Chapter 1 : Where's the Beef? Looking for Information in Bacterial Chromosomes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Where's the Beef? Looking for Information in Bacterial Chromosomes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap001-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap001-2.gif


The challenge to those trying to explain chromosome behavior is to identify the critical sequence elements. One might expect that a genome would be under constant selective pressure to expand, adding new genes that broaden the capabilities of the organism. Three aspects of population biology and lifestyle limit this expansion: mutation rate, population size, and recombination frequency. First, if all other factors remain constant, mutation rate limits genome size; beyond a critical point, the genome can expand only if the mutation rate drops. Second, larger populations allow genome expansion because selection is more effective and genes with a smaller fitness contribution can be maintained. Third, sexual recombination allows genome expansion by permitting assembly of intact information sets from those damaged by mutation. Selfish mechanisms used by phage, transposons, and plasmids can also contribute to maintenance of genes that are respectable chromosome residents. The chapter describes some genome features that depend to varying extents on their selfish behavior for their maintenance in the genome. These assumptions can be used in reverse to draw conclusions regarding the fitness contribution of genes based on their genomic position. Two short sequence elements have been extensively studied with regard to their effects on chromosome replication (Ter) and recombination (Chi). In and , the positions and orientation of seven repeated rRNA operons are conserved. Several small sequence elements are found in the genome of .

Citation: Roth J. 2005. Where's the Beef? Looking for Information in Bacterial Chromosomes, p 3-18. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch1
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

A proposal for the role of Chi and Ter sites in managing recombinational replication. (Left) Diagram of a double-strand break and the positions of nearby Chi sequences in their predominant orientation. The left end is likely to be promptly activated for recombination and lead to a fork moving toward the terminus. The right end is likely to be extensively degraded before engaging in recombination and could form a fork moving toward the origin. (Right) Diagram of the possible outcomes if the two broken ends establish independent recombinational forks. Depending on the timing of fork initiation, the two forks may diverge, or converge, or one end may be destroyed, leaving a single fork. Forks bound toward the origin might be terminated at Ter sites before converging with approaching replication forks. The concerted action of Chi and Ter might act to minimize fork collision and preferentially direct all recombinational replication toward the terminus.

