1887

Chapter 13 : Interactions of the Commensal Flora with the Human Gastrointestinal Tract

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Interactions of the Commensal Flora with the Human Gastrointestinal Tract, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817619/9781555813239_Chap13-2.gif

Abstract:

This chapter surveys recent information on the roles of the commensal intestinal flora and provides an overview of how the natural symbiosis can be enhanced. The dominant microbial genera of the human gastrointestinal tract include , , , , , , , , , and . The ability of the commensal flora to persist in the intestinal lumen stands in stark contrast to the abundance and vigor of the intestinal immune system. The intestinal mucosa must maintain a highly selective barrier function, capable of permitting the absorption of highly variable nutrients and the sampling of antigens while excluding pathogenic microorganisms. Just as the presence of the commensal flora is needed to drive the maturation of the immune system, several studies have suggested that the flora is required to establish normal epithelial barrier function. The studies by Gordon and Hooper have illuminated dramatically the contributions of the commensal flora to ontogeny of the intestinal mucosa. The study of health-promoting effects conferred by administration of a live commensal flora, so called probiotic species, has a long but often confusing history. The contribution of the enteric commensal flora to human health is only beginning to be appreciated, and many more studies are required. The availability of molecular approaches will greatly accelerate laboratory investigations, but careful clinical observations are required to ascertain the full scope of these effects.

Citation: Nataro J. 2005. Interactions of the Commensal Flora with the Human Gastrointestinal Tract, p 179-186. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch13

Key Concept Ranking

Transforming Growth Factor beta
0.47206974
Adaptive Immune System
0.4289134
0.47206974
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Effects of coculture and preconditioned media on the expression of the global regulator of enteroaggregative virulence, AggR. Enteroaggregative strain 042 was cocultivated individually with various enteric bacteria in Luria broth at 37°C to the late log phase. Conditioned media were prepared by cultivating the enteric species, filtering out bacterial growth, and correcting pH and nutrient concentration. The transcript in both experiments was quantitated by real-time reverse transcription-PCR. Values expressed are the number of transcripts in coculture or preconditioned media compared with expression in pure control cultures of 042. expression is enhanced by and species and diminished by and species. Reprinted from reference with permission.

Citation: Nataro J. 2005. Interactions of the Commensal Flora with the Human Gastrointestinal Tract, p 179-186. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

The commensal enteric flora can confer adverse and/or beneficial effects on human health. These effects are illustrated on a continuum representing the typical abundance of these species. Adapted from reference with permission from the American Society for Nutritional Sciences.

