1887

Chapter 3 : Viruses and Unicellular Organisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Viruses and Unicellular Organisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817626/9781555819118_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817626/9781555819118_Chap03-2.gif

Abstract:

The viruses that infect unicellular organisms were among the very first viruses to be studied, and to this day, they remain the best understood of all viruses. The study of phage-phage gene function is especially well developed in the very large microbiological populations of the dairy fermentation industry. The terms temperate and lysogenic are often used interchangeably, although they can sometimes be differentiated. Other systems of virus restriction are also known, such as small interfering RNAs. These virus restriction systems are common to all bacteria and, among prokaryotes, are essentially invariant. Both temperate phages and lytic phages appear to become parasitized by either defective viral or subviral agents. This chapter discusses defective versions of lambda and P2 and the relationship of P2 to P1. The likely origins of pili are discussed, but their similarity to the capsid proteins of filamentous phages suggests that these sex plasmids are derived from persistent viral parasites. It has always been clear that a prophage can confer on its host bacterium the rather complex phenotypes associated with the acquisition of virulence factors. For the most part, these factors are phageborne toxin genes, such as those for diphtheria toxin, erythrogenic toxins, staphylokinase, enterotoxin A, Shiga-like toxin, and botulinum toxin. Pathogenicity islands (PAIs) constitute a well-studied, plasmid-mediated genetic system which has received much attention due to its obvious medical importance.

Citation: Villarreal L. 2005. Viruses and Unicellular Organisms, p 45-100. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817626.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.1
Figure 3.1

Dendrogram of DNA phage proteomic tree. The tree was constructed from 105 completely sequenced phage genomes and was generated from length-corrected protein distance scores with a penalty of 10 for missing proteins. Each phage genome is colored according to its International Committee on Taxonomy of Viruses classification, as shown in the key. To make the figure easier to read, the large group of siphophage has been manually shifted away from the other groups. Reprinted from F. Rohwer and B. Edwards, 4529–4535, 2002, with permission.

Citation: Villarreal L. 2005. Viruses and Unicellular Organisms, p 45-100. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817626.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.2
Figure 3.2

Nature of addiction modules. (A) A phage P1-like addiction module based on restriction/modification enzymes. (B) An addiction module based on toxic pore proteins and antitoxins to the pore; shown is the state when the parasite is present. (C) Same as panel B but with the absence of the parasite. (D) An addiction model based on a prophage providing immunity and protection from either mating or infection with exogenous phage.

Citation: Villarreal L. 2005. Viruses and Unicellular Organisms, p 45-100. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817626.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.3
Figure 3.3

Dendrogram showing the proposed evolutionary relationships of RNA bacteriophage of the genera and which show F-plasmid specificity. PP7 is proposed to represent the basal phage which also has the simplest genetic map. Redrawn from J. P. Bollback and J. P. Huelsenbeck, 117–128, 2001, with permission.

Citation: Villarreal L. 2005. Viruses and Unicellular Organisms, p 45-100. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817626.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.4
Figure 3.4

Evolution and common phage of cyanobacteria. The dendrogram is based on ribosomal DNA data reproduced from M. B. Sullivan, J. B. Waterbury, and S. W. Chisholm, 1047–1051, 2003, with permission.

