1887

Chapter 7 : Bioremediation of Marine Oil Spills

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Bioremediation of Marine Oil Spills, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap07-2.gif

Abstract:

Bioremediation offers an environmentally appropriate and cost-effective response to marine oil spills that reach shore and is deservedly part of the "tool kit" available to spill responders. This chapter provides an overview of the composition of crude oil and the refined fractions that may be spilled at sea, discusses the diversity of organisms able to degrade oil components, and describes strategies for encouraging the growth of such organisms. It describes how bioremediation can be integrated with physical techniques to deliver an optimal cleanup and also discusses the environmental harm that might be done if bioremediation were applied carelessly and how this potential can be minimized. Crude oils are principally hydrocarbons, molecules composed of only carbon and hydrogen, and the hydrogen-to-carbon ratio is typically between 1.5 and 2. Fertilizer is typically applied to the surface of oiled sediments. Although bioremediation by addition of fertilizers will speed the biodegradation of an oil spill and thereby diminish its environmental impact, it is important to bear in mind that careless application of fertilizers may have unwanted negative impacts on the environment, and they should be used with care. In conclusion, bioremediation is not the panacea for mitigating oil spills-but it is an important tool in reducing the ecological impact of some oil spills.

Citation: Prince R, Atlas R. 2005. Bioremediation of Marine Oil Spills, p 269-292. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 7.1
FIGURE 7.1

Representative hydrocarbons in the principal molecular classes in crude oils.

Citation: Prince R, Atlas R. 2005. Bioremediation of Marine Oil Spills, p 269-292. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.2
FIGURE 7.2

Representative structures for resin and polar components found in crude oils.

Citation: Prince R, Atlas R. 2005. Bioremediation of Marine Oil Spills, p 269-292. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.3
FIGURE 7.3

An overview of the initial reactions of aromatic hydrocarbon activation in hydrocarbon- degrading microorganisms and in animals. In polycyclic aromatic hydrocarbons ( ), the aromatic ring shown would be part of a multiring structure. More details can be found elsewhere ( ).

Citation: Prince R, Atlas R. 2005. Bioremediation of Marine Oil Spills, p 269-292. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.4
FIGURE 7.4

Some representative data obtained in a field trial of bioremediation on a beach near Sveagruva, on Spitsbergen in the summer of 1997. (A) Amounts of “fixed nitrogen” (nitrate plus ammonium) in interstitial water taken from fertilized and unfertilized portions of the beach. Note that the scale is logarithmic and that the line drawn through the data is merely to guide the eye. Error bars represent standard errors for each point, and those at 1 µM are estimates of the lower detection limit of the colorimetric test kits used. Further details can be found in reference . (B) Measurements of dissolved oxygen in that interstitial water. Again, the line is merely to guide the eye, and the error bars are estimates of standard error. (C) Measurements of the rate of CO evolution from undisturbed beach. Data were collected on only four days, but the timescale is the same as for the other panels to allow ready comparison. The dotted lines are shown merely to guide the eye; we have no evidence that the data follow a straight line, but numerous measurements of unoiled, unoiled but fertilized, and oiled unfertilized plots ( ) led us to extrapolate to equivalent rates for all sections before fertilizer application. We note that these data demonstrate the variability typically seen in the field and that the simplistic statistical treatment here was verified with more rigorous approaches in the cited references.

Citation: Prince R, Atlas R. 2005. Bioremediation of Marine Oil Spills, p 269-292. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7.5
FIGURE 7.5

Some representative data obtained during the bioremediation of the spill in Alaska in 1990. (A) Representative radiorespirometry data ( ). (B) Representative data using hopane as a conserved internal analyte ( ) from the same beach. Error bars represent estimates of standard errors, and again we note that these data demonstrate the variability typically seen in the field and that the simplistic statistical treatment here was verified with more rigorous approaches in the cited references. GC, gas chromatography.

