1992. Quantitative model of biological petroleum degradation within the Brent Group reservoir in the Gullfaks field, Norwegian North Sea. Org. Geochem. 19: 107 117.
46. Istok, J. D.,, M. D. Humphrey,, M. H. Schroth,, M. R. Hyman,, and K. T. O’Reilly. 1997. Single-well, "push-pull" test for in situ determination of microbial activities. Ground Water 35: 619 631.
47. Johnson, H. A.,, D. A. Pelletier,, and A. M. Spormann. 2001. Isolation and characterization of anaerobic ethylbenzene dehydrogenase, a novel Mo-Fe-S enzyme. J. Bacteriol. 183: 4536 4542.
48. Kane, S. R.,, H. R. Beller,, T. C. Legler,, and R. T. Anderson. 2002. Biochemical and genetic evidence of benzylsuccinate synthase in toluenedegrading, ferric iron-reducing Geobacter metallireducens. Biodegradation 13: 149 154.
49. Kleerebezem, R.,, L. W. Hulshoff Pol,, and G. Lettinga. 1999. Energetics of product formation during anaerobic degradation of phthalate isomers and benzoate. FEMS Microbiol. Ecol. 29: 273 282.
50. Kleikemper, J.,, M. H. Schroth,, W. V. Sigler,, M. Schmucki,, S. M. Bernasconi,, and J. Zeyer. 2002. Activity and diversity of sulfate-reducing bacteria in a petroleum hydrocarbon-contaminated aquifer. Appl. Environ. Microbiol. 68: 1516 1523.
51. Kniemeyer, O.,, and J. Heider. 2001a. Ethylbenzene dehydrogenase, a novel hydrocarbon-oxidizing molybdenum/iron-sulfur/heme enzyme. J. Biol. Chem. 276: 21381 21386.
52. Kniemeyer, O.,, and J. Heider. 2001b. (S)-1- Phenylethanol dehydrogenase of Azoarcus sp. strain EbN1, an enzyme of anaerobic ethylbenzene catabolism. Arch. Microbiol. 176: 129 135.
53. Kniemeyer, O.,, T. Fischer,, H. Wilkes,, F. O. Glö ckner,, and F. Widdel. 2003. Anaerobic degradation of ethylbenzene by a new type of marine sulfate-reducing bacterium. Appl. Environ. Microbiol. 69: 760 768.
54. Krieger, C. J.,, H. R. Beller,, M. Reinhard,, and A. M. Spormann. 1999. Initial reactions in anaerobic oxidation of m-xylene by the denitrifying bacterium Azoarcus sp. strain T. J. Bacteriol. 181: 6403 6410.
55. Krieger, C. J.,, W. Roseboom,, S. P. J. Albracht,, and A.M. Spormann. 2001. Astable organic free radical in anaerobic benzylsuccinate synthase of Azoarcus sp. strain T. J. Biol. Chem. 276: 12924 12927.
56. Kropp, K. G.,, I. A. Davidova,, and J. M. Suflita. 2000. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl. Environ. Microbiol. 66: 5393 5398.
57. Leuthner, B.,, C. Leutwein,, H. Schulz,, P. Horth,, W. Haehnel,, E. Schiltz,, H. Schagger,, and J. Heider. 1998. Biochemical and genetic characterization of benzylsuccinate synthase from Thauera aromatica: a new glycyl radical enzyme catalyzing the first step in anaerobic toluene catabolism. Mol. Microbiol. 28: 615 628.
58. Leutwein, C.,, and J. Heider. 1999. Anaerobic toluene-catabolic pathway in denitrifying Thauera aromatica: activation and β-oxidation of the first intermediate, (R)-(þ)-benzylsuccinate. Microbiology 145: 3265 3271.
59. Leutwein, C.,, and J. Heider. 2001. Succinyl- CoA:(R)-benzylsuccinate CoA-transferase: an enzyme of the anaerobic toluene catabolic pathway in denitrifying bacteria. J. Bacteriol 183: 4288 4295.
60. Leutwein, C.,, and J. Heider. 2002. (R)-Benzylsuccinyl- CoA dehydrogenase of Thauera aromatica, an enzyme of the anaerobic toluene catabolic pathway. Arch. Microbiol. 178: 517 524.
61. Levine, A. D.,, E. L. Libelo,, G. Bugna,, T. Shelley,, H. Mayfield,, and T. B. Stauffer. 1997. Biogeochemical assessment of natural attenuation of JP-4 contaminated groundwater in the presence of fluorinated surfactants. Sci. Total Environ. 208: 179 195.
62. Madsen, E. L. 1991. Determining in situ biodegradation: facts and challenges. Environ. Sci. Technol. 25: 1663 1673.
63. Madsen, E. L., 2001. Intrinsic bioremediation of organic subsurface contaminants, p. 249 278. In J. K. Fredrickson, and M. Fletcher (ed.), Subsurface Microbiology and Biogeochemistry. Wiley-Liss, Inc., New York, N.Y.
64. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77: 103 116.
65. Mahajan, M. C.,, P. S. Phale,, and C. S. Vaidyanathan. 1994. Evidence for the involvement of multiple pathways in the biodegradation of 1- and 2-methylnaphthalene by Pseudomonas putida CSV86 . Arch. Microbiol. 161: 425 433.
66. Mancini, S. A.,, A. C. Ulrich,, G. Lacrampe- Couloume,, B. Sleep,, E. A. Edwards,, and B. Sherwood Lollar. 2003. Carbon and hydrogen isotopic fractionation during anaerobic biodegradation of benzene. Appl. Environ. Microbiol. 69: 191 198.
67. Martus, P.,, and W. Pü ttman. 2003. Formation of alkylated aromatic acids in groundwater by anaerobic degradation of alkylbenzenes. Sci. Total Environ. 307: 19 33.
68. Meckenstock, R. U.,, E. Annweiler,, W. Michaelis,, H. H. Richnow,, and B. Schink. 2000. Anaerobic naphthalene degradation by a sulfatereducing enrichment culture. Appl. Environ. Microbiol. 66: 2743 2747.
69. Meckenstock, R. U.,, M. Safinowski,, and C. Griebler. 2004. Anaerobic degradation of polycyclic aromatic hydrocarbons. FEMS Microbiol. Ecol. 49: 27 36.
70. Morasch, B.,, B. Schink,, C. C. Tebbe,, and R. U. Meckenstock. 2004a. Degradation of o-xylene and m-xylene by a novel sulfate-reducer belonging to the genus Desulfotomaculum. Arch. Microbiol. 181: 407 417.
71. Morasch, B.,, H.H. Richnow,, A. Vieth,, B. Schink,, and R. U. Meckenstock. 2004b. Stable isotope fractionation caused by glycyl radical enzymes during bacterial degradation of aromatic compounds. Appl. Environ. Microbiol. 70: 2935 2940.
72. Mü ller, J. A.,, A. S. Galushko,, A. Kappler,, and B. Schink. 1999. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172: 287 294.
73. Mü ller, J. A.,, A. S. Galushko,, A. Kappler,, and B. Schink. 2001. Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in Desulfobacterium cetonicum. J. Bacteriol. 183: 752 757.
74. National Energy Policy Development Group. 2001. National Energy Policy. U.S. Government Printing Office, Washington, D.C..
75. National Research Council. 1993. In Situ Bioremediation: When Does It Work? National Academies Press, Washington, D.C..
76. National Research Council. 2000. Natural Attenuation for Groundwater Remediation. National Academies Press, Washington, D.C..
77. National Research Council. 2003. Oil in the Sea III: Inputs, Fates, and Effects. National Academies Press, Washington, D.C.
78. Nozawa, T.,, and Y. Maruyama. 1988. Anaerobic metabolism of phthalate and other aromatic compounds by a denitrifying bacterium. J. Bacteriol. 170: 5778 5784.
79. Ohlenbusch, G.,, C. Zwiener,, R. U. Meckenstock,, and F. H. Frimmel. 2002. Identification and quantification of polar naphthalene derivatives in contaminated groundwater of a former gas plant site by liquid chromatography-electrospray ionization tandem mass spectrometry. J. Chromatogr. A 967: 201 207.
80. Palmer, S. E., 1993. Effect of biodegradation and water washing on crude oil composition, p. 511 534. In S. A. Macko, and M. H. Engel (ed.), Organic Geochemistry. Plenum Press, New York, N.Y..
81. Phelps, C. D.,, J. Battistelli,, and L. Y. Young. 2002. Metabolic biomarkers for monitoring anaerobic naphthalene biodegradation in situ. Environ. Microbiol. 4: 532 537.
82. Pierce, A. E. 1968. Silylation of Organic Compounds. Pierce Chemical Co., Rockford, Ill.
83. Rabus, R.,, and F. Widdel. 1995. Anaerobic degradation of ethylbenzene and other hydrocarbons by new denitrifying bacteria. Arch. Microbiol. 163: 96 103.
84. Rabus, R.,, and J. Heider. 1998. Initial reactions of anaerobic metabolism of alkylbenzenes in denitrifying and sulfate-reducing bacteria. Arch. Microbiol. 170: 377 384.
85. Rabus, R.,, H. Wilkes,, A. Behrends,, A. Armstroff,, T. Fischer,, A. J. Pierik,, and F. Widdel. 2001. Anaerobic initial reaction of n-alkanes in a denitrifying bacterium: evidence for (1-methylpentyl)succinate as initial product and for involvement of an organic radical in n-hexane metabolism. J. Bacteriol. 183: 1707 1715.
86. Reinhard, M.,, N. L. Goodman,, and J. F. Barker. 1984. Occurrence and distribution of organic chemicals in two landfill leachate plumes. Environ. Sci. Technol. 18: 953 961.
