Chapter 15 : The Structure of Bacterial RNA Polymerase

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

The Structure of Bacterial RNA Polymerase, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap15-1.gif /docserver/preview/fulltext/10.1128/9781555817640/9781555812324_Chap15-2.gif


This chapter describes crystal structures of RNA polymerase (RNAP) structures and their implications for understanding the mechanism of transcription and the regulation of key steps in the transcription cycle. There are three main steps in the transcription cycle: initiation, elongation, and termination. The transcription elongation complex (TEC) is processive and extremely stable, transcribing at an average rate of 30 to 100 nucleotides for tens of kilobases down the DNA template. Much is known about the general architecture of RNAP and the nucleic acid scaffold in the TEC from biochemical experiments. The chapter provides a comprehensive overview of what has been learned from the bacterial RNAP structures and models. Rifampin positioned in binding pocket would block growth of the RNA chain past two or three nucleotides, explaining the bactericidal effect of the antibiotic. In the holoenzyme structure, two rearrangements in σ region 2 are evident. First, a loop that covers the core binding surface in region 2.2 moves out of the way. Second, the bundle of helices made up of regions 1.2 and 2.1 to 2.4 rotates about 12⁰ relative to the nonconserved region. The single-stranded RNA transcript in the RNA-exit channel has also been shown to be important for the stability of the elongation complex, possibly due to the flap domain closing down around the RNA. The publication of crystal structures for multiple forms of RNAP has made possible a much more detailed examination of the function of the enzyme and the mechanisms of catalysis, promoter recognition, and transcriptional activation.

Citation: Geszvain K, Landick R. 2005. The Structure of Bacterial RNA Polymerase, p 283-296. In Higgins N (ed), The Bacterial Chromosome. ASM Press, Washington, DC. doi: 10.1128/9781555817640.ch15
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Allison, L. A.,, M. Moyle,, M. Shales,, and C. J. Ingles. 1985. Extensive homology among the largest subunits of eukaryotic and prokaryotic RNA polymerases. Cell 42: 599 610.
2. Anthony, L. C.,, and R. R. Burgess. 2002. Conformational flexibility in sigma70 region 2 during transcription initiation. J. Biol. Chem. 277: 46433 46441.
3. Arthur, T. M.,, and R. R. Burgess. 1998. Localization of a sigma70 binding site on the N terminus of the Escherichia coli RNA polymerase beta' subunit. J. Biol. Chem. 273: 31381 31387.
4. Bar-Nahum, G.,, and E. Nudler. 2001. Isolation and characterization of sigma(70)-retaining transcription elongation complexes from Escherichia coli. Cell 106: 443 451.
5. Barne, K. A.,, J. A. Bown,, S. J. Busby,, and S. D. Minchin. 1997. Region 2.5 of the Escherichia coli RNA polymerase sigma70 subunit is responsible for the recognition of the “extended ‐10” motif at promoters. EMBO J. 16: 4034 4040.
6. Benoff, B.,, H. Yang,, C. L. Lawson,, G. Parkinson,, J. Liu,, E. Blatter,, Y. W. Ebright,, H. M. Berman,, and R. H. Ebright. 2002. Structural basis of transcription activation: the CAP-alpha CTD-DNA complex. Science 297: 1562 1566.
7. Blatter, E. E.,, W. Ross,, H. Tang,, R. L. Gourse,, and R. H. Ebright. 1994. Domain organization of RNA polymerase alpha subunit: C-terminal 85 amino acids constitute a domain capable of dimerization and DNA binding. Cell 78: 889 896.
8. Borukhov, S.,, and E. Nudler. 2003. RNA polymerase holoenzyme: structure, function and biological implications. Curr. Opin. Microbiol. 6: 93 100.
9. Borukhov, S.,, V. Sagitov,, and A. Goldfarb. 1993. Transcript cleavage factors from E. coli. Cell 72: 459 466.
10. Bowers, C. W.,, and A. J. Dombroski. 1999. A mutation in region 1.1 of sigma70 affects promoter DNA binding by Escherichia coli RNA polymerase holoenzyme. EMBO J. 18: 709 716.