Citation: Prince R, Atlas R. 2005. Bioremediation of Marine Oil Spills, p 269-292. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817596.chap7
1. AlGhadban, A. N.,, F. Abdali,, and M. S. Massoud. 1998. Sedimentation rate and bioturbation in the Arabian Gulf. Environ. Int. 24: 23 31.
2.Anonymous. 2003. Industry at a glance. World Oil 224(5): 99.
3. Atlas, R. M. 1977. Stimulated petroleum biodegradation. Crit. Rev. Microbiol. 5: 371 386.
4. Atlas, R. M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45: 180 209.
5. Atlas, R. M. 1984. Petroleum Microbiology. Macmillan, New York, N.Y.
6. Atlas, R. M.,, and M. C. Atlas. 1991. Biodegradation of oil and bioremediation of oil spills. Curr. Opin. Biotechnol. 2: 440 443.
7. Atlas, R. M.,, and R. Bartha. 1973. Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ. Sci. Technol. 7: 538 541.
8. Atlas, R. M.,, and R. Bartha. May 1976. Biodegradation of oil on water surfaces; polluting petroleum hydrocarbons. U.S. patent 3,959,127.
9. Atlas, R. M.,, G. S. Sayler,, R. Burlage,, and A. K. Bej. 1992. Molecular approaches for environmental monitoring of microorganisms. Bio- Techniques 12: 706 717.
10. Bahn, P. G. 1992. The making of a mummy. Nature 356: 109.
11. Barakat, A. O.,, A. R. Mostafa,, J. Rullkotter,, and A. R. Hegazi. 1999. Application of a multi-molecular marker approach to fingerprint petroleum pollution in the marine environment. Mar. Pollut. Bull. 38: 535 544.
12. Beller, H. R.,, and A. M. Spormann. 1997. Benzylsuccinate formation as a means of anaerobic toluene activation by sulfate-reducing strain PRTOL1. Appl. Environ. Microbiol. 63: 3729 3731.
13. Bellier, P.,, and G. Massart. 1979. The Amoco Cadiz oil spill cleanup operation—an overview of the organization, control and evaluation of the cleanup techniques employed, p. 141 146. In Proceedings of the 1979 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
14. Biegert, T.,, G. Fuchs,, and F. Heider. 1996. Evidence that anaerobic oxidation of toluene in the denitrifying bacterium Thauera aromatica is initiated by formation of benzylsuccinate from tol uene and fumarate. Eur. J. Biochem. 238: 661 668.
15. Boeda, E.,, J. Connan,, D. Dessort,, S. Muhesen,, N. Mercier,, H. Valladas,, and N. Tisnerat. 1996. Bitumen as a hafting material on middle Paleolithic artifacts. Nature 380: 336 338.
16. Bohannon, J.,, X. Bosch,, and J. Withgott. 2002. Scientists brace for bad tidings after spill. Science 298: 1695 1696.
17. Borden, R. C.,, C. A. Gomez,, and M. T. Becker. 1995. Geochemical indicators of intrinsic bioremediation. Ground Water 33: 180 189.
18. Bost, F. D.,, R. Frontera-Suau,, T. J. Mc- Donald,, K. E. Peters,, and P. J. Morris. 2001. Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils. Org. Geochem. 32: 105 114.
19. Boufadel, M. C.,, P. Reeser,, M. T. Suidan,, B. A. Wrenn,, J. Cheng,, X. Du,, T. H. L. Huang,, and A. D. Venosa. 1999. Optimal nitrate concentration for the biodegradation of nheptadecane in a variably-saturated sand column. Environ. Technol. 20: 191 199.
20. Bragg, J. R.,, and E. H. Owens. 1994. Clayoil flocculation as a natural cleansing process following oil spills. Part 1. Studies of shoreline sediments and residues from past spills, p. 1 24. In Proceedings of the Seventeenth Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Canada.
21. Bragg, J. R., and E. H. Owens. 1995. Shoreline cleansing by interactions between oil and fine mineral particles, p. 219 227. In Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
22. Bragg, J. R.,, R. C. Prince,, E. J., Harner,, and R. M. Atlas. 1994. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368: 413 418.
23. Bressler, D. C.,, and P. M. Fedorak. 2000. Bacterial metabolism of fluorene, dibenzofuran, dibenzothiophene, and carbazole. Can. J. Microbiol. 46: 397 409.
24. Buist, I. 2003. Window-of-opportunity for in situ burning. Spill Sci. Technol. Bull. 8: 341 346.
25. Bundy, J. G.,, A. W. J. Morriss,, D. G. Durham,, C. D. Campbell,, and G. I. Paton. 2001. Development of QSARs to investigate the bacterial toxicity and biotransformation potential of aromatic heterocyclic compounds. Chemosphere 42: 885 892.
26. Burdon, J. 2001. Are the traditional concepts of the structures of humic substances realistic? Soil Sci. 166: 752 769.
27. Burns, K. A.,, S. Codi,, and N. C. Duke. 2000. Gladstone, Australia field studies: weathering and degradation of hydrocarbons in oiled mangrove and salt marsh sediments with and without the application of an experimental bioremediation protocol. Mar. Pollut. Bull. 41: 392 402.
28. Caldwell, M. E.,, R. M. Garrett,, R. C. Prince,, and J. M. Suflita. 1998. Anaerobic biodegradation of long-chain n-alkanes under sulfate-reducing conditions. Environ. Sci. Technol. 32: 2191 2195.
29. Canadian Coast Guard. 1995. Oil Spill Response Field Guide. Canadian Coast Guard, Ottawa, Canada.
