1887

Chapter 4 : Hyperthermophilic and Methanogenic Archaea in Oil Fields

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Hyperthermophilic and Methanogenic Archaea in Oil Fields, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap04-2.gif

Abstract:

The origin of microorganisms in oil reservoirs has been the subject of much interest in the last decades; scientists have provided evidence of active microbial communities in situ since the 1920s. Members of the genus are hyperthermophiles and obtain energy by reducing oxidized sulfur compounds to HS. species, because of their ability to reduce sulfate, may be important contributors of biogenic HS generation in high-temperature oil fields. A number of pure cultures of methanogenic classified in different taxonomic groups have been isolated from oil deposits. Isolation of methanogens has been successful from slightly saline to saline oil well waters in the mesophilic range of temperatures. The parallel analysis of high-temperature enrichment cultures from the formation waters of four oil fields showed that contrary to the , none of the methanogens recovered from the culture-independent analysis were obtained in cultures. Low-temperature oil reservoirs have been explored to a lesser extent than high-temperature ones. A study reported few 16S rRNA sequences affiliated with a limited number of mesophilic aerobic bacteria belonging to the genera , , and . Laboratory experiments have shown that thermophilic sulfate reducers are able to grow on unidentified components of crude oil.

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4

Key Concept Ranking

Bacteria and Archaea
0.48997337
Restriction Fragment Length Polymorphism
0.4473622
0.48997337
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic tree of the archaeal domain and related archaeal 16S rRNA gene phylotypes from Monterey-sourced production fluids. Phylotypes O1 and O2 were obtained from total community DNA by using a universal and an archaea-specific set of primers, respectively. Phylotypes R and M were identified in enrichments from Rincon and Monterey formations, respectively; vp sequences are from isolates. A neighbor-joining tree was generated from a mask of 331 nucleotide positions (numbering 20 to 958) with (GenBank accession number Z30214) and (GenBank accession number M21774) serving as outgroups. Bootstrap values (n=1,000 replicates) of ≥50 are reported as percentages. The scale bar represents the number of changes per nucleotide position. Reprinted from ( )

Phylogenetic tree of the archaeal domain and related archaeal 16S rRNA gene phylotypes from Monterey-sourced production fluids. Phylotypes O1 and O2 were obtained from total community DNA by using a universal and an archaea-specific set of primers, respectively. Phylotypes R and M were identified in enrichments from Rincon and Monterey formations, respectively; vp sequences are from isolates. A neighbor-joining tree was generated from a mask of 331 nucleotide positions (numbering 20 to 958) with (GenBank accession number Z30214) and (GenBank accession number M21774) serving as outgroups. Bootstrap values (n=1,000 replicates) of ≥50 are reported as percentages. The scale bar represents the number of changes per nucleotide position. Reprinted from ( )

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Hybridization of Texas red-labeled 16S rRNAs to the microchip. The microchip with immobilized probes was hybridized to in vitrotranscribed 16S rRNAs obtained from formation water of well 757. Specific oligonucleotide probes were loaded on the microchip as follows: A1, probe 54 ( and ); A2, probe 21 (); A3 and A4, probes 25 and 27, respectively (); B1, probe 4 (); B2, probe 5 (); B3, probe 58 ( plus ); C1, probe 39 (); C2, probe 50 (); C3, probe 6 ( and ); C4, probe 30 (); D1, probe 44 (); D2 and D3, probes 46 and 48, respectively (); E1, probe 52 (); E2; probe 55 ( and ); and E4, probe 53 (). B4, D4, and E3 were empty gel elements. Reprinted from ( )