11. Bown, J. A.,, K. A. Barne,, S. Minchin,, and S. Busby. 1997. Extended -10 promoters. Nucleic Acids Mol. Biol. 11: 41 52.
12. Buck, M.,, M. T. Gallegos,, D. J. Studholme,, Y. Guo,, and J. D. Gralla. 2000. The bacterial enhancer-dependent sigma(54) (sigma(N)) transcription factor. J. Bacteriol. 182: 4129 4136.
13. Burgess, R. R.,, and A. A. Travers. 1970. Escherichia coli RNA polymerase: purification, subunit structure, and factor requirements. Fed. Proc. 29: 1164 1169.
14. Burgess, R. R.,, A. A. Travers,, J. J. Dunn,, and E. K. Bautz. 1969. Factor stimulating transcription by RNA polymerase. Nature 221: 43 46.
15. Callaci, S.,, E. Heyduk,, and T. Heyduk. 1998. Conformational changes of Escherichia coli RNA polymerase sigma 70 factor induced by binding to the core enzyme. J. Biol. Chem. 273: 32995 33001.
16. Callaci, S.,, E. Heyduk,, and T. Heyduk. 1999. Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit. Mol. Cell 3: 229 238.
17. Camarero, J. A.,, A. Shekhtman,, E. A. Campbell,, M. Chlenov,, T. M. Gruber,, D. A. Bryant,, S. A. Darst,, D. Cowburn,, and T. W. Muir. 2002. Autoregulation of a bacterial sigma factor explored by using segmental isotopic labeling and NMR. Proc. Natl. Acad. Sci. USA 99: 8536 8541.
18. Campbell, E. A.,, N. Korzheva,, A. Mustaev,, K. Murakami,, S. Nair,, A. Goldfarb,, and S. A. Darst. 2001. Structural mechanism for rifampicin inhibition of bacterial RNA polymerase. Cell 104: 901 912.
19. Campbell, E. A.,, O. Muzzin,, M. Chlenov,, J. L. Sun,, C. A. Olson,, O. Weinman,, M. L. Trester-Zedlitz,, and S. A. Darst. 2002. Structure of the bacterial RNA polymerase promoter specificity sigma subunit. Mol. Cell 9: 527 539.
20. Chen, H.,, H. Tang,, and R. H. Ebright. 2003. Functional interaction between RNA polymerase alpha subunit C-terminal domain and sigma70 in UP-element- and activator-dependent transcription. Mol. Cell 11: 1621 1633.
21. Conaway, J. W.,, A. Shilatifard,, A. Dvir,, and R. C. Conaway. 2000. Control of elongation by RNA polymerase II. Trends Biochem Sci. 25: 375 380.
22. Cramer, P.,, D. A. Bushnell,, and R. D. Kornberg. 2001. Structural basis of transcription: RNA polymerase II at 2.8 angstrom resolution. Science 292: 1863 1876.
23. Darst, S. A.,, N. Opalka,, P. Chacon,, A. Polyakov,, C. Richter,, G. Zhang,, and W. Wriggers. 2002. Conformational flexibility of bacterial RNA polymerase. Proc. Natl. Acad. Sci. USA 99: 4296 4301.
24. Daube, S. S.,, and P. H. von Hippel. 1999. Interactions of Escherichia coli sigma(70) within the transcription elongation complex. Proc. Natl. Acad. Sci. USA 96: 8390 8395.
25. Dombroski, A. J.,, W. A. Walter,, and C. A. Gross. 1993. Amino-terminal amino acids modulate sigma-factor DNA binding activity. Genes Dev. 7: 2446 2455.
26. Dombroski, A. J.,, W. A. Walter,, M. T. Record, Jr., D. A. Siegele, and C. A. Gross. 1992. Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell 70: 501 512.
27. Doublie, S.,, and T. Ellenberger. 1998. The mechanism of action of T7 DNA polymerase. Curr. Opin. Struct. Biol. 8: 704 712.
28. Doublie, S.,, S. Tabor,, A. M. Long,, C. C. Richardson,, and T. Ellenberger. 1998. Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. Nature 391: 251 258.
29. Ebright, R. H. 2000. RNA polymerase: structural similarities between bacterial RNA polymerase and eukaryotic RNA polymerase II. J. Mol. Biol. 304: 687 698.