30. Cervantes, F. J.,, W. Dijksma,, T. Duong- Dac,, A. Ivanova,, G. Lettinga,, and J. A. Field. 2001. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors. Appl. Environ. Microbiol. 67: 4471 4478.
31. Chakrabarty, A. M. March 1981. Microorganisms having multiple compatible degradative energy-generating plasmids, and preparation thereof. U.S. patent 4,259,444.
32. Chang, Y. J.,, J. R. Stephen,, A. P. Richter,, A. D. Venosa,, J. Bruggemann,, S. J. Macnaughton,, G. A. Kowalchuk,, J. R. Haines,, E. Kline,, and D. C. White. 2000. Phylogenetic analysis of aerobic freshwater and marine enrichment cultures efficient in hydrocarbon degradation: effect of profiling method. J. Microbiol. Methods 40: 19 31.
33. Charles Darwin Foundation for the Galapagos Islands. 2001. Galapagos Oil Spill: Biological Impacts of the Jessica Oil Spill on the Galapagos Environment. [Online.] http://www.darwinfoundation.org/oilspill.html.
34. Claxton, L. D.,, V. S. Houk,, R. Williams,, and F. Kremer. 1991. Effect of bioremediation on the mutagenicity of oil spilled in Prince William Sound, Alaska. Chemosphere 23: 643 650.
35. Clayton, J. R.,, J. R. Payne,, and J. S. Farlow. 1992. Oil Spill Dispersants: Mechanisms of Action and Laboratory Tests. Lewis Publishers, Boca Raton, Fla.
36. Coates, J. D.,, J. Woodward,, J. Allen,, P. Philp,, and D. R. Lovley. 1997. Anaerobic degradation of polycyclic aromatic hydrocarbons and alkanes in petroleum-contaminated marine harbor sediments. Appl. Environ. Microbiol. 63: 3589 3593.
37. Cunningham, J. A.,, H. Rahme,, G. D. Hopkins,, C. Lebron,, and M. Reinhard. 2000. Enhanced in situ bioremediation of BTEX contaminated groundwater by combined injection of nitrate and sulfate. Environ. Sci. Technol. 35: 1663 1670.
38. Denissenko, M. F.,, A. Pao,, M. Tang,, and G. P. Pfeifer. 1996. Preferential formation of benzo[a]pyrene adducts at lung cancer mutational hotspots in P53. Science 274: 430 432.
39. Dibble, J. T.,, and R. Bartha. 1976. Effect of iron on the biodegradation of petroleum in seawater. Appl. Environ. Microbiol. 31: 544 550.
40. Douglas, G. S.,, K. J. McCarthy,, D. T. Dahlen,, J. A. Seavey,, W. G. Steinhauer,, R. C. Prince,, and D. L. Elmendorf. 1992. The use of hydrocarbon analyses for environmental assessment and remediation. J. Soil Contam. 1: 197 216.
41. Downing, J. A.,, C. W. Osenberg,, and O. Sarnelle. 1999. Meta-analysis of marine nutrient- enrichment experiments: variation in the magnitude of nutrient limitation. Ecology 80: 1157 1167.
42. Duke, N. C.,, K. A. Burns,, R. P. J. Swannell,, O. Dalhaus,, and R. J. Rupp. 2000. Dispersant use and a bioremediation strategy as alternate means of reducing impacts of large oil spills on mangroves: the Gladstone field trials. Mar. Pollut. Bull. 41: 403 412.
43. Dutta, T. K.,, and S. Harayama. 2001. Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl. Environ. Microbiol. 67: 1970 1974.
44. Edgar, G. J.,, H. L. Snell,, and L. W. Lougheed. 2003. Impacts of the Jessica oil spill: an introduction. Mar. Pollut. Bull. 47: 273 275.
45. Eriksson, M.,, A. Swartling,, and G. Dalhammar. 1998. Biological degradation of diesel fuel in water and soil monitored with solid-phase micro-extraction and GC-MS. Appl. Microbiol. Biotechnol. 50: 129 134.
46. Etkin, D. S. 1999. Historical overview of oil spills from all sources, p. 1097 1102. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
47. Fiocco, R. J.,, and A. Lewis. 1999. Oil spill dispersants. Pure Appl. Chem. 71: 27 42.
48. Foght, J.,, K. Semple,, C. Gauthier,, D. W. S. Westlake,, S. Blenksopp,, G. Sergy,, Z. Wang,, and M. Fingas. 1999. Effect of nitrogen source on biodegradation of crude oil by a defined bacterial consortium incubated under cold, marine conditions. Environ. Technol. 20: 839 849.
49. Forsberg, C. 1995. The large-scale flux of nutrients from land to water and the eutrophication of lakes and marine waters. Mar. Pollut. Bull. 29: 409 413.
50. Frontera-Suau, R.,, F. D. Bost,, T. J. Mc- Donald,, and P. J. Morris. 2002. Aerobic biodegradation of hopanes and other biomarkers by crude oil-degrading enrichment cultures. Environ. Sci. Technol. 36: 4585 4592.
51. Garrett, R. M.,, I. J. Pickering,, C. E. Haith,, and R. C. Prince. 1998. Photooxidation of crude oils. Environ. Sci. Technol. 32: 3719 3723.
52. GeorgeAres, A.,, and J. R. Clark. 2000. Aquatic toxicity of two Corexit dispersants. Chemosphere 40: 897 906.
53. Goodman, R. 2003. Tar balls: the end state. Spill Sci. Technol. Bull. 8: 117 121.
54. Grossman, M. J.,, R. C. Prince,, R. M. Garrett,, K. K. Garrett,, R. E. Bare,, K. R. O’Neil,, M. R. Sowlay,, S. M. Hinton,, K. Lee,, G. A. Sergy,, E. H. Owens,, and C. C. Guénette,. 2000. Microbial diversity in oiled and unoiled shoreline sediments in the Norwegian Arctic, p. 775 789. In C. R. Bell,, M. Brylinski,, and P. Johnson-Green (ed.), Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Nova Scotia, Canada.