Citation: Nataro J. 2005. Interactions of the Commensal Flora with the Human Gastrointestinal Tract, p 179-186. In Nataro J, Cohen P, Mobley H, Weiser J (ed), Colonization of Mucosal Surfaces. ASM Press, Washington, DC. doi: 10.1128/9781555817619.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817619.chap13
1. Adlerberth, I., 1999. Establishment of a normal intestinal microflora in the newborn infant, p. 63 78. In L. A. Hanson, and R. H. Yolken (ed.), Probiotics, Other Nutritional Factors, and Intestinal Microflora, vol. 42. Lippincott-Raven Publishers, Philadelphia, Pa.
2. Arvola, T.,, K. Laiho,, S. Torkkeli,, H. Mykkanen,, S. Salminen,, L. Maunula,, and E. Isolauri. 1999. Prophylactic Lactobacillus GG reduces antibiotic-associated diarrhea in children with respiratory infections: a randomized study. Pediatrics 104: e64.
3. Asahara, T.,, K. Shimizu,, K. Nomoto,, T. Hamabata,, A. Ozawa,, and Y. Takeda. 2004. Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect. Immun. 72: 2240 2247.
4. Bjorkholm, B. M.,, J. L. Guruge,, J. D. Oh,, A. J. Syder,, N. Salama,, K. Guillemin,, S. Falkow,, C. Nilsson,, P. G. Falk,, L. Engstrand,, and J. I. Gordon. 2002. Colonization of germfree transgenic mice with genotyped Helicobacter pylori strains from a case-control study of gastric cancer reveals a correlation between host responses and HsdS components of type I restriction-modification systems. J. Biol. Chem. 277: 34191 34197.
5. Borriello, S. P., 2002. The normal flora of the gastrointestinal tract, p. 3 12. In A. L. Hart,, A. J. Stagg,, H. Graffner,, H. Glise,, P. Falk,, and M. A. Kamm (ed.), Gut Ecology. Martin Dunitz, Ltd., London, United Kingdom.
6. Bourlioux, P.,, B. Koletzko,, F. Guarner,, and V. Braesco. 2003. The intestine and its microflora are partners for the protection of the host: report on the Danone Symposium “The Intelligent Intestine,” held in Paris, June 14, 2002. Am. J. Clin. Nutr. 78: 675 683.
7. Bry, L.,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1996. A model of host-microbial interactions in an open mammalian ecosystem. Science 273: 1380 1383.
8. El Asmar, R.,, P. Panigrahi,, P. Bamford,, I. Berti,, T. Not,, G. V. Coppa,, C. Catassi,, and A. Fasano. 2002. Host-dependent zonulin secretion causes the impairment of the small intestine barrier function after bacterial exposure. Gastroenterology 123: 1607 1615.
9. Freter, R., 1999. Continuous-flow culture models of intestinal microecology, p. 97 110. In L. Hanson, and R. Yolken (ed.), Probiotics, Other Nutritional Factors, and Intestinal Microflora, vol. 42. Lippincott-Raven, Philadelphia, Pa.
10. Freter, R. 1989. Control mechanisms of the large-intestinal microflora and its influence on the host. Acta Gastroenterol. Latinoam. 19: 197 217.
11. Freter, R., 1983. Mechanisms that control the microflora in the large intestine, p. 33 54. In D. J. Hentges (ed.), Human Intestinal Microflora in Health and Disease. Academic Press, Inc., New York, N.Y.
12. Freter, R.,, H. Brickner,, M. Botney,, D. Cleven,, and A. Aranki. 1983. Mechanisms that control bacterial populations in continuous- flow culture models of mouse large intestinal flora. Infect. Immun. 39: 676 685.
13. Gibson, G. R. 1999. Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J. Nutr. 129: 1438S 1441S.
14. Gibson, G. R.,, E. R. Beatty,, X. Wang,, and J. H. Cummings. 1995. Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108: 975 982.
15. Gibson, G. R.,, and M. B. Roberfroid. 1995. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125: 1401 1412.
16. Gibson, G. R.,, and X. Wang. 1994. Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiol. Lett. 118: 121 127.
17. Gionchetti, P.,, F. Rizzello,, A. Venturi,, P. Brigidi,, D. Matteuzzi,, G. Bazzocchi,, G. Poggioli,, M. Miglioli,, and M. Campieri. 2000. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double-blind, placebocontrolled trial. Gastroenterology 119: 305 309.
