Chapter 9 : Preemptive Bioremediation: Applying Biotechnology for Clean Industrial Products and Processes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Preemptive Bioremediation: Applying Biotechnology for Clean Industrial Products and Processes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817596/9781555812393_Chap09-2.gif


Although the implementation of preemptive bioremediation strategies has been slower than expected, biotechnology is providing a rapidly expanding tool kit so that new product and process creation can be expected to accelerate. This chapter describes some of these new developments, identifies the barriers faced by the new technology, and indicates how they might be overcome. In addition, it highlights the contributions to be made by the latest research and development. The chapter examines how companies assess their various options and make decisions concerning the introduction of novel products and processes. A general class of biodegradable plastics are the microbially produced polyesters which have ester bonds that are susceptible to enzymatic attack. Since the 1970s, a number of countries have been involved in the manufacture of liquid fuels based on plant raw materials. A prerequisite for physical refining of crude vegetable oils is a low phosphatide content in the oil entering the final deacidification-deodorization stage. The content of phosphatides is reduced in a degumming step, and one way of doing this is enzymatically in a process based on the hydrolysis of the phosphatide molecule. Expensive processes are required to generate hydrogen and to convert the main by-product, hydrogen sulfide, into elemental sulfur. The conventional process saturates olefins in the gasoline, which results in a lowered octane rating. Biodesulfurization (BDS) offers potential cost savings because the process operates at ambient temperature and pressure and produces only nontoxic by-products.