55. Gundlach, E. 1997. Comparative photographs of the Metula spill site, 21 years later, p. 1042 1044. In Proceedings of the 1997 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
56. Harayama, S.,, H. Kishira,, Y. Kasai,, and K. Shutsubo,. 2000. Petroleum biodegradation in marine environments, p. 123 137. In D. H. Bartlett (ed.), Molecular Marine Microbiology. Horizon Scientific Press, Wymondham, United Kingdom.
57. Head, I.,, and R. J. P. Swannell. 1999. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 10: 234 239.
58. Heider, J.,, A. M. Spormann,, H. R. Beller,, and F. Widdel. 1999. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol. Rev. 22: 459 473.
59. Hernaez, M. J.,, W. Reineke,, and E. Santero. 1999. Genetic analysis of biodegradation of tetralin by a Sphingomonas strain. Appl. Environ. Microbiol. 65: 1806 1810.
60. Herrick, J. B.,, K. G. Stuart-Keil,, W. C. Ghiorse,, and E. L. Madsen. 1997. Natural horizontal transfer of a naphthalene dioxygenase gene between bacteria native to a coal tar-contaminated field site. Appl. Environ. Microbiol. 63: 2330 2337.
61. Holden, C. 1990. Gulf slick a free lunch for bacteria. Science 249: 120.
62. Hozumi, T.,, H. Tsutsumi,, and M. Kono. 2000. Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. I. Chemistry and characteristics of heavy oil loaded on the Nakhodka and biodegradation tests by a bioremediation agent with microbiological cultures in the laboratory. Mar. Pollut. Bull. 40: 308 314.
63. Hunt, J. M. 1996. Petroleum Geochemistry and Geology, 2nd ed. W. H. Freeman, New York, N. Y.
64. Hutchins, S. R.,, D. E. Miller,, and A. Thomas. 1998. Combined laboratory/field study on the use of nitrate for in situ bioremediation of a fuel-contaminated aquifer. Environ. Sci. Technol. 32: 1832 840.
65. Ibrahim, Y. A.,, M. A. Abdelhameed,, T. A. Al-Sahhaf,, and M. A. Fahim. 2003. Structural characterization of different asphaltenes of Kuwaiti origin. Petrol. Sci. Technol. 21: 825 837.
66.International Agency for Research on Cancer. 1983. IARC Monograph on the Evaluation of the Carcinogenic Risk of Chemicals to Humans. Polynuclear Aromatic Hydrocarbons. Part 1. Chemical, Environmental and Experimental Data, vol. 32. World Health Organization, Geneva, Switzerland.
67. Iwabuchi, N.,, M. Sunairi,, M. Urai,, C. Itoh,, H. Anzai,, M. Nakajima,, and S. Harayama. 2002. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl. Environ. Microbiol. 68: 2337 2343.
68. Iwamoto, T.,, and M. Nasu. 2001. Current bioremediation practice and perspective. J. Biosci. Bioeng. 92: 1 8.
69. Jackson, W. A.,, and J. H. Pardue. 1999. Potential for enhancement of biodegradation of crude oil in Louisiana salt marshes using nutrient amendments. Water Air Soil Pollut. 109: 343 355.
70. Juck, D.,, T. Charles,, L. G. Whyte,, and C. W. Greer. 2000. Polyphasic microbial community analysis of petroleum hydrocarbon-contaminated soils from two northern Canadian communities. FEMS Microbiol. Ecol. 33: 241 249.
71. Juhasz, A. L.,, and R. Naidu. 2000. Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int. Biodeter. Biodegrad. 45: 57 88.
72. Kanaly, R. A.,, and S. Harayama. 2000. Biodegradation of high-molecular-weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059 2067.
73. Kasai, Y.,, H. Kishira,, K. Syutsubo,, and S. Harayama. 2001. Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ. Microbiol. 13: 246 255.
74. Kasai, Y.,, H. Kishira,, T. Sasaki,, K. Syutsubo,, K. Watanabe,, and S. Harayama. 2002. Predominant growth of Alcanivorax strains in oilcontaminated and nutrient-supplemented sea water. Environ. Microbiol. 4: 141 147.
75. Kato, T.,, M. Haruki,, T. Imanaka,, M. Morikawa,, and S. Kanaya. 2001. Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J. Biosci. Bioeng. 91: 64 70.
76. Keith, L. H.,, and W. A. Telliard. 1979. Priority pollutants. I. A perspective view. Environ. Sci. Technol. 13: 416 423.
77. Kvenvolden, K. A.,, F. D. Hostettler,, P. R. Carlson,, J. B. Rapp,, C. N. Threlkeld,, and A. Warden. 1995. Ubiquitous tar balls with a California-source signature on the shorelines of Prince William Sound, Alaska. Environ. Sci. Technol. 29: 2684 2694.
78. Latha, K.,, and D. Lalithakumari. 2001. Transfer and expression of a hydrocarbon-degrading plasmid pHCL from Pseudomonas putida to marine bacteria. World J. Microbiol. Biotechnol. 17: 523 528.
79. Leahy, J. G.,, and R. R. Colwell. 1990. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 54: 305 315.
80. Lee, K., 1999. Bioremediation of oil impacted shorelines, p. 69 85. In T. Murphy, and M. Munawar (ed.), Aquatic Restoration in Canada. Ecovision World Monograph Series. Backhuys Publishers, Leiden, The Netherlands.
81. Lee, K. 2003. Oil-particle interactions in aquatic environments: influence on the transport, fate, effect and remediation of oil spills. Spill Sci. Technol. Bull. 8: 3 8.