18. Gionchetti, P.,, F. Rizzello,, A. Venturi,, and M. Campieri. 2000. Probiotics in infective diarrhoea and inflammatory bowel diseases. J. Gastroenterol. Hepatol. 15: 489 493.
19. Gordon, J. I.,, L. V. Hooper,, M. S. McNevin,, M. Wong,, and L. Bry. 1997. Epithelial cell growth and differentiation. III. Promoting diversity in the intestine: conversations between the microflora, epithelium, and diffuse GALT. Am. J. Physiol. Ser. G 273: G565 G570.
20. Helgeland, L.,, J. T. Vaage,, B. Rolstad,, T. Midtvedt,, and P. Brandtzaeg. 1996. Microbial colonization influences composition and T-cell receptor V beta repertoire of intraepithelial lymphocytes in rat intestine. Immunology 89: 494 501.
21. Hill, M. J. 1991. Bile acids and colorectal cancer: hypothesis. Eur. J. Cancer Prev. 1(Suppl. 2): 69 74.
22. Hill, M. J. 1997. Intestinal flora and endogenous vitamin synthesis. Eur. J. Cancer Prev. 6( Suppl. 1): S43 S45.
23. Hill, M. J. 1991. The ratio of lithocholic to deoxycholic acid in faeces: a risk factor in colorectal carcinogenesis. Eur. J. Cancer Prev. 1(Suppl. 2): 75 78.
24. Hooper, L. V.,, L. Bry,, P. G. Falk,, and J. I. Gordon. 1998. Hostmicrobial symbiosis in the mammalian intestine: exploring an internal ecosystem. Bioessays 20: 336 343.
25. Hooper, L. V.,, P. G. Falk,, and J. I. Gordon. 2000. Analyzing the molecular foundations of commensalism in the mouse intestine. Curr. Opin. Microbiol. 3: 79 85.
26. Hooper, L. V.,, T. Midtvedt,, and J. I. Gordon. 2002. How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu. Rev. Nutr. 22: 283 307.
27. Hooper, L. V.,, T. S. Stappenbeck,, C. V. Hong,, and J. I. Gordon. 2003. Angiogenins: a new class of microbicidal proteins involved in innate immunity. Nat. Immunol. 4: 269 273.
28. Hooper, L. V.,, M. H. Wong,, A. Thelin,, L. Hansson,, P. G. Falk,, and J. I. Gordon. 2001. Molecular analysis of commensal hostmicrobial relationships in the intestine. Science 291: 881 884.
29. Hooper, L. V.,, J. Xu,, P. G. Falk,, T. Midtvedt,, and J. I. Gordon. 1999. A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem. Proc. Natl. Acad. Sci. USA 96: 9833 9838.
30. Isolauri, E. 2003. Probiotics for infectious diarrhoea. Gut 52: 436 437.
31. Isolauri, E. 2001. Probiotics in human disease. Am. J. Clin. Nutr. 73: 1142S 1146S.
32. Isolauri, E. 2000. The use of probiotics in paediatrics. Hosp. Med. 61: 6 7.
33. Isolauri, E.,, Y. Sutas,, P. Kankaanpaa,, H. Arvilommi,, and S. Salminen. 2001. Probiotics: effects on immunity. Am. J. Clin. Nutr. 73: 444S 450S.
34. Kalliomaki, M.,, and E. Isolauri. 2003. Role of intestinal flora in the development of allergy. Curr. Opin. Allergy Clin. Immunol. 3: 15 20.
35. Kalliomaki, M.,, S. Salminen,, H. Arvilommi,, P. Kero,, P. Koskinen,, and E. Isolauri. 2001. Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357: 1076 1079.
36. Kalliomaki, M.,, S. Salminen,, T. Poussa,, H. Arvilommi,, and E. Isolauri. 2003. Probiotics and prevention of atopic disease: 4-year follow-up of a randomised placebo-controlled trial. Lancet 361: 1869 1871.
37. Kleessen, B.,, B. Sykura,, H. J. Zunft,, and M. Blaut. 1997. Effects of inulin and lactose on fecal microflora, microbial activity, and bowel habit in elderly constipated persons. Am. J. Clin. Nutr. 65: 1397 1402.
38. Kolida, S.,, K. Tuohy,, and G. R. Gibson. 2002. Prebiotic effects of inulin and oligofructose. Br. J. Nutr. 87( Suppl. 2): S193 S197.
39. Krinos, C. M.,, M. J. Coyne,, K. G. Weinacht,, A. O. Tzianabos,, D. L. Kasper,, and L. E. Comstock. 2001. Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414: 555 558.
40. Lopez-Boado, Y. S.,, C. L. Wilson,, L. V. Hooper,, J. I. Gordon,, S. J. Hultgren,, and W. C. Parks. 2000. Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J. Cell Biol. 148: 1305 1315.
41. MacFarlane, G. T.,, and S. Macfarlane. 1997. Human colonic microbiota: ecology, physiology and metabolic potential of intestinal bacteria. Scand. J. Gastroenterol. Suppl. 222: 3 9.