87. Reinhard, M.,, S. Shang,, P. K. Kitanidis,, E. Orwin,, G. D. Hopkins,, and C. A. Lebron. 1997. In situ BTEX biotransformation under enhanced nitrateand sulfate-reducing conditions. Environ. Sci.Technol. 31: 28 36.
88. Reusser, D. E.,, J. D. Istok,, H. R. Beller,, and J. A. Field. 2002. In situ transformation of deuterated toluene and xylene to benzylsuccinic acid analogues in BTEX-contaminated aquifers. Environ. Sci. Technol. 36: 4127 4134.
89. Rios-Hernandez, L. A.,, L. M. Gieg,, and J. M. Suflita. 2003. Biodegradation of an alicyclic hydrocarbon by a sulfate-reducing enrichment from a gas condensate-contaminated aquifer. Appl. Environ. Microbiol. 69: 434 443.
90. Röling, W. F. M.,, I. M. Head,, and S. R. Larter. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res. Microbiol. 154: 321 328.
91. Schmitt, R.,, H.-R. Langguth,, W. Pu¨ ttmann,, H. P. Rohns,, P. Eckert,, and J. Schubert. 1996. Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow sand and gravel aquifer of the Lower Rhine Valley, Germany. Org. Geochem. 25: 41 50.
92. So, C. M.,, C. D. Phelps,, and L. Y. Young. 2003. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl. Environ. Microbiol. 69: 3892 3900.
93. Suflita, J. M.,, I. A. Davidova,, L. M. Gieg,, M. Nanny,, and R. C. Prince,. 2004. Anaerobic hydrocarbon biodegradation and the prospects for microbial enhanced energy production, p. 283 306. In R. Vazquez-Duhalt, and R. Quintero- Ramirez (ed.), Petroleum Biotechnology: Developments and Perspectives, vol. 151. Elsevier Science, Amsterdam, The Netherlands
94. Sullivan, E. R.,, X. Zhang,, C. Phelps,, and L. Y. Young. 2001. Anaerobic mineralization of stableisotope- labeled 2-methylnaphthalene. Appl. Environ. Microbiol. 67: 4353 4357.
95. U.S. Environmental Protection Agency. 2001. Underground Storage Tanks. [Online.] U.S. Environmental Protection Agency, Washington, D.C. http://www.epa.gov/swerust1/cat/index.htm.
96. Van Hamme, J. D.,, A. Singh,, and O. P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503 549.
97. Widdel, F.,, and R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12: 259 276.
98. Wiedemeier, T.,, J. Wilson,, D. Kampbell,, R. Miller,, and J. Hansen. 1995. Technical Protocol for Implementing Intrinsic Remediation with Long- Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Groundwater. Air Force Center for Environmental Excellence, San Antonio, Tex..
99. Wilkes, H.,, R. Rabus,, T. Fischer,, A. Armstroff,, A. Behrends,, and F. Widdel. 2002. Anaerobic degradation of n-hexane in a denitrifying bacterium: further degradation of the initial intermediate (1-methypentyl)succinate via skeletal rearrangement. Arch. Microbiol. 177: 235 243.
100. Wilkes, H.,, S. Kuhner,, C. Bolm,, T. Fischer,, A. Classen,, F. Widdel,, and R. Rabus. 2003. Formation of n-alkane- and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org. Geochem. 34: 1313 1323.
101. Williams, R. A.,, K. A. Shuttle,, J. L. Kunkler,, E. L. Madsen,, and S. W. Hooper. 1997. Instrinsic bioremediation in a solvent-contaminated alluvial groundwater. J. Ind. Microbiol. 18: 177 188.
102. Wilson, B. H.,, J. T. Wilson,, D. H. Kampbell,, B. E. Bledsoe,, and J. M. Armstrong. 1990. Biotransformation of monoaromatic and chlorinated hydrocarbons at an aviation gasoline spill site. Geomicrobiol. J. 8: 225 240.
103. Zengler, K.,, J. Heider,, R. Rosselló-Mora,, and F. Widdel. 1999. Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch. Microbiol. 172: 204 212.
104. Zhang, X.,, and L. Y. Young. 1997. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrene by sulfidogenic consortia. Appl. Environ. Microbiol. 63: 4759 4764.
105. Zhang, X.,, E. R. Sullivan,, and L. Y. Young. 2000. Evidence for aromatic ring reduction in the biodegradation pathway of carboxylated naphthalene by a sulfate-reducing consortium. Biodegradation 11: 117 124.


Generic image for table

Key mass spectral characteristics used to identify signature anaerobic hydrocarbon metabolites

Citation: Gieg L, Suflita J. 2005. Metabolic Indicators of Anaerobic Hydrocarbon Biodegradation in Petroleum-Laden Environments, p 337-356. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error