82. Lee, K.,, and S. deMora. 1999. In situ bioremediation strategies for oiled shoreline environments. Environ. Technol. 20: 783 794.
83. Lessard, R. R.,, and G. DeMarco. 2000. The significance of oil spill dispersants. Spill Sci. Technol. Bull. 6: 59 68.
84. Leveille, T. P. 1991. The Mega Borg fire and oil spill: a case study, p. 273E– 278. In Proceedings of the 1991 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
85. Levy, E. M.,, and K. Lee. 1988. Potential contribution of natural hydrocarbon seepage to benthic productivity and the fisheries of Atlantic Canada. Can. J. Fish. Aquat. Sci. 45: 349 352.
86. Limpert, E.,, W. A. Stahel,, and M. Abbt. 2001. Log-normal distributions across the sciences: keys and clues. Bioscience 51: 341 352.
87. Lin, Q.,, I. A. Mendelssohn,, C. B. Henry,, P. O. Roberts,, M. M. Walsh,, E. B. Overton,, and R. J. Portier. 1999. Effects of bioremediation agents on oil degradation in mineral and sandy salt marsh sediments. Environ. Technol. 20: 825 837.
88. Lindstrom, J. E.,, R. C. Prince,, J. R. Clark,, M. J. Grossman,, T. R. Yeager,, J. F. Braddock,, and E. J. Brown. 1991. Microbial populations and hydrocarbon biodegradation potentials in fertilized shoreline sediments affected by the T/V Exxon Valdez oil spill. Appl. Environ. Microbiol. 57: 2514 2522.
89. Lovley, D. R. 2000. Anaerobic benzene degradation. Biodegradation 11: 107 116.
90. Lovley, D. R.,, J. C. Woodward,, and F. H. Chapelle. 1994. Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(III) ligands. Nature 370: 128 131.
91. Lunel, T.,, J. Rusin,, C. Halliwell,, and L. Davies. 1997. The net environmental benefit of a successful dispersant operation at the Sea Empress incident, p. 185 194. In Proceedings of the 1997 International Oil Spill Conference. American Petroleum Institute, Washington, D. C.
92. Lung, W. S.,, J. L. Martin,, and S. C. McCutcheon. 1993. Eutrophication analysis of embayments in Prince William Sound, Alaska. J. Environ. Eng. 119: 811 824.
93. Macnaughton, S. J.,, J. R. Stephen,, A. D. Venosa,, G. A. Davis,, Y. J. Chang,, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566 3574.
94. Margesin, R.,, and F. Schinner. 2001. Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl. Microbiol. Biotechnol. 56: 650 663.
95. Mathew, M.,, J. P. Obbard,, Y. P. Ting,, Y. H. Gin,, and H. M. Tan. 1999. Bioremediation of oil contaminated beach sediments using indigenous microorganisms in Singapore. Acta Biotechnol. 19: 225 233.
96. McMillen, S. J.,, A. G. Requejo,, G. N. Young,, P. S. Davis,, P. D. Cook,, J. M. Kerr,, and N. R. Gray,. 1995. Bioremediation potential of crude oil spilled on soil, p. 91 99. In R. E. Hinchee,, C. M. Vogel,, and F. J. Brockman (ed.), Microbial Processes for Bioremediation. Battelle Press, Columbus, Ohio.
97. McNally, D. L.,, J. R. Mihelcic,, and D. R. Lueking. 1998. Biodegradation of three- and four-ring polycyclic aromatic hydrocarbons under aerobic and denitrifying conditions. Environ. Sci. Technol. 32: 2633 2639.
98. Melendez-Colon, V. J.,, A. Luch,, A. Seidel,, and W. M. Baird. 1999. Comparison of cytochrome P450- and peroxidase-dependent metabolic activation of the potent carcinogen dibenzo[ a,1]pyrene in human cell lines: formation of stable DNA adducts and absence of a detectable increase in apurinic sites. Cancer Res. 59: 1412 1416.
99. Michel, J.,, and B. L. Benggio. 1995. Testing and use of shoreline cleaning agents during the Morris J. Berman spill, p. 197 202. In Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
100. Miget, R. J.,, C. H. Oppenheimer,, H. I. Kator,, and D. A. LaRock. 1969. Microbial degradation of normal paraffin hydrocarbons in crude oil, p. 327 331. In Proceedings of the Joint Conference on Prevention and Control of Oil Spills. American Petroleum Institute, Washington, D.C.
101. Mills, M. A.,, J. S. Bonner,, M. A. Simon,, T. J. McDonald,, and R. L. Autenreith. 1997. Bioremediation of a controlled oil release in a wetland, p. 609 616. In Proceedings of the Twentieth Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Canada.
102. Mueller, D. C.,, J. S. Bonner,, R. L. Autenrieth,, K. Lee,, and K. Doe. 1999. The toxicity of oil-contaminated sediments during bioremediation of a wetland, p. 1049 1052. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
103. Mullin, J. V.,, and M. A. Champ. 2003. Introduction/ overview to in situ burning of oil spills. Spill Sci. Technol. Bull. 8: 323 330.
104.National Research Council. 1985. Oil in the Sea: Inputs, Fates and Effects. National Academy Press, Washington, D.C.
105.National Research Council. 1989. Using Oil Spill Dispersants on the Sea. National Academy Press, Washington, D.C.
106.National Research Council. 2002. Oil in the Sea. III: Inputs, Fates and Effects. National Academy Press, Washington, D.C.