Citation: Villarreal L. 2005. Viruses and Unicellular Organisms, p 45-100. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817626.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817626.chap3
1. Ackermann, H. W. 2001. Frequency of morphological phage descriptions in the year 2000. Arch. Virol. 146: 843 857.
2. Ackermann, H. W. 1998. Tailed bacteriophages: the order Caudovirales. Adv. Virus Res. 51: 135 201.
3. Brock, T. D. (ed). 1999. Milestones in Microbiology: 1546 to 1940. ASM Press, Washington, D.C.
4. Brussow, H. 2001. Phages of dairy bacteria. Annu. Rev. Microbiol. 55: 283 303.
5. Cairns, J.,, and M. Delbrück. 1966. Phage and the Origins of Molecular Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
6. Davis, R. H. 2003. The Microbial Models of Molecular Biology: from Genes to Genomes. Oxford University Press, New York, N.Y.
7. Delbrück, M. 1950. Viruses 1950. Proceedings of a Conference on the Similarities and Dissimilarities between Viruses Attacking Animals, Plants, and Bacteria, Respectively. Division of Biology, California Institute of Technology, Pasadena.
8. Goyal, S. M.,, C. P. Gerba,, and G. Bitton. 1987. Phage Ecology. Wiley, New York, N.Y.
9. Tetart, F.,, C. Desplats,, M. Kutateladze,, C. Monod,, H. W. Ackermann,, and H. M. Krisch. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183: 358 366.
10. Bernstein, H.,, and C. Bernstein. 1989. Bacteriophage T4 genetic homologies with bacteria and eucaryotes. J. Bacteriol. 171: 2265 2270.
11. Blaisdell, B. E.,, A. M. Campbell,, and S. Karlin. 1996. Similarities and dissimilarities of phage genomes. Proc. Natl. Acad. Sci. USA 93: 5854 5859.
12. Bollback, J. P.,, and J. P. Huelsenbeck. 2001. Phylogeny, genome evolution, and host specificity of single-stranded RNA bacteriophage (family Leviviridae). J. Mol. Evol. 52: 117 128.
13. Botstein, D., 1981. A modular theory of virus evolution, p. 363 384. In B. N. Fields,, R. Jaenisch,, and C. F. Fox (ed.), Animal Virus Genetics. Academic Press, New York, N.Y.
14. Botstein, D., 1981. A modular theory of virus evolution, p. 363 384. In B. N. Fields,, R. Jaenisch,, and C. F. Fox (ed.), Animal Virus Genetics. Academic Press, New York, N.Y.
15. Brussow, H.,, and F. Desiere. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39: 213 222.
16. Gimble, G. S. 2000. Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol. Lett. 185: 99 107.
17. Hendrix, R. W. 2002. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61: 471 480.
18. Oshima, K.,, S. Kakizawa,, H. Nishigawa,, T. Kuboyama,, S. Miyata,, M. Ugaki,, and S. Namba. 2001. A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination? Virology 285: 270 277.
19. Rohwer, F.,, and R. Edwards. 2002. The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184: 4529 4535.
20. Tetart, F.,, C. Desplats,, M. Kutateladze,, C. Monod,, H. W. Ackermann,, and H. M. Krisch. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183: 358 366.
21. Karam, J. D., et al. (ed.). 1994. Molecular Biology of Bacteriophage T4. Society for Microbiology, Washington, D.C.
22. Mathews, C. K.,, E. M. Kutter,, G. Mosig,, and P. B. Berget (ed). 1983. Bacteriophage T4. American Society for Microbiology, Washington, D.C.
23. Tetart, F.,, C. Desplats,, M. Kutateladze,, C. Monod,, H. W. Ackermann,, and H. M. Krisch. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183: 358 366.
24. Gordon, G. S.,, and A. Wright. 2000. DNA segregation in bacteria. Annu. Rev. Microbiol. 54: 681 708.
25. Hendrix, R. W. 1983. Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
26. Hershey, A. D. 1971. The Bacteriophage Lambda. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
27. Morgan, G. J.,, G. F. Hatfull,, S. Casjens,, and R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337 359.
28. Symonds, N. 1987. Phage Mu. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
29. Bettstetter, M.,, X. Peng,, R. A. Garrett,, and D. Prangishvili. 2003. AFV1, a novel virus infecting hyperthermophilic Archaea of the genus Acidianus. Virology 315: 68 79.