30. Epshtein, V.,, A. Mustaev,, V. Markovtsov,, O. Bereshchenko,, V. Nikiforov,, and A. Goldfarb. 2002. Swing-gate model of nucleotide entry into the RNA polymerase active center. Mol. Cell 10: 623 634.
31. Erie, D. A.,, O. Hajiseyedjavadi,, M. C. Young,, and P. H. von Hippel. 1993. Multiple RNA polymerase conformations and GreA: control of the fidelity of transcription. Science 262: 867 873.
32. Erie, D. A.,, T. D. Yager,, and P. H. von Hippel. 1992. The single-nucleotide addition cycle in transcription: a biophysical and biochemical perspective. Annu. Rev. Biophys. Biomol. Struct. 21: 379 415.
33. Fenton, M. S.,, S. J. Lee,, and J. D. Gralla. 2000. Escherichia coli promoter opening and ‐10 recognition: mutational analysis of sigma70. EMBO J. 19: 1130 1137.
34. Gnatt, A. L.,, P. Cramer,, J. Fu,, D. A. Bushnell,, and R. D. Kornberg. 2001. Structural basis of transcription: an RNA polymerase II elongation complex at 3.3 A resolution. Science 292: 1876 1882.
35. Gruber, T. M.,, D. Markov,, M. M. Sharp,, B. A. Young,, C. Z. Lu,, H. J. Zhong,, I. Artsimovitch,, K. M. Geszvain,, T. M. Arthur,, R. R. Burgess,, R. Landick,, K. Severinov,, and C. A. Gross. 2001. Binding of the initiation factor sigma(70) to core RNA polymerase is a multistep process. Mol. Cell 8: 21 31.
36. Guo, Y.,, and J. D. Gralla. 1998. Promoter opening via a DNA fork junction binding activity. Proc. Natl. Acad. Sci. USA 95: 11655 11660.
37. Harley, C. B.,, and R. P. Reynolds. 1987. Analysis of E. coli promoter sequences. Nucleic Acids Res. 15: 2343 2361.
38. Holmes, S. F.,, and D. A. Erie. 2003. Downstream DNA sequence effects on transcription elongation: allosteric binding of nucleoside triphosphates facilitates translocation via a ratchet motion. J. Biol. Chem. 278: 35597 35608.
39. Hsu, L. M. 2002. Open season on RNA polymerase. Nat. Struct. Biol. 9: 502 504.
40. Ishihama, A.,, N. Fujita,, and R. E. Glass. 1987. Subunit assembly and metabolic stability of E. coli RNA polymerase. Proteins 2: 42 53.
41. Jeon, Y. H.,, T. Negishi,, M. Shirakawa,, T. Yamazaki,, N. Fujita,, A. Ishihama,, and Y. Kyogoku. 1995. Solution structure of the activator contact domain of the RNA polymerase alpha subunit. Science 270: 1495 1497.
42. Jeon, Y. H.,, T. Yamazaki,, T. Otomo,, A. Ishihama,, and Y. Kyogoku. 1997. Flexible linker in the RNA polymerase alpha subunit facilitates the independent motion of the C-terminal activator contact domain. J. Mol. Biol. 267: 953 962.
43. Kireeva, M. L.,, N. Komissarova,, D. S. Waugh,, and M. Kashlev. 2000. The 8-nucleotide-long RNA:DNA hybrid is a primary stability determinant of the RNA polymerase II elongation complex. J. Biol. Chem. 275: 6530 6536.
44. Komissarova, N.,, and M. Kashlev. 1998. Functional topography of nascent RNA in elongation intermediates of RNA polymerase. Proc. Natl. Acad. Sci. USA 95: 14699 14704.
45. Korzheva, N.,, A. Mustaev,, M. Kozlov,, A. Malhotra,, V. Nikiforov,, A. Goldfarb,, and S. A. Darst. 2000. A structural model of transcription elongation. Science 289: 619 625.
46. Korzheva, N.,, A. Mustaev,, E. Nudler,, V. Nikiforov,, and A. Goldfarb. 1998. Mechanistic model of the elongation complex of Escherichia coli RNA polymerase. Cold Spring Harbor Symp. Quant. Biol. 63: 337 345.