107. Nauman, S. A. 1991. Shoreline clean-up: equipment and operations, p. 431 438. In Proceedings of the 1991 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
108. Nixon, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199 219.
109. Nodar, M. A.,, and M. delRosario Martino. 1999. San Jorge oil spill, an experience from Uruguay, p. 1107. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
110. Olagbende, O. T.,, G. O. Ede,, L. E. D. Inyang,, E. R. Gundlach,, E. S. Gilfillan,, and D. S. Page. 1999. Scientific and cleanup response to the IDOHO-QIT oil spill, Nigeria. Environ. Technol. 20: 1213 1222.
111. Olivieri, R.,, P. Bacchin,, A. Robertiello,, N. Oddo,, L. Degen,, and A. Tonolo. 1976. Mi crobial degradation of oil spills enhanced by a slow-release fertilizer. Appl. Environ. Microbiol. 31: 629 634.
112. Omiecinski, C. J.,, R. P. Remmel,, and V. P. Hosagrahara. 1999. Concise review of the cytochrome P450s and their role in toxicology. Toxicol. Sci. 48: 151 156.
113. Oudot, J. 2000. Biodegradability of the Erika fuel oil. Comptes Rendus Serie III 323: 945 950.
114. Owens, E. (ed.). 1996. Field Guide for the Protection and Cleanup of Oiled Arctic Shorelines. Environment Canada, Prairie and Northern Region, Yellowknife, Northwest Territories, Canada.
115. Owens, E. H.,, J. R. Harper,, W. Robson,, and P. D. Boehm. 1987. Fate and persistence of crude oil stranded on a sheltered beach. Arctic 40: 109 123.
116. Owens, E. H.,, G. A. Sergy,, L. Gusmán,, Z. Wang,, and J. Baker. 1999. Long-term salt marsh recovery and pavement persistence at Metula spill sites, p. 847 863. In Proceedings of the Twenty-Second Arctic and Marine Oilspill Program (AMOP) Technical Seminar. Environment Canada, Ottawa, Canada.
117. Owens, E. H.,, A. M. Sienkiewicz,, and G. A. Sergy. 1999. Evaluation of shoreline cleaning versus natural recovery: the Metula spill and the KOMI operations, p. 503 509. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
118. Page, C. A.,, J. S. Bonner,, P. L. Summer,, and R. L. Autenrieth. 2000. Solubility of petroleum hydrocarbons in oil/water systems. Mar. Chem. 70: 79 87.
119. Page, C. A.,, J. S. Bonner,, P. L. Summer,, T. J. McDonald,, R. L. Autenrieth,, and C. B. Fuller. 2000. Behavior of a chemically-dispersed oil and a whole oil on a near-shore environment. Water Res. 34: 2507 2516.
120. Peters, K.,, and J. M. Moldowan. 1993. The Biomarker Guide; Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice-Hall, Englewood Cliffs, N.J.
121. Phelps, C. D.,, and L. Y. Young. 2001. Biodegradation of BTEX under anaerobic conditions: a review. Adv. Agron. 70: 329 357.
122. Potter, T. L.,, and B. Duval. 2001. Cerro Negro bitumen degradation by a consortium of marine benthic microorganisms. Environ. Sci. Technol. 35: 76 83.
123. Prince, R. C. 1993. Petroleum spill bioremediation in marine environments. Crit. Rev. Microbiol. 19: 217 242.
124. Prince, R. C., 1998. Crude oil biodegradation, p. 1327 1342. In R. A. Meyers (ed.), The Encyclopedia of Environmental Analysis and Remediation, vol. 2. John Wiley, New York, N.Y.
125. Prince, R. C., 2002. Petroleum and other hydrocarbons, biodegradation of, p. 2402 2416. In G. Bitton (ed.), Encyclopedia of Environmental Microbiology. John Wiley, New York, N.Y.
126. Prince, R. C.,, and J. R. Bragg. 1997. Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremed. J. 1: 97 104.
127. Prince, R. C.,, D. L. Elmendorf,, J. R. Lute,, C. S. Hsu,, C. E. Haith,, J. D. Senius,, G. J. Dechert,, G. S. Douglas,, and E. L. Butler. 1994. 17α(H), 21β(H)-hopane as a conserved internal marker for estimating the biodegradation of crude oil. Environ. Sci. Technol. 28: 142 145.
128. Prince, R. C.,, R. E. Bare,, G. N. George,, C. E. Haith,, M. J. Grossman,, J. R. Lute,, D. L. Elmendorf,, V. Minak-Bernero,, J. D. Senius,, L. G. Keim,, R. R. Chianelli,, S. M. Hinton,, and A. R. Teal. 1993. The effect of bioremediation on the microbial populations of oiled beaches in Prince William Sound, Alaska, p. 469 475. In Proceedings of the 1993 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
129. Prince, R. C.,, J. R. Clark,, J. E. Lindstrom,, E. L. Butler,, E. J. Brown,, G. Winter,, M. J. Grossman,, R. R. Parrish,, R. E. Bare,, J. F. Braddock,, W. G. Steinhauer,, G. S. Douglas,, J. M. Kennedy,, P. J. Barter,, J. R. Bragg,, E. J. Harner,, and R. M. Atlas,. 1994. Bioremediation of the Exxon Valdez oil spill: monitoring safety and efficacy, p. 107 124. In R. E. Hinchee,, B. C. Alleman,, R. E. Hoeppel,, and R. N. Miller (ed.), Hydrocarbon Remediation. Lewis Publishers, Boca Raton, Fla.
130. Prince, R. C.,, R. E. Bare,, R. M. Garrett,, M. J. Grossman,, C. E. Haith,, L. G. Keim,, K. Lee,, G. J. Holtom,, P. Lambert,, G. A. Sergy,, E. H. Owens,, and C. C. Guénette,. 1999. Bioremediation of a marine oil spill in the Arctic, p. 227 232. In B. C. Alleman, and A. Leeson (ed.), In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds. Battelle Press, Columbus, Ohio.