Citation: Griffiths M, Atlas R. 2005. Preemptive Bioremediation: Applying Biotechnology for Clean Industrial Products and Processes, p 318-356. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch9
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adams, M. W.,, and R. M. Kelly. 1998. Finding and using hyperthermophilic enzymes. Trends Biotechnol. 16: 329 332.
2. Affholter, J.,, and F. Arnold. 1999. Engineering a revolution: chemists are applying methods of “unnatural selection’ to build better catalysts. Chem. Britain 35: 48.
3. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143 169.
4. Anonymous. 22 March 2001. Survey: designer enzymes. Economist 358: 10.
5. Anonymous. 27 March 2003. Survey: reinventing yesterday. Economist 366( 8317): S18S22. http://www.economist.com.
6. Anonymous. 17 April 2004. Field of dreams. Economist 371( 8370): 53.
7. Anonymous. 2004. Removing hydrogen sulphide the natural way. Impact 1: 14. http:// www.shellglobalsolutions.com.
8. Arnold, F. H. 2001. Combinatorial and computational challenges for biocatalyst design. Nature 409: 253.
9. Arnold, F. H.,, and G. Georgiou (ed.). 2003. Directed Enzyme Evolution: Screening and Selection Methods. Humana Press, Fredericksburg, Pa.
10. Barns, S. M.,, R. E. Fundyga,, M. W. Jeffries,, and N. R. Pace. 1994. Remarkable archaeal diversity detected in a Yellowstone National Park hot spring environment. Proc. Natl. Acad. Sci. USA 91: 1609 1613.
11. Benson, D. E.,, M. S. Wisz,, and H. W. Hellinga. 2000. Rational design of nascent metalloenzymes. Proc. Natl. Acad. Sci. USA 97: 6292.
12. Biotechnology Industry Organization. 2004. New biotech tools for a cleaner environment. [Online.] http://www.bio.org.
13. Bond, R.,,and J. C. McAuliffe. 2003. Silicon biotechnology: new opportunities for carbohydrate science. Aust. J. Chem. 56(1): 7 11.
14. Broxterman, R.,, T. Sonke,, H. Wories,, and W. vandenTweel. 2000. Biocatalytic production of unnatural amino acids. Pharm. Manuf. Int. vol. 61.
15. Bull, A. T. 1996. Biotechnology for environmental quality: closing the circles page. Biodivers. Conserv. 5: 1 27.
16. Bull, A. T.,, A. C. Ward,, and M. Goodfellow. 2000. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev. 64: 573 606.
17. Bustard, M. T.,, J. G. Burgess,, V. Meeyoo,, and P. C. Wright. 2000. Novel opportunities for marine hyperthermophiles in emerging biotechnology and engineering industries. J. Chem. Technol. Biotechnol. 75: 1095 1109.
18. Council for Chemical Research. Technology vision 2020: the US chemical industry. [Online.] http://www.ccrhq.org.
19. Cowan, D. A. 1995. Hyperthermophilic enzymes: biochemistry and biotechnology, p. 351 364. In Hydrothermal Vents and Processes. Geological Society publication no. 87. Geological Society Publishing House, London, U.K.
20. Cowan, D. A.,, and J. A. Littlechild,. 1996. High temperature enzymes; sources of information for engineering protein stability, p. 197 237. In L. M. Savage (ed.), Enzyme Technology for Industrial Applications. IBC Biomedical Library Series, Southbridge, Mass.
21. deBont, J. A. M. 1998. Solvent-tolerant bacteria in biocatalysis. Trends Biotechnol. 16: 493 499.
22. DeLong, E. F.,, K. Y. Wu,, B. B. Prezelin,, and R. V. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371: 695 697.
23. Dordick, J. S. 1991. Biocatalysts for Industry. Plenum Press, New York, N.Y.
24. Dwyer, M. A.,, L. L. Looger,, and H. W. Hellinga. 2004. Computational design of a biologically active enzyme. Science 304: 1967 1971.
25. European Association for Bioindustries. 2003. White biotechnology position paper: clean, sustainable, and white. [Online.] http://www .europabio.org.
26. European Association for Bioindustries. 2004. EuropaBio: white biotech. [Online.] http://www.europabio.org/white-biotech.htm.
27. Fairley, P. 2000. Directed evolution. Chem. Week 162: 29 33.
28. Fairley, P. 2001. Bio-processing comes alive: no longer a field of dreams. Chem. Week 163: 23 26.
29. Fong, S.,, T. D. Machajewski,, C. C. Mak,, and C.-H. Wong. 2000. Directed evolution of D- 2-keto-3-deoxy-6-phosphogluconate aldolase to new variants for the efficient synthesis of D- and L-sugars. Chem. Biol. 7: 873 883.
30. Guinee, S. B.,, H. Heijungs,, U. de Haes,, and G. Huppes. 1993. Quantitative life cycle assessment of products. 1. Goal definition and inventory. J. Cleaner Prod. 1: 3 13.
31. Gutman, A. L.,, E. Meyer,, E. Kalerin,, F., Polyak,, and J. Sterling. 1992. Enzymatic resolution of racemic amines in a continuous reactor using inorganic solvents. Biotechnol. Bioeng. 40: 760 767.
32. Hao, B.,, W. Gong,, T. K. Ferguson,, C. M. James,, J. A. Krzycki,, and M. K. Chan. 2002. A new UAG-encoded residue in the structure of a methanogen methyltransferase. Science 296: 1462 1466.
33. Henrissat, B.,, and A. Bairoch. 1993. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293: 781 788.
34. Herrera, S. 2004. Industrial biotechnology—a chance at redemption. Nat. Biotechnol. 22: 671 675.
35. Iowa State University Special Collections Department. 1998. The legacy of George Washington Carver. [Online.] http://www.lib.iastate.edu.
36. Jensen, V. J.,, and S. Rugh. 1987. Industrialscale production and application of immobilized glucose isomerase. Methods Enzymol. 136: 356 370.
37. Klibanov, A. M. 2001. Improving enzymes by using them in organic solvents. Nature 409: 241 246.
38. Knauf, M.,, and M. Moniruzzaman. 2004. Lignocellulose biomass processing: a perspective. Int. Sugar J. 106(1263): 147 150.
39. Koeller, K. M.,, and C. H. Wong. 2001. Enzymes for chemical synthesis. Nature 409: 232 240.