30. Prangishvili, D. 2003. Evolutionary insights from studies on viruses of hyperthermophilic Archaea. Res. Microbiol. 154: 289 294.
31. Rachel, R.,, M. Bettstetter,, B. P. Hedlund,, M. Haring,, A. Kessler,, K. O. Stetter,, and D. Prangishvili. 2002. Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Arch. Virol. 147: 2419 2429.
32. Rice, G.,, K. Stedman,, J. Snyder,, B. Wiedenheft,, D. Willits,, S. Brumfield,, T. McDermott,, and M. J. Young. 2001. Viruses from extreme thermal environments. Proc. Natl. Acad. Sci. USA 98: 13341 13345.
33. Zillig, W.,, D. Prangishvili,, C. Schleper,, M. Elferink,, I. Holz,, S. Albers,, D. Janekovic,, and D. Gotz. 1996. Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol. Rev. 18: 225 236.
34. Ackermann, H. W. 2001. Frequency of morphological phage descriptions in the year 2000. Arch. Virol. 146: 843 857.
35. Ackermann, H. W. 1998. Tailed bacteriophages: the order Caudovirales. Adv. Virus. Res. 51: 135 201.
36. Bernstein, H.,, and C. Bernstein. 1989. Bacteriophage T4 genetic homologies with bacteria and eucaryotes. J. Bacteriol. 171: 2265 2270.
37. Bettstetter, M.,, X. Peng,, R. A. Garrett,, and D. Prangishvili. 2003. AFV1, a novel virus infecting hyperthermophilic Archaea of the genus Acidianus. Virology 315: 68 79.
38. Blaisdell, B. E.,, A. M. Campbell,, and S. Karlin. 1996. Similarities and dissimilarities of phage genomes. Proc. Natl. Acad. Sci. USA 93: 5854 5859.
39. Bollback, J. P.,, and J. P. Huelsenbeck. 2001. Phylogeny, genome evolution, and host specificity of single-stranded RNA bacteriophage (family Leviviridae). J. Mol. Evol. 52: 117 128.
40. Brussow, H. 2001. Phages of dairy bacteria. Annu. Rev. Microbiol. 55: 283 303.
41. Brussow, H.,, and F. Desiere. 2001. Comparative phage genomics and the evolution of Siphoviridae: insights from dairy phages. Mol. Microbiol. 39: 213 222.
42. Cairns, J.,, and M. Delbrück. 1966. Phage and the Origins of Molecular Biology. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
43. Delbrück, M. 1950. Viruses 1950. Proceedings of a Conference on the Similarities and Dissimilarities between Viruses Attacking Animals, Plants, and Bacteria, Respectively. Division of Biology, California Institute of Technology, Pasadena.
44. Fuller, N. J.,, W. H. Wilson,, I. R. Joint,, and N. H. Mann. 1998. Occurrence of a sequence in marine cyanophages similar to that of T4 g20 and its application to PCRbased detection and quantification techniques. Appl. Environ. Microbiol. 64: 2051 2060.
45. Goyal, S. M.,, C. P. Gerba,, and G. Bitton. 1987. Phage Ecology. Wiley, New York, N.Y.
46. Hacker, J.,, and J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54: 641 679.
47. Hambly, E.,, F. Tetart,, C. Desplats,, W. H. Wilson,, H. M. Krisch,, and N. H. Mann. 2001. A conserved genetic module that encodes the major virion components in both the coliphage T4 and the marine cyanophage S-PM2. Proc. Natl. Acad. Sci. USA 98: 11411 11416.
48. Hendrix, R. W. 2002. Bacteriophages: evolution of the majority. Theor. Popul. Biol. 61: 471 480.
49. Hendrix, R. W. 1999. Evolution: the long evolutionary reach of viruses. Curr. Biol. 9: R914 R917.
50. Hendrix, R. W. 1983. Lambda II. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
51. Hershey, A. D. 1971. The Bacteriophage Lambda. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
52. Hurst, C. J. 2000. Viral Ecology. Academic Press, San Diego, Calif.
53. Karam, J. D., et al. (ed.). 1994. Molecular Biology of Bacteriophage T4. American Society for Microbiology, Washington, D.C.
54. Lindqvist, B. H.,, G. Deho,, and R. Calendar. 1993. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57: 683 702.
55. Mathews, C. K.,, E. M. Kutter,, G. Mosig,, and P. B. Berget (ed.). 1983. Bacteriophage T4. American Society for Microbiology, Washington, D.C.
56. Morgan, G. J.,, G. F. Hatfull,, S. Casjens,, and R. W. Hendrix. 2002. Bacteriophage Mu genome sequence: analysis and comparison with Mu-like prophages in Haemophilus, Neisseria and Deinococcus. J. Mol. Biol. 317: 337 359.