131. Prince, R. C.,, R. E. Bare,, R. M. Garrett,, M. J. Grossman,, C. E. Haith,, L. G. Keim,, K. Lee,, G. J. Holtom,, P. Lambert,, G. A. Sergy,, E. H. Owens,, and C. C. Guénette. 2003. Bioremediation of stranded oil on an Arctic shoreline. Spill Sci. Technol. Bull. 8: 303 312.
132. Proctor, L. M.,, E. Toy,, L. Lapham,, J. Cherrier,, and J. P. Chanton. 2001. Enhancement of Orimulsion biodegradation through the addition of natural marine carbon substrates. Environ. Sci. Technol. 35: 1420 1424.
133. Radwan, S. S.,, and A. S. AlMuteirie. 2001. Vitamin requirements of hydrocarbon-utilizing soil bacteria. Microbiol. Res. 155: 301 307.
134. Raghavan, P. U. M.,, and M. Vivekanandan. 1999. Bioremediation of oil-spilled sites through seeding of naturally adapted Pseudomonas putida. Int. Biodeter. Biodegrad. 44: 29 32.
135. Reilly, T. J.,, F. Csulak,, and P. Van Cott. 1999. Selecting a preferred restoration alternative for the Julie N oil spill, p. 1089 1092. In Proceedings of the International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
136. Rice, J. A. 2001. Humin. Soil Sci. 166: 848 857.
137. Ripp, S.,, D. E. Nivens,, Y. Ahn,, C. Werner,, J. Jarrell,, J. P. Easter,, C. D. Cox,, R. S. Burlage,, and G. S. Sayler. 2000. Controlled field release of a bioluminescent genetically engineered microorganism for bioremediation process monitoring and control. Environ. Sci. Technol. 34: 846 853.
138. Robbins, W. K.,, and C. S. Hsu,. 1996. Petroleum composition, p. 352 370. In M. Howe- Grant (ed.), Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., vol. 18. John Wiley & Sons, New York, N.Y.
139. Rosenberg, E.,, R. Legman,, A. Kushmaro,, E. Adler,, H. Abir,, and E. Z. Ron. 1996. Oil bioremediation using insoluble nitrogen source. J. Biotechnol. 51: 273 278.
140. Rosenberg, E.,, R. Legman,, A. Kushmaro,, R. Taube,, E. Adler,, and E. Z. Ron. 1992. Petroleum bioremediation—a multiphase problem. Biodegradation 3: 337 350.
141. Ross, S. L.,, C. W. Ross,, F. Lepine,, and R. K. Langtry. 1980. IXTOC-I oil blowout, p. 25 38. In Proceedings of a Symposium on Preliminary Results from the September 1979 Researcher/ Pierce IXTOC-I Cruise. National Oceanic and Atmospheric Administration, Boulder, Colo.
142. Schneider, J.,, R. J. Grosser,, K. Jayasimhulu,, W. L. Xue,, B. Kinkle,, and D. Warshawsky. 2000. Biodegradation of carbazole by Ralstonia sp. RJGII.123 isolated from a hydrocarbon contaminated soil. Can. J. Microbiol. 46: 269 277.
143. Sergy, G.,, C. C. Guenette,, E. Owens,, R. C. Prince,, and K. Lee. 1999. Treatment of oiled sediment shorelines by sediment relocation, p. 549 554. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
144. Shikada, A. 1999. The statistical analysis of manual removal of stranded oils; lessons learned from oil spills caused by the Russian tanker Nakhodka, p. 1119 1121. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
145. Shin, W. S.,, J. H. Pardue,, W. A. Jackson,, and S. J. Choi. 2001. Nutrient enhanced biodegradation of crude oil in tropical salt marshes. Water Air Soil Pollut. 131: 135 152.
146. Simoneit, B. R. T.,, and P. F. Lonsdale. 1982. Hydrothermal petroleum in mineralized mounds at the seabed of Guaymas Basin. Nature 295: 198 202.
147. SolanoSerena, F.,, R. Marchal,, M. Ropars,, J. M. Lebeault,, and J. P. Vandecasteele. 1999. Biodegradation of gasoline: kinetics, mass balance, and fate of individual hydrocarbons. J. Appl. Microbiol. 86: 1008 1016.
148. Sousa, S.,, C. Duffy,, H. Weitz,, L. A. Glover,, and E. Bar. 1998. Use of a lux-modified bacterial biosensor to identify constraints to bioremediation of BTEX-contaminated sites. Environ. Toxicol. Chem. 17: 1039 1045.
149. Spormann, A. M.,, and F. Widdel. 2000. Metabolism of alkylbenzenes, alkanes, and other hydrocarbons in anaerobic bacteria. Biodegradation 11: 85 105.
150. Stephen, J. R.,, Y. J. Chang,, Y. D. Gan,, A. Peacock,, S. M. Pfiffner,, M. J. Barcelona,, D. C. White,, and S. J. Macnaughton. 1999. Microbial characterization of a JP-4 fuel-contaminated site using a combined lipid biomarker/ polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)-based approach. Environ. Microbiol. 1: 231 241.
151. Sticher, P.,, M. C. M. Jaspers,, K. Stemmler,, H. Harms,, A. J. B. Zehnder,, and J. R. vanderMeer. 1997. Development and characterization of a whole-cell bioluminescent sensor for bioavailable middle-chain alkanes in contaminated groundwater samples. Appl. Environ. Microbiol. 63: 4053 4060.
152. Swannell, R. P. J.,, and F. Daniel. 1999. Effect of dispersants on oil biodegradation under simulated marine conditions, p. 169 176. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