40. Koizumi, S.,, T. Endo,, K. Tabata,, and A. Ozaki. 1998. Large-scale production of UDPgalactose and globotriose by coupling metabolically engineered bacteria. Nat. Biotechnol. 16: 847 850.
41. Lazaris, A.,, S. Arcidiacono,, Y. Huang,, J. F. Zhou,, F. Duguay,, N. Chretien,, E. A. Welsh,, J. W. Soares,, and C. N. Karatzas. 2002. Spider silk fibers spun from soluble recombinant silk produced in mammalian cells. Science 295: 472 476.
42. Mathys, R. G.,, A. Schmid,, and B. Witholt. 1999. Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation. Biotechnol. Bioeng. 64: 459 478.
43. McCoy, M. 2001. Making drugs with little bugs. Chem. Eng. News 79( 21): 37 43. [Online.] http:// echo.louisville.edu.
44. McCoy, M. 2003. Starting a revolution. Chem. Eng. News(50) 81: 17(50)– 18.
45. Miller, C. A. 2000. Advances in enzyme discovery technology: capturing diversity. INFORM 11: 489 496.
46. Mullin, R. 2004. Biotech uptick move into March. Chem. Eng. News 82( 10): 24. [Online.] http://pubs.acs.org.
47. National Institute of Standards and Technology. 2003. Bioprocess engineering measurements. [Online.] http://www.nist.gov.
48. National Renewable Energy Laboratory. 2004. Introduction to biofuels. [Online.] http:// www.nrel.gov.
49. Ness, J. E.,, S. B. del Cardayre,, J. Minshull,, and W. P. C. Stemmer. 2000. Molecular breeding: the natural approach to protein design. Adv. Protein Chem. 55: 261 292.
50. Organization for Economic Cooperation and Development. 2001. The Application of Biotechnologyto Industrial Sustainability. Organization for Economic Cooperation and Development, Paris, France. http://www1.oecd.org.
51. Organization for Economic Cooperation and Development. 1998. Biotechnology for clean and industrial products and processes: towards industrial sustainability. [Online.] http:// www.oecd.org/pdf/.
52. Roberts, S. M.,, N. J. Turner,, A. J. Willetts,, and M. K. Turner. 1995. Introduction to Biocatalysis Using Enzymes and Microorganisms. Cambridge University Press, Cambridge, United Kingdom
53. Rondon, M. R.,, R. M. Goodman,, and J. Handelsman. 1999. The Earth’s bounty: assessing and accessing soil microbial diversity. Trends Biotechnol. 17: 403 409.
54. Schmid, A.,, J. S. Dordick,, B. Hauer,, A. Kiener,, M. Wubbolts,, and B. Witholt. 2001. Industrial biocatalysis today and tomorrow. Nature 409: 258 268.
55. Scott, A. 2000. Celanese collaborates with Diversa. Chem. Week 162: 32.
56. Sissell, K. 2000. DuPont, Tate & Lyle link to develop renewable polymers. Chem. Week 162: 14.
57. Society of Environmental Toxicology and Chemistry. 2004. SETAC life-cycle assessment. [Online.] http://www.setac.org/lca.html.
58. Takami, H.,, A. Inoue,, F. Fuji,, and K. Horikoshi. 1997. Microbial flora in the deepest sea mud of the Marianas Trench. FEMS Microbiol. Lett. 152: 279 285.
59. Thayer, A. M. 2001. Biocatalysis. Chem. Eng. News 79: 27.
60. Trends in Japan. 2003. Bioplastic: eco-friendly material has a bright future. [Online.] http://webjapan.org/trends/science/sci031212.html.
61. U.S.Department of Energy: Energy Efficiency and Renewable Energy. 2004. Industrial Technologies Program. [Online.] http:// www.eere.energy.gov/industry/.
62. U.S. Department of Energy: Energy Efficiency and Renewable Energy. 2004. Sugar platform biorefineries. [Online.] https:// www.eere.energy.gov/biomass/.
63. Reference deleted.
64. U.S. Department of Energy: Energy Efficiency and Renewable Energy. 2004. Renewable diesel fuel. http://www.eere.energy.gov/biomass/
65. U.S. Department of Energy: Energy Efficiency and Renewable Energy. 2004. Biomass program—commercial status. http://www.eere.energy.gov/biomass/.
66. Vink, E. T. H.,, K. R. Rabago,, D. A. Glassner,, and P. R. Gruber. 2003. Applications of life cycle assessment to Nature Works™ polylactide (PLA) production. Poly. Degrad. Stabil. 80( 3): 403 419.
67. Walsh, C. 2001. Enabling the chemistry of life. Nature 409: 226 231.
68. Wang, P.,, M. V. Sergeeva,, L. Lim,, and J. S. Dordick. 1997. Biocatalytic plastics as active and stable materials for biotransformations. Nat. Biotechnol. 15: 789 793.
69. Webster, L. C.,, P. T. Anastas,, and T. C. Williamson,. 1996. Environmentally benign production of commodity chemicals through biotechnology, p. 198 211. In P. T. Anastas, and T. C. Williamson (ed.), Green Chemistry: Designing Chemistry for the Environment. American Chemical Society, Washington, D.C.
70. Woese, C. R.,, O. Kandler,, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87: 4576 4579.
71. Wong, C.-H.,, and G. M. Whitesides. 1994. Enzymes in Synthetic Organic Chemistry. Pergamon Press, Oxford, United Kingdom.
72. Zaks, A.,, and A. M. Klibanov. 1985. Enzymecatalyzed processes in organic solvents. Proc. Natl. Acad. Sci. USA 82: 3192 3196.


Generic image for table

Some industrial biotechnology applications by industrial sector

Citation: Griffiths M, Atlas R. 2005. Preemptive Bioremediation: Applying Biotechnology for Clean Industrial Products and Processes, p 318-356. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch9
Generic image for table

Comparative full-cycle CO emissions

Citation: Griffiths M, Atlas R. 2005. Preemptive Bioremediation: Applying Biotechnology for Clean Industrial Products and Processes, p 318-356. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch9
Generic image for table

Emissions from biodiesel Fuel

Citation: Griffiths M, Atlas R. 2005. Preemptive Bioremediation: Applying Biotechnology for Clean Industrial Products and Processes, p 318-356. In Atlas R, Philip J (ed), Bioremediation. ASM Press, Washington, DC. doi: 10.1128/9781555817596.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error