Chapter 14 : Overview of Transcription

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Overview of Transcription, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap14-2.gif


Bacterial RNA polymerase provides the central model for the transcription elongation complex and its various interesting fates-backtracking and correction by Gre protein-mediated transcript cleavage, transcription termination, and the antitermination controls that were discovered in bacteria. RNA polymerase and its transcription factors have functions beyond their obvious activity to provide RNA molecules to the cell, reflecting the fact that RNA polymerase and the process of transcription must have evolved as DNA arose from the primal RNA world-neither is worth much without the other. There is evidence or informed speculation implicating RNA polymerase and transcription proteins in processes of replication, DNA repair, and cell division. Thus, transcription by RNA polymerase activates the origins of replication of and phage λ in some structural way independent of the RNA product. Just as transcription and replication coevolved, so did the coordination of chromosome segregation and cell division arise in the context of both. DNA is transcribed as it moves about the cell in an organized fashion during replication. RNA is translated at the same time, causing an added complication when emerging membrane proteins are inserted into the membrane and provide points of fixation for the complex.

Citation: Roberts J. 2005. Overview of Transcription, p 277-281. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1.
Figure 1.

σ70 family members from four diverse bacteria: (E), (CC or C (B), and (M). The seventh sigma factor of , σ54, is unrelated to the main sigma family and is not shown. Reprinted from reference 16 with permission.

Citation: Roberts J. 2005. Overview of Transcription, p 277-281. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Barker, M. M.,, T. Gaal,, and R. L. Gourse. 2001. Mechanism of regulation of transcription initiation by ppGpp. II. Models for positive control based on properties of RNAP mutants and competition for RNAP. J. Mol. Biol. 305: 689 702.
2. Bentley, S. D.,, K. F. Chater,, A.-M. CerdeñoTárraga,, G. L. Challis,, N. R. Thomson,, K. D. James,, D. E. Harris,, M. A. Quail,, H. Kieser,, D. Harper,, A. Bateman,, S. Brown,, G. Chandra,, C. W. Chen,, M. Collins,, A. Cronin,, A. Fraser,, A. Goble,, J. Hidalgo,, T. Hornsby,, S. Howarth,, C.-H. Huang,, T. Kieser,, L. Larke,, L. Murphy,, K. Oliver,, S. O’Neil,, E. Rabbinowitsch,, M.-A. Rajandream,, K. Rutherford,, S. Rutter,, K. Seeger,, D. Saunders,, S. Sharp,, R. Squares,, S. Squares,, K. Taylor,, T. Warren,, A. Wietzorrek,, J. Woodward,, B. G. Barrell,, J. Parkhill,, and D. A. Hopwood. 2002. Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2). Nature 417: 141 147.
3. Bohr, V. A.,, C. A. Smith,, D. S. Okumoto,, and P. C. Hanawalt. 1985. DNA repair in an active gene: removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall. Cell 40: 359 369.
4. Cashel, M.,, D. R. Gentry,, V. J. Hernandez,, and D. Vinella,. 1996. The stringent response, p. 1458 1496. In F. C. Neidhardt,, R. Curtiss III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, D.C.
5. Das, A.,, D. Court,, and S. Adhya. 1976. Isolation and characterization of conditional lethal mutants of Escherichia coli defective in transcription termination factor rho. Proc. Natl. Acad. Sci. USA 73: 1959 1963.
6. Dworkin, J.,, and R. Losick. 2002. Does RNA polymerase help drive chromosome segregation in bacteria? Proc. Natl. Acad. Sci. USA 99: 14089 14094.
7. Epshtein, V.,, A. S. Mironov,, and E. Nudler. 2003. The riboswitch-mediated control of sulfur metabolism in bacteria. Proc. Natl. Acad. Sci. USA 100: 5052 5056.
8. French, S. 1992. Consequences of replication fork movement through transcription units in vivo. Science 258: 1362 1365.
9. Jordi, B. J.,, T. A. Owen-Hughes,, C. S. Hulton,, and C. F. Higgins. 1995. DNA twist, flexibility and transcription of the osmoregulated proU promoter of Salmonella typhimurium. EMBO J. 14: 5690 5700.
10. Lilley, D. M.,, and C. F. Higgins. 1991. Local DNA topology and gene expression: the case of the leu-500 promoter. Mol. Microbiol. 5: 779 783.
11. Liu, B.,, M. L. Wong,, and B. Alberts. 1994. A transcribing RNA polymerase molecule survives DNA replication without aborting its growing RNA chain. Proc. Natl. Acad. Sci. USA 91: 10660 10664.
12. Liu, C.,, L. S. Heath,, and C. L. Turnbough. 1994. Regulation of pyrBI operon expression in Escherichia coli by UTPsensitive reiterative RNA synthesis during transcriptional initiation. Genes Dev. 8: 2904 2912.
13. Mandal, M.,, B. Boese,, J. E. Barrick,, W. C. Winkler,, and R. R. Breaker. 2003. Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113: 577 586.
14. McDaniel, B. A. M.,, F. J. Grundy,, I. Artsimovitch,, and T. M. Henkin. 2003. Transcription termination control of the S box system: direct measurement of S-adenosylmethionine by the leader RNA. Proc. Natl. Acad. Sci. USA 100: 3083 3088.
15. McGlynn, P.,, and R. G. Lloyd. 2000. Modulation of RNA polymerase by (p)ppGpp reveals a RecG-dependent mechanism for replication fork progression. Cell 101: 35 41.
16. Paget, M. S. B.,, and J. D. Helmann. 2003. The s70 family of sigma factors. Genome Biol. 4: 203.
17. Park, J. S.,, M. T. Marr,, and J. W. Roberts. 2002. E. coli transcription repair coupling factor (Mfd protein) rescues arrested complexes by promoting forward translocation. Cell 109: 757 767.
18. Schneider, D. A.,, W. Ross,, and R. L. Gourse. 2003. Control of rRNA expression in Escherichia coli. Curr. Opin. Microbiol. 6: 151 156.
19. Schnetz, K. 1995. Silencing of Escherichia coli bgl promoter by flanking sequence elements. EMBO J. 14: 2545 2550.
20. Selby, C. P.,, and A. Sancar. 1993. Transcription-repair coupling and mutation frequency decline. J. Bacteriol. 175: 7509 7514.
21. Simon, L. D.,, M. Gottesman,, K. Tomczak,, and S. Gottesman. 1979. Hyperdegradation of proteins in Escherichia coli rho mutants. Proc. Natl. Acad. Sci. USA 76: 1623 1627.
22. Tomizawa, J.,, T. Itoh,, G. Selzer,, and T. Som. 1981. Inhibition of ColE1 RNA primer formation by a plasmid-specified small RNA. Proc. Natl. Acad. Sci. USA 78: 1421 1425.
23. Wu, H.-Y.,, S. Shyy,, J. C. Wang,, and L. F. Liu. 1988. Transcription generates positively and negatively supercoiled domains in the template. Cell 53: 433 440.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error