153. Swannell, R. P. J.,, K. Lee,, A. Basseres,, and F. X. Merlin. 1994. A direct respirometric method for in-situ determination of bioremediation efficiency, p. 1273 1286. In Proceedings of the Seventeenth Arctic Marine Oilspill Program Technical Seminar. Environment Canada, Ottawa, Canada.
154. Swannell, R. P. J.,, K. Lee,, and M. McDonagh. 1996. Field evaluations of marine spill bioremediation. Microbiol. Rev. 60: 342 365.
155. Swannell, R. P. J.,, D. Mitchell,, G. Lethbridge,, D. Jones,, D. Heath,, M. Hagley,, M. Jones,, S. Petch,, R. Milne,, R. Croxford,, and K. Lee. 1999. A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ. Technol. 20: 863 873.
156. Tay, S. T. L.,, F. H. Hemond,, L. R. Krumholz,, C. M. Cavanaugh,, and M. F. Polz. 2001. Population dynamics of two toluene degrading bacterial species in a contaminated stream. Microb. Ecol. 41: 124 131.
157. Teas, H.,, R. R. Lessard,, G. P. Canevari,, C. P. Brown,, and R. Glenn. 1993. Saving oiled mangroves using a new non-dispersing shoreline cleaner, p. 761 763. In Proceedings of the 1993 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
158. Thouand, G.,, P. Bauda,, J. Oudot,, G. Kirsch,, C. Sutton,, and J. F. Vidalie. 1999. Laboratory evaluation of crude oil biodegradation with commercial or natural microbial inocula. Can. J. Microbiol. 45: 106 115.
159. Tissot, B. P.,, and D. H. Welte. 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Germany.
160. Tsutsumi, H.,, M. Kono,, K. Takai,, T. Manabe,, M. Haraguchi,, I. Yamamoto,, and C. Oppenheimer. 2000. Bioremediation on the shore after an oil spill from the Nakhodka in the Sea of Japan. III. Field tests of a bioremediation agent with microbiological cultures for the treatment of an oil spill. Mar. Pollut. Bull. 40: 320 324.
161.U.S. Department of Transportation. 1992. 33 CFR Part 155, Vessel Response Plans; Proposed Rule. Fed. Regist. 57: 2751427553.
162. van Beilen, J. B.,, M. G. Wubbolts,, and B. Witholt. 1994. Genetics of alkane oxidation in Pseudomonas oleovorans. Biodegradation 5: 161 174.
163. VanHamme, J. D.,, J. A. Odumeru,, and O. P. Ward. 2000. Community dynamics of a mixed-bacterial culture growing on petroleum hydrocarbons in batch culture. Can. J. Microbiol. 46: 441 450.
164. Varadaraj, R.,, M. L. Robbins,, J. Bock,, S. Pace,, and D. MacDonald. 1995. Dispersion and biodegradation of oil spills on water, p. 101 106. In Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
165. Venosa, A. D.,, J. R. Haines,, W. Nisamaneepong,, R. Govind,, S. Pradhan,, and B. Siddique. 1992. Efficacy of commercial products in enhancing biodegradation in closed laboratory reactors. J. Ind. Microbiol. 10: 13 23.
166. Venosa, A. D.,, M. T. Suidan,, B. A. Wrenn,, K. L. Strohmeier,, J. R. Haines,, B. L. Eberhart,, D. King,, and E. Holder. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware Bay. Environ. Sci. Technol. 30: 1764 1775.
167. Watkinson, R. J.,, and P. Morgan. 1990. Physiology of aliphatic hydrocarbon-degrading microorganisms. Biodegradation 1: 79 92.
168. Weise, A. M.,, C. Nalewajko,, and K. Lee. 1999. Oil-mineral fine interactions facilitate oil biodegradation in seawater. Environ. Technol. 20: 811 824.
169. Widdel, F.,, and R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12: 259 276.
170. Wilhelms, A.,, S. R. Larter,, I. M. Head,, P. Farrimond,, R. Di-Primio,, and C. Zwach. 2001. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411: 1034 1037.
171. Wrabel, M. L.,, and P. Peckol. 2000. Effects of bioremediation on toxicity and chemical composition of no. 2 fuel oil: growth responses of the brown alga Fucus vesiculosus. Mar. Pollut. Bull. 40: 135 139.
172. Wright, A. L.,, R. W. Weaver,, and J. W. Webb. 1997. Oil bioremediation in salt marsh mesocosms as influenced byNand P fertilization, flooding, and season. Water Air Soil Pollut. 95: 179 191.
173. Xing, X. H.,, T. Tanaka,, K. Matsumoto,, and H. Unno. 2000. Characteristics of a newly created bioluminescent Pseudomonas putida harboring TOL plasmid for use in analysis of a bioaugmentation system. Biotechnol. Lett. 22: 671 676.
174. Yaws, C. L.,, H. C. Yang,, J. R. Hopper,, and K. C. Hansen. 1990. 232 hydrocarbons: water solubility data. Chem. Eng. 97: 177 182.
175. Yaws, C. L.,, H. C. Yang,, J. R. Hopper,, and K. C. Hansen. 1990. Organic chemicals: water solubility data. Chem. Eng. 97(5): 87.
176. Yaws, C. L.,, X. Pan,, and X. Lin. 1993. Water solubility data for 151 hydrocarbons. Chem. Eng. 100(2): 108 111.
177. Zhang, X.,, and L. Y. Young. 1997. Carboxylation as an initial reaction in the anaerobic metabolism of naphthalene and phenanthrenes by sulfidogenic consortia. Appl. Environ. Microbiol. 63: 4759 4764.
178. Zilinskas, R. A.,, and P. J. Balint (ed.). 1998. Genetically Engineered Marine Microorganisms. Environmental and Economic Risks and Benefits. Kluwer, Boston, Mass

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error