47. Kovacic, R. T. 1987. The 0 degree C closed complexes between Escherichia coli RNA polymerase and two promoters, T7-A3 and lacUV5. J. Biol. Chem. 262: 13654 13661.
48. Krummel, B.,, and M. J. Chamberlin. 1989. RNA chain initiation by Escherichia coli RNA polymerase. Structural transitions of the enzyme in early ternary complexes. Biochemistry 28: 7829 7842.
49. Krummel, B.,, and M. J. Chamberlin. 1992. Structural analysis of ternary complexes of Escherichia coli RNA polymerase. Deoxyribonuclease I footprinting of defined complexes. J. Mol. Biol. 225: 239 250.
50. Kuznedelov, K.,, N. Korzheva,, A. Mustaev,, and K. Severinov. 2002. Structure-based analysis of RNA polymerase function: the largest subunit’s rudder contributes critically to elongation complex stability and is not involved in the maintenance of RNA-DNA hybrid length. EMBO J. 21: 1369 1378.
51. Kuznedelov, K.,, L. Minakhin,, A. Niedziela-Majka,, S. L. Dove,, D. Rogulja,, B. E. Nickels,, A. Hochschild,, T. Heyduk,, and K. Severinov. 2002. A role for interaction of the RNA polymerase flap domain with the sigma subunit in promoter recognition. Science 295: 855 857.
52. Lee, D. N.,, and R. Landick. 1992. Structure of RNA and DNA chains in paused transcription complexes containing Escherichia coli RNA polymerase. J. Mol. Biol. 228: 759 777.
53. Lee, D. N.,, L. Phung,, J. Stewart,, and R. Landick. 1990. Transcription pausing by Escherichia coli RNA polymerase is modulated by downstream DNA sequences. J. Biol. Chem. 265: 15145 15153.
54. Levin, J. R.,, B. Krummel,, and M. J. Chamberlin. 1987. Isolation and properties of transcribing ternary complexes of Escherichia coli RNA polymerase positioned at a single template base. J. Mol. Biol. 196: 85 100.
55. Libby, R. T.,, J. L. Nelson,, J. M. Calvo,, and J. A. Gallant. 1989. Transcriptional proofreading in Escherichia coli. EMBO J. 8: 3153 3158.
56. Lim, H. M.,, H. J. Lee,, S. Roy,, and S. Adhya. 2001. A “master” in base unpairing during isomerization of a promoter upon RNA polymerase binding. Proc. Natl. Acad. Sci. USA 98: 14849 14852.
57. Lonetto, M.,, M. Gribskov,, and C. A. Gross. 1992. The sigma 70 family: sequence conservation and evolutionary relationships. J. Bacteriol. 174: 3843 3849.
58. Markov, D.,, T. Naryshkina,, A. Mustaev,, and K. Severinov. 1999. A zinc-binding site in the largest subunit of DNA-dependent RNA polymerase is involved in enzyme assembly. Genes Dev. 13: 2439 2448.
59. Marr, M. T.,, S. A. Datwyler,, C. F. Meares,, and J. W. Roberts. 2001. Restructuring of an RNA polymerase holoenzyme elongation complex by lambdoid phage Q proteins. Proc. Natl. Acad. Sci. USA 98: 8972 8978.
60. Mekler, V.,, E. Kortkhinjia,, J. Mukhopadhyay,, J. Knight,, A. Revyakin,, A. N. Kapanidis,, W. Niu,, Y. W. Ebright,, R. Levy,, and R. H. Ebright. 2002. Structural organization of bacterial RNA polymerase holoenzyme and the RNA polymerase-promoter open complex. Cell 108: 599 614.
61. Metzger, W.,, P. Schickor,, and H. Heumann. 1989. A cinematographic view of Escherichia coli RNA polymerase translocation. EMBO J. 8: 2745 2754.
62. Minakhin, L.,, S. Bhagat,, A. Brunning,, E. A. Campbell,, S. A. Darst,, R. H. Ebright,, and K. Severinov. 2001. Bacterial RNA polymerase subunit omega and eukaryotic RNA polymerase subunit RPB6 are sequence, structural, and functional homologs and promote RNA polymerase assembly. Proc. Natl. Acad. Sci. USA 98: 892 897.