Citation: Roth J. 2005. Where's the Beef? Looking for Information in Bacterial Chromosomes, p 3-18. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ames, B. N.,, and R. G. Martin. 1964. Biochemical aspects of genetics: the operon. Annu. Rev. Biochem. 33: 235 258.
2. Andersson, D. I.,, and B. R. Levin. 1999. The biological cost of antibiotic resistance. Curr. Opin. Microbiol. 2: 489 493.
3. Bachellier, S.,, J. M. Clement,, M. Hofnung,, and E. Gilson. 1997. Bacterial interspersed mosaic elements (BIMEs) are a major source of sequence polymorphism in Escherichia coli intergenic regions including specific associations with a new insertion sequence. Genetics 145: 551 662.
4. Bayliss, C. D.,, D. Field,, and E. R. Moxon. 2001. The simple sequence contingency loci of Haemophilus influenzae and Neisseria meningitidis. J. Clin. Investig. 107: 657 662.
5. Björkman, J.,, I. Nagaev,, O. G. Berg,, D. Hughes,, and D. I. Andersson. 2000. Effects of environment on compensatory mutations to ameliorate costs of antibiotic resistance. Science 287: 1479 1482.
6. Boccard, F.,, and P. Prentki. 1993. Specific interaction of IHF with RIBs, a class of bacterial repetitive DNA elements located at the 3′ end of transcription units. EMBO J. 12: 5019 5027.
7. Campbell, J. H.,, D. Dykhuizen,, and B. G. Rolfe. 1978. Effects of the rex gene of phage lambda on lysogeny. Genet. Res. 32: 257 263.
8. Casjens, S.,, N. Palmer,, R. van Vugt,, W. M. Huang,, B. Stevenson,, P. Rosa,, R. Lathigra,, G. Sutton,, J. Peterson,, R. J. Dodson,, D. Haft,, E. Hickey,, M. Gwinn,, O. White,, and C. M. Fraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35: 490 516.
9. Chao, L.,, and S. M. McBroom. 1985. Evolution of transposable elements: an IS10 insertion increases fitness in Escherichia coli. Mol. Biol. Evol. 2: 359 369.
10. Chao, L.,, C. Vargas,, B. B. Spear,, and E. C. Cox. 1983. Transposable elements as mutator genes in evolution. Nature 303: 633 635.
11. Demerec, M.,, and P. Hartman. 1959. Complex loci in microorganisms. Annu. Rev. Microbiol. 13: 377 406.
12. Edlin, G.,, L. Lin,, and R. Bitner. 1977. Reproductive fitness of P1, P2, and Mu lysogens of Escherichia coli. J. Virol. 21: 560 564.
13. Edwards, R. A.,, G. J. Olsen,, and S. R. Maloy. 2002. Comparative genomics of closely related Salmonellae. Trends Microbiol. 10: 94 99.
14. Elena, S. F.,, L. Ekunwe,, N. Hajela,, S. A. Oden,, and R. E. Lenski. 1998. Distribution of fitness effects caused by random insertion mutations in Escherichia coli. Genetica 102- 103: 349 358.
15. Felsenstein, J. 1974. The evolutionary advantage of recombination. Genetics 78: 737 756.
16. Flores, M.,, P. Mavingui,, X. Perret,, W. J. Broughton,, D. Romero,, G. Hernandez,, G. Davila,, and R. Palacios. 2000. Prediction, identification, and artificial selection of DNA rearrangements in Rhizobium: toward a natural genomic design. Proc. Natl. Acad. Sci. USA 97: 9138 9143.
17. Francino, M. P.,, L. Chao,, M. A. Riley,, and H. Ochman. 1996. Asymmetries generated by transcription-coupled repair in enterobacterial genes. Science 272: 107 109.
18. Funchain, P.,, A. Yeung,, J. L. Stewart,, R. Lin,, M. M. Slupska,, and J. H. Miller. 2000. The consequences of growth of a mutator strain of Escherichia coli as measured by loss of function among multiple gene targets and loss of fitness. Genetics 154: 959 970.
19. Garcia-Lara, J.,, M. Picardeau,, B. J. Hinnebusch,, W. M. Huang,, and S. Casjens. 2000. The role of genomics in approaching the study of Borrelia DNA replication. J. Mol. Microbiol. Biotechnol. 2: 447 454.
20. Gerrish, P. J.,, and R. E. Lenski. 1998. The fate of competing beneficial mutations in an asexual population. Genetica 102- 103: 127 144.
21. Gilson, E.,, J. M. Clement,, D. Brutlag,, and M. Hofnung. 1984. A family of dispersed repetitive extragenic palindromic DNA sequences in E. coli. EMBO J. 3: 1417 1421.
22. Gilson, E.,, W. Saurin,, D. Perrin,, S. Bachellier,, and M. Hofnung. 1991. The BIME family of bacterial highly repetitive sequences. Res. Microbiol. 142: 217 222.
23. Hartl, D. L.,, D. E. Dykhuizen,, and D. E. Berg. 1984. Accessory DNAs in the bacterial gene pool: playground for coevolution. Ciba Found. Symp. 102: 233 245.