57. Perova, E. V.,, A. S. Tikhonenko,, T. I. Bulatova,, and B. N. Il’iashenko. 1977. Bacteriophage induction in cultures of C1. botulinum type A. Zh. Mikrobiol. Epidemiol. Immunobiol. 11: 125 128. (In Russian.)
58. Prangishvili, D. 2003. Evolutionary insights from studies on viruses of hyperthermophilic Archaea. Res. Microbiol. 154: 289 294.
59. Rachel, R.,, M. Bettstetter,, B. P. Hedlund,, M. Haring,, A. Kessler,, K. O. Stetter,, and D. Prangishvili. 2002. Remarkable morphological diversity of viruses and virus-like particles in hot terrestrial environments. Arch. Virol. 147: 2419 2429.
60. Rice, G.,, K. Stedman,, J. Snyder,, B. Wiedenheft,, D. Willits,, S. Brumfield,, T. McDermott,, and M. J. Young. 2001. Viruses from extreme thermal environments. Proc. Natl. Acad. Sci. USA 98: 13341 13345.
61. Rohwer, F.,, and R. Edwards. 2002. The phage proteomic tree: a genome-based taxonomy for phage. J. Bacteriol. 184: 4529 4535.
62. Symonds, N. 1987. Phage Mu. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
63. Tetart, F.,, C. Desplats,, M. Kutateladze,, C. Monod,, H. W. Ackermann,, and H. M. Krisch. 2001. Phylogeny of the major head and tail genes of the wide-ranging T4-type bacteriophages. J. Bacteriol. 183: 358 366.
64. Tikhonenko, A. S.,, N. N. Belyaeva,, and G. Ivanovics. 1975. Electron microscopy of phages liberated by megacin A producing lysogenic Bacillus megaterium strains. Acta. Microbiol. Acad. Sci. Hung. 22: 58 59.
65. Zillig, W.,, D. Prangishvili,, C. Schleper,, M. Elferink,, I. Holz,, S. Albers,, D. Janekovic,, and D. Gotz. 1996. Viruses, plasmids and other genetic elements of thermophilic and hyperthermophilic Archaea. FEMS Microbiol. Rev. 18: 225 236.
66. Bertani, G.,, and G. Deho. 2001. Bacteriophage P2: recombination in the superinfection preprophage state and under replication control by phage P4. Mol. Genet. Genomics 266: 406 416.
67. Lindqvist, B. H.,, G. Deho,, and R. Calendar. 1993. Mechanisms of genome propagation and helper exploitation by satellite phage P4. Microbiol. Rev. 57: 683 702.
68. Engelberg-Kulka, H.,, and G. Glaser. 1999. Addiction modules and programmed cell death and antideath in bacterial cultures. Annu. Rev. Microbiol. 53: 43 70.
69. Cheetham, B. F.,, and M. E. Katz. 1995. A role for bacteriophages in the evolution and transfer of bacterial virulence determinants. Mol. Microbiol. 18: 201 208.
70. Finlay, B. B.,, and S. Falkow. 1997. Common themes in microbial pathogenicity revisited. Microbiol. Mol. Biol. Rev. 61: 136 169.
71. Hacker, J.,, and J. B. Kaper. 2000. Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54: 641 679.
72. Oshima, K.,, S. Kakizawa,, H. Nishigawa,, T. Kuboyama,, S. Miyata,, M. Ugaki,, and S. Namba. 2001. A plasmid of phytoplasma encodes a unique replication protein having both plasmid- and virus-like domains: clue to viral ancestry or result of virus/plasmid recombination? Virology 285: 270 277.
73. Davis, R. H. 2003. The Microbial Models of Molecular Biology: from Genes to Genomes. Oxford University Press, New York, N.Y.
74. Gelfand, M. S.,, and E. V. Koonin. 1997. Avoidance of palindromic words in bacterial and archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res. 25: 2430 2439.
75. Gordon, G. S.,, and A. Wright. 2000. DNA segregation in bacteria. Annu. Rev. Microbiol. 54: 681 708.
76. Karlin, S.,, and C. Burge. 1995. Dinucleotide relative abundance extremes: a genomic signature. Trends Genet. 11: 283 290.
77. Karlin, S.,, A. M. Campbell,, and J. Mrazek. 1998. Comparative DNA analysis across diverse genomes. Annu. Rev. Genet. 32: 185 225.
78. Mrazek, J.,, and S. Karlin. 1999. Detecting alien genes in bacterial genomes. Ann. N.Y. Acad. Sci. 870: 314 329.
79. Riley, M.,, and M. H. Serres. 2000. Interim report on genomics of Escherichia coli. Annu. Rev. Microbiol. 54: 341 411.

Tables

Generic image for table
Table 3.1

Signature genes and genome size range for the proposed phage groups

Citation: Villarreal L. 2005. Viruses and Unicellular Organisms, p 45-100. In Viruses and the Evolution of Life. ASM Press, Washington, DC. doi: 10.1128/9781555817626.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error