63. Mukhopadhyay, J.,, A. N. Kapanidis,, V. Mekler,, E. Kortkhonjia,, Y. W. Ebright,, and R. H. Ebright. 2001. Translocation of sigma(70) with RNA polymerase during transcription: fluorescence resonance energy transfer assay for movement relative to DNA. Cell 106: 453 463.
64. Murakami, K. S.,, and S. A. Darst. 2003. Bacterial RNA polymerases: the wholo story. Curr. Opin. Struct. Biol. 13: 31 39.
65. Murakami, K. S.,, S. Masuda,, E. A. Campbell,, O. Muzzin,, and S. A. Darst. 2002. Structural basis of transcription initiation: an RNA polymerase holoenzyme-DNA complex. Science 296: 1285 1290.
66. Murakami, K. S.,, S. Masuda,, and S. A. Darst. 2002. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4 A resolution. Science 296: 1280 1284.
67. Naryshkin, N.,, A. Revyakin,, Y. Kim,, V. Mekler,, and R. H. Ebright. 2000. Structural organization of the RNA polymerase-promoter open complex. Cell 101: 601 611.
68. Nickels, B. E.,, C. W. Roberts,, H. Sun,, J. W. Roberts,, and A. Hochschild. 2002. The sigma(70) subunit of RNA polymerase is contacted by the (lambda)Q antiterminator during early elongation. Mol. Cell 10: 611 622.
69. Nudler, E.,, E. Avetissova,, V. Markovtsov,, and A. Goldfarb. 1996. Transcription processivity: protein-DNA interactions holding together the elongation complex. Science 273: 211 217.
70. Opalka, N.,, M. Chlenov,, P. Chacon,, W. J. Rice,, W. Wriggers,, and S. A. Darst. 2003. Structure and function of the transcription elongation factor GreB bound to bacterial RNA polymerase. Cell 114: 272 274.
71. Panaghie, G.,, S. E. Aiyar,, K. L. Bobb,, R. S. Hayward,, and P. L. de Haseth. 2000. Aromatic amino acids in region 2.3 of Escherichia coli sigma 70 participate collectively in the formation of an RNA polymerase-promoter open complex. J. Mol. Biol. 299: 1217 1230.
72. Pati, U. K. 1994. Human RNA polymerase II subunit hRPB14 is homologous to yeast RNA polymerase I, II, and III subunits (AC19 and RPB11) and is similar to a portion of the bacterial RNA polymerase alpha subunit. Gene 145: 289 292.
73. Polyakov, A.,, C. Richter,, A. Malhotra,, D. Koulich,, S. Borukhov,, and S. A. Darst. 1998. Visualization of the binding site for the transcript cleavage factor GreB on Escherichia coli RNA polymerase. J. Mol. Biol. 281: 465 473.
74. Reynolds, R.,, and M. J. Chamberlin. 1992. Parameters affecting transcription termination by Escherichia coli RNA. II. Construction and analysis of hybrid terminators. J. Mol. Biol. 224: 53 63.
75. Rivetti, C.,, S. Codeluppi,, G. Dieci,, and C. Bustamante. 2003. Visualizing RNA extrusion and DNA wrapping in transcription elongation complexes of bacterial and eukaryotic RNA polymerases. J. Mol. Biol. 326: 1413 1426.
76. Ross, W.,, A. Ernst,, and R. L. Gourse. 2001. Fine structure of E. coli RNA polymerase-promoter interactions: alpha subunit binding to the UP element minor groove. Genes Dev. 15: 491 506.
77. Ross, W.,, D. A. Schneider,, B. J. Paul,, A. Mertens,, and R. L. Gourse. 2003. An intersubunit contact stimulating transcription initiation by E coli RNA polymerase: interaction of the alpha C-terminal domain and sigma region 4. Genes Dev. 17: 1293 1307.
78. Saecker, R. M.,, O. V. Tsodikov,, K. L. McQuade,, P. E. Schlax, Jr.,, M. W. Capp,, and M. T. Record, Jr. 2002. Kinetic studies and structural models of the association of E. coli sigma(70) RNA polymerase with the lambdaP(R) promoter: large scale conformational changes in forming the kinetically significant intermediates. J. Mol. Biol. 319: 649 671.