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap4
1. Adkins, J. P.,, L. A. Cornell,, and R. S. Tanner. 1992. Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiol. J. 10: 87 97.
2. Aitken, C. M.,, D. M. Jones,, and S. R. Larter. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431: 291 294.
3. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143 169.
4. Barns, S. M.,, C. F. Delwiche,, J. D. Palmer,, and N. R. Pace. 1996. Perspectives on archaeal diversity, thermophily and monophily from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93: 9188 9193.
5. Bastin, E. 1926. Microorganisms in oilfields. Science 63: 21 24.
6. Beeder, J.,, R. K. Nilsen,, T. Torsvik,, and T. Lien. 1994. Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl. Environ. Microbiol. 60: 1227 1231.
7. Belyaev, S. S.,, and M. V. Ivanov. 1983. Bacterial methanogenesis in underground waters. Ecol. Bull. 35: 273 280.
8. Belyaev, S. S.,, R. Wolkin,, W. R. Kenealy,, M. J. DeNiro,, S. Epstein,, and J. G. Zeikus. 1983. Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol. 45: 691 697.
9. Belyaev, S. S.,, A. Y. Obraztsova,, K. S. Laurinavichus,, and L. V. Bezrukova. 1986. Characteristics of rod-shaped methane-producing bacteria from oil pool and description of Methanobacterium ivanovii sp. nov. Microbiology 55: 821 826.
10. Bernard, F. P.,, J. Connan,, and M. Magot. 1992. Indigenous microorganisms in connate waters of many oil fields: a new tool in exploration and production techniques. (SPE 24811.) In Proceedings of the 67th SPE Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
11. Blotevogel, K. H.,, and U. Fisher. 1985. Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans, sp. nov. Arch. Microbiol. 142: 218 222.
12. Bolliger, C.,, F. Schö nholzer,, M. H. Schroth,, D. Hahn,, S. M. Bernasconi,, and J. Zeyer. 2000. Characterizing intrinsic bioremediation in a petroleum hydrocarbon-contaminated aquifer by combined chemical, isotopic, and biological analyses. Biorem. J. 4: 359 371.
13. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A. N. Perov,, A. D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon,, and C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69: 6143 6151.
14. Boone, D. R., 2001. Genus IV: Methanothermobacter, p. 230 233. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
15. Borzenkov, I. A.,, S. S. Belyaev,, Y. M. Miller,, I. A. Davidova,, and M. V. Ivanov. 1997. Methanogenesis in the highly mineralized stratal waters of the Bondyuzhskoe oil field. Microbiology (New York) 66: 104 110.
16. Burggraf, S.,, H. W. Jannasch,, B. Nicolaus,, and K. O. Stetter. 1990. Archaeoglobus profundus, sp. nov., represents a new species within the sulfatereducing archaebacteria. Syst. Appl. Microbiol. 13: 24 28.
17. Corre, E. 2000. Approches moléculaires de la diversité microbienne de deux environnements extrêmes: les sources hydrothermalesetles réservoirs pétroliers. Ph.D. thesis. Université de Bretagne Occidentale, Brest, France.
18. Davidova, I. A.,, H. J. M. Harmsen,, A. J. M. Stams,, S. S. Belyaev,, and A. J. B. Zehnder. 1997. Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus. Antonie Leeuwenhoek 71: 313 318.
19. Davydova-Charakhch’yan, I. A.,, V. G. Kuznetsova,, L. L. Mityushina,, and S. S. Belyaev. 1993. Methane-forming bacilli from oil fields of Tataria and western Siberia. Microbiology (New York) 61: 202 207.
20. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89: 5685 5689.
21. Dojka, M. A.,, P. Hugenholtz,, S. K. Haack,, and N. R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869 3877.
22. Ekzertsev, V. A.,, and S. I. Kuznetsov. 1954. Examination of microflora of oil fields of the Second Baku. Mikrobiologiya 23: 3 14. (In Russian.)
23. Garrity, G. M.,, and J. G. Holt,. 2001. The road map to the manual, p. 119 166. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
24. Ghiorse, W. C.,, and J. T. Wilson. 1988. Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33: 107 172.