24. Hartl, D. L.,, D. E. Dykhuizen,, R. D. Miller,, L. Green,, and J. de Framond. 1983. Transposable element IS50 improves growth rate of E. coli cells without transposition. Cell 35: 503 510.
25. Hendrix, R. W.,, J. G. Lawrence,, G. F. Hatfull,, and S. Casjens. 2000. The origins and ongoing evolution of viruses. Trends Microbiol. 8: 504 508.
26. Higgins, C. F.,, G. F. Ames,, W. M. Barnes,, J. M. Clement,, and M. Hofnung. 1982. A novel intercistronic regulatory element of prokaryotic operons. Nature 298: 760 762.
27. Hill, T. M., 1996. Features of the chromosomal terminus region, p. 1602 1614. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed., vol. 2. ASM Press, Washington, D.C.
28. Hulton, C. S.,, C. F. Higgins,, and P. M. Sharp. 1991. ERIC sequences: a novel family of repetitive elements in the genomes of Escherichia coli, Salmonella typhimurium and other enterobacteria. Mol. Microbiol. 5: 825 834.
29. Jacob, F.,, and J. Monod. 1962. On the regulation of gene activity. Cold Spring Harbor Symp. Quant. Biol. 26: 193 211.
30. Jacob, F.,, D. Perrin,, C. Sanchez,, and J. Monod. 1960. L’opéron: groupe de gènes à expression coordinée par un opérateur. Crit. Rev. Acad. Sci. 250: 1727 1729.
31. Kawano, M.,, S. Kanaya,, T. Oshima,, Y. Masuda,, T. Ara,, and H. Mori. 2002. Distribution of repetitive sequences on the leading and lagging strands of the Escherichia coli genome: comparative study of Long Direct Repeat (LDR) sequences. DNA Res. 9: 1 10.
32. Kobayashi, I. 2001. Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res. 29: 3742 3756.
33. Kobryn, K.,, and G. Chaconas. 2001. The circle is broken: telomere resolution in linear replicons. Curr. Opin. Microbiol. 4: 558 564.
34. Kowalczykowski, S. C. 2000. Initiation of genetic recombination and recombination-dependent replication. Trends Biochem. Sci. 25: 156 165.
35. Lawrence, J. G.,, and J. R. Roth,. 1999. Genomic flux: genome evolution by gene loss and acquisition, p. 263 289. In R. L. Charlebois (ed.), Organization of the Prokaryotic Genome. ASM Press, Washington, D.C.
36. Lawrence, J. G.,, and J. R. Roth. 1996. Selfish operons: horizontal transfer may drive the evolution of gene clusters. Genetics 143: 1843 1860.
37. Lin, L.,, R. Bitner,, and G. Edlin. 1977. Increased reproductive fitness of Escherichia coli lambda lysogens. J. Virol. 21: 554 559.
38. Liu, J.,, L. Xu,, S. J. Sandler,, and K. J. Marians. 1999. Replication fork assembly at recombination intermediates is required for bacterial growth. Proc. Natl. Acad. Sci. USA 96: 3552 3555.
39. Liu, S. L.,, and K. E. Sanderson. 1998. Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella. FEMS Microbiol. Lett. 164: 275 281.
40. Liu, S. L.,, and K. E. Sanderson. 1995. Rearrangements in the genome of the bacterium Salmonella typhi. Proc. Natl. Acad. Sci. USA 92: 1018 1022.
41. Lobry, C.,, and J. Louarn. 2003. Polarization of prokaryotic chromosomes. Curr. Opin. Microbiol. 6: 101 108.
42. Lobry, J. R. 1996. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol. Biol. Evol. 13: 660 665.
43. Lobry, J. R.,, and C. Lobry. 1999. Evolution of DNA base composition under no-strand-bias conditions when the substitution rates are not constant. Mol. Biol. Evol. 16: 719 723.
44. Maisnier-Patin, S.,, O. G. Berg,, L. Liljas,, and D. I. Andersson. 2002. Compensatory adaptation to the deleterious effect of antibiotic resistance in Salmonella typhimurium. Mol. Microbiol. 46: 355 366.
45. McLean, M. J.,, K. H. Wolfe,, and K. M. Devine. 1998. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J. Mol. Evol. 47: 691 696.
46. Miller, J. H.,, A. Suthar,, J. Tai,, A. Yeung,, C. Truong,, and J. L. Stewart. 1999. Direct selection for mutators in Escherichia coli. J. Bacteriol. 181: 1576 1584.
47. Miller, R. D.,, D. E. Dykhuizen,, and D. L. Hartl. 1988. Fitness effects of a deletion mutation increasing transcription of the 6- phosphogluconate dehydrogenase gene in Escherichia coli. Mol. Biol. Evol. 5: 691 703.
48. Muller, H. 1932. Some genetic aspects of sex. Am. Nat. 66: 118 138.
49. Muller, H. J. 1964. The relation of recombination to mutational advance. Mutat. Res. 1: 2 9.