42. MacFarlane, G. T.,, S. Macfarlane,, and G. R. Gibson. 1998. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb. Ecol. 35: 180 187.
43. MacFarlane, G. T.,, and A. J. McBain,. 1999. The human colonic microbiota, p. 1 25. In G. R. Gibson, and M. Roberfroid (ed.), Colonic Microbiota, Nutrition and Health. Kluwer Academic Publishers, Dortrecht, The Netherlands.
44. MacPherson, A. J.,, and T. Uhr. 2004. Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303: 1662 1665.
45. McBain, A. J.,, and G. T. Macfarlane. 1998. Ecological and physiological studies on large intestinal bacteria in relation to production of hydrolytic and reductive enzymes involved in formation of genotoxic metabolites. J. Med. Microbiol. 47: 407 416.
46. McBain, A. J.,, and G. T. MacFarlane. 1997. Investigations of bifidobacterial ecology and oligosaccharide metabolism in a three-stage compound continuous culture system. Scand. J. Gastroenterol. Suppl. 222: 32 40.
47. McBain, A. J.,, and G. T. MacFarlane. 2001. Modulation of genotoxic enzyme activities by non-digestible oligosaccharide metabolism in in-vitro human gut bacterial ecosystems. J. Med. Microbiol. 50: 833 842.
48. Mehrazar, K.,, A. Gilman-Sachs,, and Y. B. Kim. 1993. Intestinal absorption of immunologically intact macromolecules in germfree colostrum-deprived piglets maintained on total parenteral nutrition. J. Parenter. Enteral Nutr. 17: 8 15.
49. Mehrazar, K.,, and Y. B. Kim. 1988. Total parenteral nutrition in germfree colostrum-deprived neonatal miniature piglets: a unique model to study the ontogeny of the immune system. J. Parenter. Enteral Nutr. 12: 563 568.
50. Mills, J. C.,, N. Andersson,, C. V. Hong,, T. S. Stappenbeck,, and J. I. Gordon. 2002. Molecular characterization of mouse gastric epithelial progenitor cells. Proc. Natl. Acad. Sci. USA 99: 14819 14824.
51. Miranda, R. L.,, T. Conway,, M. P. Leatham,, D. E. Chang,, W. E. Norris,, J. H. Allen,, S. J. Stevenson,, D. C. Laux,, and P. S. Cohen. 2004. Glycolytic and gluconeogenic growth of Escherichia coli O157:H7 (EDL933) and E. coli K-12 (MG1655) in the mouse intestine. Infect. Immun. 72: 1666 1676.
52. Moore, W. E.,, and L. H. Moore. 1995. Intestinal floras of populations that have a high risk of colon cancer. Appl. Environ. Microbiol. 61: 3202 3207.
53. Mysorekar, I. U.,, R. G. Lorenz,, and J. I. Gordon. 2002. A gnotobiotic transgenic mouse model for studying interactions between small intestinal enterocytes and intraepithelial lymphocytes. J. Biol. Chem. 277: 37811 37819.
54. Neish, A. S.,, A. T. Gewirtz,, H. Zeng,, A. N. Young,, M. E. Hobert,, V. Karmali,, A. S. Rao,, and J. L. Madara. 2000. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 289: 1560 1563.
55. Pool-Zobel, B. L.,, A. Bub,, U. M. Liegibel,, S. Treptow-van Lishaut,, and G. Rechkemmer. 1998. Mechanisms by which vegetable consumption reduces genetic damage in humans. Cancer Epidemiol. Biomarkers Prev. 7: 891 899.
56. Rautanen, T.,, E. Isolauri,, E. Salo,, and T. Vesikari. 1998. Management of acute diarrhoea with low osmolarity oral rehydration solutions and Lactobacillus strain GG. Arch. Dis. Child. 79: 157 160.
57. Rautava, S.,, and E. Isolauri. 2002. The development of gut immune responses and gut microbiota: effects of probiotics in prevention and treatment of allergic disease. Curr. Issues Intest. Microbiol. 3: 15 22.
58. Rawls, J. F.,, B. S. Samuel,, and J. I. Gordon. 2004. Gnotobiotic zebrafish reveal evolutionarily conserved responses to the gut microbiota. Proc. Natl. Acad. Sci. USA 101: 4596 4601.
59. Reid, G.,, M. E. Sanders,, H. R. Gaskins,, G. R. Gibson,, A. Mercenier,, R. Rastall,, M. Roberfroid,, I. Rowland,, C. Cherbut,, and T. R. Klaenhammer. 2003. New scientific paradigms for probiotics and prebiotics. J. Clin. Gastroenterol. 37: 105 118.