79. Sasse-Dwight, S.,, and J. D. Gralla. 1990. Role of eukaryotictype functional domains found in the prokaryotic enhancer receptor factor sigma 54. Cell 62: 945 954.
80. Savery, N. J.,, G. S. Lloyd,, S. J. Busby,, M. S. Thomas,, R. H. Ebright,, and R. L. Gourse. 2002. Determinants of the C-terminal domain of the Escherichia coli RNA polymerase alpha subunit important for transcription at class I cyclic AMP receptor protein-dependent promoters. J. Bacteriol. 184: 2273 2280.
81. Severinov, K. 2000. RNA polymerase structure-function: insights into points of transcriptional regulation. Curr. Opin. Microbiol. 3: 118 125.
82. Severinov, K.,, and S. A. Darst. 1997. A mutant RNA polymerase that forms unusual open promoter complexes. Proc. Natl. Acad. Sci. USA 94: 13481 13486.
83. Severinov, K.,, D. Fenyo,, E. Severinova,, A. Mustaev,, B. T. Chait,, A. Goldfarb,, and S. A. Darst. 1994. The sigma subunit conserved region 3 is part of “5'-face” of active center of Escherichia coli RNA polymerase. J. Biol. Chem. 269: 20826 20828.
84. Severinov, K.,, A. Mustaev,, A. Kukarin,, O. Muzzin,, I. Bass,, S. A. Darst,, and A. Goldfarb. 1996. Structural modules of the large subunits of RNA polymerase. Introducing archaebacterial and chloroplast split sites in the beta and beta’ subunits of Escherichia coli RNA polymerase. J. Biol. Chem. 271: 27969 27974.
85. Severinova, E.,, K. Severinov,, D. Fenyo,, M. Marr,, E. N. Brody,, J. W. Roberts,, B. T. Chait,, and S. A. Darst. 1996. Domain organization of the Escherichia coli RNA polymerase sigma 70 subunit. J. Mol. Biol. 263: 637 647.
86. Sharp, M. M.,, C. L. Chan,, C. Z. Lu,, M. T. Marr,, S. Nechaev,, E. W. Merritt,, K. Severinov,, J. W. Roberts,, and C. A. Gross. 1999. The interface of sigma with core RNA polymerase is extensive, conserved, and functionally specialized. Genes Dev. 13: 3015 3026.
87. Shimamoto, N.,, T. Kamigochi,, and H. Utiyama. 1986. Release of the sigma subunit of Escherichia coli DNA-dependent RNA polymerase depends mainly on time elapsed after the start of initiation, not on length of product RNA. J. Biol. Chem. 261: 11859 11865.
88. Sidorenkov, I.,, N. Komissarova,, and M. Kashlev. 1998. Crucial role of the RNA:DNA hybrid in the processivity of transcription. Mol. Cell 2: 55 64.
89. Siegele, D. A.,, J. C. Hu,, W. A. Walter,, and C. A. Gross. 1989. Altered promoter recognition by mutant forms of the sigma 70 subunit of Escherichia coli RNA polymerase. J. Mol. Biol. 206: 591 603.
90. Sosunov, V.,, E. Sosunova,, A. Mustaev,, I. Bass,, V. Nikiforov,, and A. Goldfarb. 2003. Unified two-metal mechanism of RNA synthesis and degradation by RNA polymerase. EMBO J. 22: 2234 2244.
91. Steitz, T. A.,, S. J. Smerdon,, J. Jager,, and C. M. Joyce. 1994. A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. Science 266: 2022 2025.
92. Svetlov, V.,, K. Nolan,, and R. R. Burgess. 1998. Rpb3, stoichiometry and sequence determinants of the assembly into yeast RNA polymerase II in vivo. J. Biol. Chem. 273: 10827 10830.
93. Sweetser, D.,, M. Nonet,, and R. A. Young. 1987. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. Proc. Natl. Acad. Sci. USA 84: 1192 1196.