25. Grabowski-Lux, A. 2004. Analyse de la diversité microbienne d'un gisement pétrolier biodégradé. Ph.D.thesis. Université de Bretagne Occidentale, Brest, France.
26. Grassia, G. C.,, K. M. McLean,, P. Glénat,, J. Bauld,, and A. Sheehy. 1996. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21: 47 58.
27. Head, I. M.,, J. R. Saunders,, and R. W. Pickup. 1998. Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35: 1 21.
28. Head, I. M.,, D. M. Jones,, and S. R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344 352.
29. Hermann, M.,, J. P. Vandecasteele,, and D. Ballerini,. 1992. Anaerobic microflora of oil reservoirs: microbiological characterization of samples from some production wells, p. 223 234. In R. Vially (ed.), Bacterial Gas. Editions Technip, Paris, France.
30. Huber, H.,, M. J. Hohn,, R. Rachel,, T. Fuchs,, V. C. Wimmer,, and K. O. Stetter. 2002. A new phylum of Archaea, represented by a nanosized hyperthermophilic symbiont. Nature 417: 63 67.
31. Huber, H.,, M. J. Hohn,, K. O. Stetter,, and R. Rachel. 2003. The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life. Res. Microbiol. 154: 165 171.
32. Huber, H., and K. O. Stetter,. 2001. Genus I: Archaeoglobus, p. 349 252. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
33. Huber, H.,, M. Thomm,, H. Kö nig,, G. Thies,, and K. O. Stetter. 1982. Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132: 47 50.
34. Huber, R.,, H. W. Jannasch,, R. Rachel,, T. Fuchs,, and K. O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst. Appl. Microbiol. 20: 374 380.
35. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic area. Genome Biol. 3: 1 8.
36. Ivanov, M. V.,, S. S. Belyaev,, A. M. Zyakun,, V. A. Bondar,, and K. S. Laurinavichus. 1983. Microbiological methane formation in oil field development. Geokhimiya 11: 1647 1654.
37. Ivanov, M. V.,, S. S. Belyaev,, K. S. Laurinavichus,, A. Y. Obraztsova,, A. Y. Gorlatov,, and V. A. Bondar. 1985. Development dynamic of microbiological processes after oxidation of oil field aquifers. Microbiology (New York) 54: 293 300.
38. Jeanthon, C.,, S. L’Haridon,, A.-L. Reysenbach,, M. Vernet,, P. Messner,, U. W. Sleytr,, and D. Prieur. 1998. Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48: 913 919.
39. Jeanthon, C.,, S. L’Haridon,, N. Pradel,, and D. Prieur. 1999. Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int. J. Syst. Bacteriol. 49: 591 594.
40. Jurgens, G.,, K. Lindstrom,, and A. Saano. 1997. Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl. Environ. Microbiol. 63: 803 805.
41. Kotelnikova, S. V.,, A. Y. Obraztsova,, K.-H. Blotevogel,, and I. N. Popov. 1993. Taxonomic analysis of thermophilic strains of the genus Methanobacterium: reclassification of Methanobacterium thermoalcaliphilum as a synonym of Methanobacterium thermoautotrophicum. Int. J. Syst. Bacteriol. 43: 591 596.
42. Kuznetsov, S. I. 1950. Examination of the possibility of contemporary methanogenesis in gas- and petroleum-bearing facies of the Saratov and Buguruslan province. Mikrobiologiya 19: 193 202 ( In Russian.)
43. L’Haridon, S.,, A.-L. Reysenbach,, P. Glénat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in a continental oil reservoir. Nature 337: 223 224.
44. Magot, M. 1996. Similar bacteria in remote oil fields. Nature 379: 681.
45. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77: 103 116.
46. Marteinsson, V. T.,, S. Hauksdó ttir,, C. F. V. Hobel,, H. Kristmannsdó ttir,, G. O. Hreggvidsson,, and J. K. Kristjánsson. 2001a. Phylogenetic diversity of subterranean hot springs in Iceland. Appl. Environ. Microbiol. 67: 4242 4248.
47. Marteinsson, V. T.,, J. K. Kristjánsson,, H. Kristmannsdó ttir,, M. Dahlkvist,, K. Sæmundsson,, M. Hannington,, S. K. Pétursdó ttir,, A. Geptner,, and P. Stoffers. 2001b. Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, northern Iceland, and a novel thermal microbial habitat. Appl. Environ. Microbiol. 67: 827 833.