60. Rhee, K. J.,, P. Sethupathi,, A. Driks,, D. K. Lanning,, and K. L. Knight. 2004. Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J. Immunol. 172: 1118 1124.
61. Roberfroid, M. B.,, J. A. Van Loo,, and G. R. Gibson. 1998. The bifidogenic nature of chicory inulin and its hydrolysis products. J. Nutr. 128: 11 19.
62. Roller, M.,, G. Rechkemmer,, and B. Watzl. 2004. Prebiotic inulin enriched with oligofructose in combination with the probiotics Lactobacillus rhamnosus and Bifidobacterium lactis modulates intestinal immune functions in rats. J. Nutr. 134: 153 156.
63. Ruiz-Perez, F.,, S. Davis,, and J. Nataro. 2004. Use of a continuous- flow anaerobic culture to characterize enteric virulence gene expression. Infect. Immun. 72: 3793 3802.
64. Salminen, S.,, C. Bouley,, M. C. Boutron-Ruault,, J. H. Cummings,, A. Franck,, G. R. Gibson,, E. Isolauri,, M. C. Moreau,, M. Roberfroid,, and I. Rowland. 1998. Functional food science and gastrointestinal physiology and function. Br. J. Nutr. 80( Suppl. 1): S147 S171.
65. Sartor, R. B. 2000. Probiotics in chronic pouchitis: restoring luminal microbial balance. Gastroenterology 119: 584 587.
66. Schaedler, R. W.,, R. Dubos,, and R. Costello. 1965. The development of the bacterial flora in the gastrointestinal tract of mice. J. Exp. Med. 122: 59 66.
67. Schultz, M.,, and R. B. Sartor. 2000. Probiotics and inflammatory bowel diseases. Am. J. Gastroenterol. 95: S19 S21.
68. Shroff, K. E.,, K. Meslin,, and J. J. Cebra. 1995. Commensal enteric bacteria engender a self-limiting humoral mucosal immune response while permanently colonizing the gut. Infect. Immun. 63: 3904 3913.
69. Sperandio, V.,, J. L. Mellies,, W. Nguyen,, S. Shin,, and J. B. Kaper. 1999. Quorum sensing controls expression of the type III secretion gene transcription and protein secretion in enterohemorrhagic and enteropathogenic Escherichia coli. Proc. Natl. Acad. Sci. USA 96: 15196 15201.
70. Sperandio, V.,, A. G. Torres,, J. A. Giron,, and J. B. Kaper. 2001. Quorum sensing is a global regulatory mechanism in enterohemorrhagic Escherichia coli O157:H7. J. Bacteriol. 183: 5187 5197.
71. Srivastava, K. K. 1978. Colonization resistance against potentially pathogenic bacteria in hexaflora-associated gnotobiotic mice. Can. J. Microbiol. 24: 79 83.
72. Stappenbeck, T. S.,, L. V. Hooper,, J. K. Manchester,, M. H. Wong,, and J. I. Gordon. 2002. Laser capture microdissection of mouse intestine: characterizing mRNA and protein expression, and profiling intermediary metabolism in specified cell populations. Methods Enzymol. 356: 167 196.
73. Sweeney, N. J.,, P. Klemm,, B. A. McCormick,, E. Moller- Nielsen,, M. Utley,, M. A. Schembri,, D. C. Laux,, and P. S. Cohen. 1996. The Escherichia coli K-12 gntP gene allows E. coli F-18 to occupy a distinct nutritional niche in the streptomycin- treated mouse large intestine. Infect. Immun. 64: 3497 3503.
74. Umesaki, Y.,, and H. Setoyama. 2000. Structure of the intestinal flora responsible for development of the gut immune system in a rodent model. Microbes Infect. 2: 1343 1351.
75. Van Tassell, R. L.,, D. G. Kingston,, and T. D. Wilkins. 1990. Dietary genotoxins and the human colonic microflora. Prog. Clin. Biol. Res. 340E: 149 158.
76. Van Tassell, R. L.,, D. G. Kingston,, and T. D. Wilkins. 1990. Metabolism of dietary genotoxins by the human colonic microflora: the fecapentaenes and heterocyclic amines. Mutat. Res. 238: 209 221.
77. Weisburger, J. H. 2001. Antimutagenesis and anticarcinogenesis, from the past to the future. Mutat. Res. 480- 481: 23 35.
78. Wong, M. H.,, T. S. Stappenbeck,, and J. I. Gordon. 1999. Living and commuting in intestinal crypts. Gastroenterology 116: 208 210.
79. Xu, J.,, M. K. Bjursell,, J. Himrod,, S. Deng,, L. K. Carmichael,, H. C. Chiang,, L. V. Hooper,, and J. I. Gordon. 2003. A genomic view of the human- Bacteroides thetaiotaomicron symbiosis. Science 299: 2074 2076.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error