50. Mushegian, A.,, and E. Koonin. 1996. Gene order is not conserved in bacterial evolution. Trends Genet. 12: 289 290.
51. Naito, T.,, K. Kusano,, and I. Kobayashi. 1995. Selfish behavior of restriction-modification systems. Science 267: 897 899.
52. Nobusato, A.,, I. Uchiyama,, and I. Kobayashi. 2000. Diversity of restriction-modification gene homologues in Helicobacter pylori. Gene 259: 89 98.
53. Novick, R. P.,, and F. C. Hoppensteadt. 1978. On plasmid incompatibility. Plasmid 1: 421 434.
54. Overbeek, R.,, M. Fonstein,, M. D’Souza,, G. D. Pusch,, and N. Maltsev. 1999. Use of contiguity on the chromosome to predict functional coupling. In Silico Biol. 1: 93 108.
55. Redfield, R. J. 2001. Do bacteria have sex? Nat. Rev. Genet. 2: 634 639.
56. Rocha, E. P.,, and A. Danchin. 2001. Ongoing evolution of strand composition in bacterial genomes. Mol. Biol. Evol. 18: 1789 1799.
57. Rocha, E. P.,, A. Danchin,, and A. Viari. 1999. Universal replication biases in bacteria. Mol. Microbiol. 32: 11 16.
58. Romero, D.,, and R. Palacios. 1997. Gene amplification and genomic plasticity in prokaryotes. Annu. Rev. Genet. 31: 91 111.
59. Roth, J. R.,, E. Kofoid,, F. P. Roth,, O. G. Berg,, J. Seger,, and D. I. Andersson. 2003. Regulating general mutation rates: examination of the hypermutable state model for Cairnsian adaptive mutation. Genetics 163: 1483 1496.
60. Salzberg, S. L.,, A. J. Salzberg,, A. R. Kerlavage,, and J. F. Tomb. 1998. Skewed oligomers and origins of replication. Gene 217: 57 67.
61. Schmid, M. B.,, and J. R. Roth. 1987. Gene location affects expression level in Salmonella typhimurium. J. Bacteriol. 169: 2872 2875.
62. Schneider, D.,, E. Duperchy,, E. Coursange,, R. E. Lenski,, and M. Blot. 2000. Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156: 477 488.
63. Scott, J. R.,, and G. G. Churchward. 1995. Conjugative transposition. Annu. Rev. Microbiol. 49: 367 397.
64. Sharp, P. M.,, and W. H. Li. 1987. The Codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15: 1281 1295.
65. Sharp, P. M.,, and W. H. Li. 1986. An evolutionary perspective on synonymous codon usage in unicellular organisms. J. Mol. Evol. 24: 28 38.
66. Sharp, P. M.,, D. C. Shields,, K. H. Wolfe,, and W. H. Li. 1989. Chromosomal location and evolutionary rate variation in enterobacterial genes. Science 246: 808 810.
67. Sharples, G. J.,, and R. G. Lloyd. 1990. A novel repeated DNA sequence located in the intergenic regions of bacterial chromosomes. Nucleic Acids Res. 18: 6503 6508.
68. Shyamala, V.,, E. Schneider,, and G. F. Ames. 1990. Tandem chromosomal duplications: role of REP sequences in the recombination event at the join-point. EMBO J. 9: 939 946.
69. Smith, G. R.,, S. M. Kunes,, D. W. Schultz,, A. Taylor,, and K. L. Triman. 1981. Structure of chi hotspots of generalized recombination. Cell 24: 429 436.
70. Smith, H. O.,, M. L. Gwinn,, and S. L. Salzberg. 1999. DNA uptake signal sequences in naturally transformable bacteria. Res. Microbiol. 150: 603 616.
71. Sonti, R.,, and J. R. Roth. 1988. Role of gene duplications in the adaptation of Salmonella typhimurium to growth limiting carbon sources. Genetics 123: 19 28.
72. Stern, M. J.,, G. F. Ames,, N. H. Smith,, E. C. Robinson,, and C. F. Higgins. 1984. Repetitive extragenic palindromic sequences: a major component of the bacterial genome. Cell 37: 1015 1026.
73. Thaler, D. S.,, and F. W. Stahl. 1988. DNA double-chain breaks in recombination of phage lambda and of yeast. Annu. Rev. Genet. 22: 169 197.
74. Wheelis, M.,, and R. Stanier. 1970. The genetic control of dissimilatory pathways in Pseudomonas putida. Genetics 66: 245 266.
75. Wolf, Y. I.,, I. B. Rogozin,, A. S. Kondrashov,, and E. V. Koonin. 2001. Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. Genome Res. 11: 356 372.
76. Yang, Y.,, and G. F. Ames. 1988. DNA gyrase binds to the family of prokaryotic repetitive extragenic palindromic sequences. Proc. Natl. Acad. Sci. USA 85: 8850 8854.


Generic image for table
Table 1.

Genetic elements listed in order of decreasing fitness contribution (and increasing selfish behavior)

Citation: Roth J. 2005. Where's the Beef? Looking for Information in Bacterial Chromosomes, p 3-18. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error