94. Telesnitsky, A.,, and M. J. Chamberlin. 1989. Terminator-distal sequences determine the in vitro efficiency of the early terminators of bacteriophages T3 and T7. Biochemistry 28: 5210 5218.
95. Tomsic, M.,, L. Tsujikawa,, G. Panaghie,, Y. Wang,, J. Azok,, and P. L. deHaseth. 2001. Different roles for basic and aromatic amino acids in conserved region 2 of Escherichia coli sigma(70) in the nucleation and maintenance of the single-stranded DNA bubble in open RNA polymerase-promoter complexes. J. Biol. Chem. 276: 31891 31896.
96. Toulokhonov, I.,, I. Artsimovitch,, and R. Landick. 2001. Allosteric control of RNA polymerase by a site that contacts nascent RNA hairpins. Science 292: 730 733.
97. Vassylyev, D. G.,, S. Sekine,, O. Laptenko,, J. Lee,, M. N. Vassylyeva,, S. Borukhov,, and S. Yokoyama. 2002. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6 Å resolution. Nature 417: 712 719.
98. Vo, N. V.,, L. M. Hsu,, C. M. Kane,, and M. J. Chamberlin. 2003. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 3. Influences of individual DNA elements within the promoter recognition region on abortive initiation and promoter escape. Biochemistry 42: 3798 3811.
99. Vogel, U.,, and K. F. Jensen. 1994. The RNA chain elongation rate in Escherichia coli depends on the growth rate. J. Bacteriol. 176: 2807 2813.
100. Vuthoori, S.,, C. W. Bowers,, A. McCracken,, A. J. Dombroski,, and D. M. Hinton. 2001. Domain 1.1 of the sigma(70) subunit of Escherichia coli RNA polymerase modulates the formation of stable polymerase/promoter complexes. J. Mol. Biol. 309: 561 572.
101. Wang, D.,, and R. Landick. 1997. Nuclease cleavage of the upstream half of the nontemplate strand DNA in an Escherichia coli transcription elongation complex causes upstream translocation and transcriptional arrest. J. Biol. Chem. 272: 5989 5994.
102. Wilson, C.,, and A. J. Dombroski. 1997. Region 1 of sigma70 is required for efficient isomerization and initiation of transcription by Escherichia coli RNA polymerase. J. Mol. Biol. 267: 60 74.
103. Wilson, K. S.,, C. R. Conant,, and P. H. von Hippel. 1999. Determinants of the stability of transcription elongation complexes: interactions of the nascent RNA with the DNA template and the RNA polymerase. J. Mol. Biol. 289: 1179 1194.
104. Young, B. A.,, L. C. Anthony,, T. M. Gruber,, T. M. Arthur,, E. Heyduk,, C. Z. Lu,, M. M. Sharp,, T. Heyduk,, R. R. Burgess,, and C. A. Gross. 2001. A coiled-coil from the RNA polymerase beta0 subunit allosterically induces selective nontemplate strand binding by sigma(70). Cell 105: 935 944.
105. Young, B. A.,, T. M. Gruber,, and C. A. Gross. 2002. Views of transcription initiation. Cell 109: 417 420.
106. Zakharova, N.,, B. J. Paster,, I. Wesley,, F. E. Dewhirst,, D. E. Berg,, and K. V. Severinov. 1999. Fused and overlapping rpoB and rpoC genes in helicobacters, campylobacters, and related bacteria. J. Bacteriol. 181: 3857 3859.
107. Zaychikov, E.,, L. Denissova,, and H. Heumann. 1995. Translocation of the Escherichia coli transcription complex observed in the registers 11 to 20: “jumping” of RNA polymerase and asymmetric expansion and contraction of the “transcription bubble.” Proc. Natl. Acad. Sci. USA 92: 1739 1743.
108. Zaychikov, E.,, L. Denissova,, T. Meier,, M. Gotte,, and H. Heumann. 1997. Influence of Mg2þ and temperature on formation of the transcription bubble. J. Biol. Chem. 272: 2259 2267.
109. Zhang, G.,, E. A. Campbell,, L. Minakhin,, C. Richter,, K. Severinov,, and S. A. Darst. 1999. Crystal structure of Thermus aquaticus core RNA polymerase at 3.3 Å resolution. Cell 98: 811 824.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error