48. Miroshnichenko, M. L.,, H. Hippe,, E. Stackebrandt,, N. A. Kostrikina,, N. A. Chernyh,, C. Jeanthon,, T. N. Nazina,, S. S. Belyaev,, and E. A. Bonch-Osmolovskaya. 2001. Isolation and characterization of Thermococcus sibiricus sp. nov. from a western Siberia high temperature oil reservoir. Extremophiles 5: 85 91.
49. Nazina, T. N.,, A. E. Ivanova,, I. A. Borzenkov,, S. S. Belyaev,, and M. V. Ivanov. 1995. Occurrence and geochemical activity of microorganisms in high-temperature, water-flooded oil fields of Kazakhstan and Western Siberia. Geomicrobiol. J. 13: 181 192.
50. Nazina, T. N.,, and E. P. Rozanova. 1980. Ecological conditions of the occurrence of methanogenic bacteria in oil reservoirs of the Apsheron. Mikrobiologiya 49: 123 129. (In Russian.)
51. Nazina, T. N.,, E. P. Rozanova,, and S. I. Kuznetsov. 1985. Microbial oil transformation processes accompanied by methane and hydrogensulfide formation. Geomicrobiol. J. 4: 103 130.
52. Nercessian, O.,, N. Bienvenu,, D. Moreira,, D. Prieur,, and C. Jeanthon. 2005. Diversity of functional genes of methanogens, methanotrophs and sulfate-reducers in deep-sea hydrothermal environments. Environ. Microbiol 7: 118 132.
53. Nercessian, O.,, A. L. Reysenbach,, D. Prieur,, and C. Jeanthon. 2003. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13 °N). Environ. Microbiol. 5: 492 502.
54. Neuner, A.,, H. W. Jannasch,, S. Belkin,, and K. O. Stetter. 1990. Thermococcus litoralis, sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153: 205 207.
55. Ng, T. K.,, P. J. Weimer,, and L. J. Gawel. 1989. Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the San Miguelito field, Ventura County, California. Geomicrobiol. J. 7: 185 192.
56. Ni, S.,, and D. R. Boone. 1991. Isolation and characterization of a dimethyl sulfide degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/M T, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 41: 410 416.
57. Ni, S.,, C. R. Woese,, H. C. Aldrich,, and D. R. Boone. 1994. Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int. J. Syst. Bacteriol. 44: 357 359.
58. Nilsen, R. K. J. Beeder, T. Thorstenson, and T. Torsvik. 1996. Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol. 62: 1793 1798.
59. Nilsen, R. K.,, and T. Torsvik. 1996. Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl. Environ. Microbiol. 62: 728 731.
60. Obraztsova, A. Y.,, O. V. Shipin,, S. S. Belyaev,, and M. V. Ivanov. 1984. Biological characteristics of halophilic methanogen isolated from oil bed. Dokl. Akad. Nauk. SSSR 278: 227 230 (In Russian.)
61. Obraztsova, A. Y.,, O. V. Shipin,, L. V. Bezrukova,, and S. S. Belyaev. 1987a. Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp. nov. Microbiology (New York) 56: 523 527.
62. Obraztsova, A. Y.,, V. E. Tsyban,, K. S. Laurinavichus,, L. V. Bezrukova,, and S. S. Belyaev. 1987b. Biological properties of Methanosarcina not utilizing carbonic acid and hydrogen. Microbiology (New York) 56: 807 812.
63. Ollivier, B.,, P. Caumette,, J. L. Garcia,, and R. A. Mah. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58: 27 38.
64. Ollivier, B.,, J. L. Cayol,, B. K. C. Patel,, M. Magot,, M. L. Fardeau,, and J. L. Garcia. 1997. Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium isolated from an oil-producing well. FEMS Microbiol. Lett. 147: 51 56.
65. Ollivier, B.,, M. L. Fardeau,, J. L. Cayol,, M. Magot,, B. K. C. Patel,, G. Prensier,, and J. L. Garcia. 1998. Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int. J. Syst. Bacteriol. 48: 821 828.
66. Orphan, V. J.,, S. K. Goffredi,, E. F. DeLong,, and J. R. Boles. 2003. Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol. J. 20: 295 311.
67. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl,, and E. F. DeLong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66: 700 711.
68. Pace, N. R.,, D. A. Stahl,, D. L. Lane,, and G. J. Olsen. 1985. Analyzing natural microbial populations by rRNA sequences. ASM News 51: 4 12.
69. Parkes, R. J.,, B. A. Cragg,, S. J. Bale,, J. M. Getliff,, K. Goodman,, P. A. Rochelle,, J. C. Fry,, A. J. Weightman,, and S. J. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371: 410 413.
70. Revesz, K.,, T. B. Coplen,, M. J. Baedecker,, and P. D. Glynn. 1995. Methane production and consumption monitored by stable H and C isotope ratios at crude oil spill site, Bemidji, Minnesota. Appl. Geochem. 10: 505 516.
71. Reysenbach, A. L.,, K. Longnecker,, and J. Kirshtein. 2000. Novel bacterial and archaeal lineages from an in situ growth chamber depoyed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66: 3798 3806.
72. Röling, W. F. M.,, I. M. Head,, and S. R. Larter. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res. Microbiol. 15: 321 328.
73. Slobodkin, A. I.,, C. Jeanthon,, S. L’Haridon,, T. N. Nazina,, M. L. Miroshnichenko,, and E. A. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39: 99 102.
74. Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10: 172 173.
75. Stetter, K. O.,, and R. Huber,. 1999. The role of hyperthermophilic prokaryotes in oil fields, p. 369 375. In C. R. Bell,, M. Brylinsky,, and P. Johnson-Green (ed.), Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
76. Stetter, K. O.,, R. Huber,, E. Blö chl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743 745.
77. Stetter, K. O.,, G. Lauerer,, M. Thomm,, and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236: 822 824.
78. Stevens, T. O., and J. P. McKinley. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270: 450 454.
79. Szewzyk, U.,, R. Szewzyk,, and T. A. Stenstro¨m. 1994. Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden. Proc. Natl. Acad. Sci. USA 91: 1810 1813.
80. Takahata, Y.,, T. Hoaki,, and T. Maruyama. 2001. Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs. Arch. Microbiol. 176: 264 270.
81. Takahata, Y.,, M. Nishijima,, T. Hoaki,, and T. Maruyama. 2000. Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl. Environ. Microbiol. 66: 73 79.
82. Takai, K.,, and K. Horikoshi. 1999. Genetic diversity of Archaea in deep-sea hydrothermal environments. Genetics 152: 1285 1297.
83. Teske, A.,, K.U. Hinrichs,, V. Edgcomb,, A. deVera Gomez,, D. Kysela,, S.P. Sylva,, M.L. Sogin,, and H. W. Jannasch. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68: 1994 2007.
84. Vargas, M.,, K. Kashefi,, E. L. Blunt-Harris,, and D. R. Lovley. 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395: 65 67.
85. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen,, and D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62: 1623 1629.
86. Vorholt, J. A.,, J. Kunow,, K. O. Stetter,, and R. K. Thauer. 1995. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163: 112 118.
87. Wasserfallen, A.,, J. No¨lling,, P. Pfister,, J. Reeve,, and E. Conway de Macario. 2000. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermoautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 50: 43 53.
88. Whitman, W. B., 2001. Genus II: Methanothermococcus gen. nov., p. 241 42. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol 1. Springer- Verlag, New York, N.Y.
89. Widdel, F.,, and R. Rabus. 2001. Anaerobic degradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12: 259 276.
90. Woese, C. R.,, O. Kandler,, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576 4579.
91. Zengler, K.,, H. H. Richnow,, R. Rossello-Mora,, W. Michaelis,, and F. Widdel. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266 269.
92. Zillig, W., 2001. Genus I: Desulfurococcus, p. 181 182. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
93. Zillig, W.,, I. Holz,, D. Janekovic,, W. Schäfer,, and W. D. Reiter. 1983. The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4: 88 94.
94. Zillig, W.,, and A. L. Reysenbach,. 2001. Order I: Thermococcales, p. 341. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.

Tables

Generic image for table
Table 1

Characterized archaea isolated from oil reservoirs

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error