1887

Chapter 11 : TB or Not TB: a Structural Genomics Mission?

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

TB or Not TB: a Structural Genomics Mission?, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap11-2.gif

Abstract:

This chapter describes the experimental path from gene to protein structure, the public tuberculosis (TB) structural henomics consortium database, and the structures that have been determined thus far and their biological relevance. Structural genomics is the determination and analysis of protein structures on a genome-wide scale, proceeding from knowledge of the genome sequence to knowledge of the three-dimensional structure. One of the goals of structural genomics is to determine example structures for new protein families, so that three-dimensional structural models may be constructed with no structural information. Another goal is functional annotation of proteins with no known function by analysis of their atomic structures. A third goal is to construct protein-protein interaction networks of an entire genome. Lastly, for structural genomics projects to fulfill their goals, the process must be automated for high throughput. Proteins are secreted by in response to environmental changes, for example, to protect against oxidative damage or to colonize a host successfully. The antigen 85 complex comprises three closely related enzymes, antigen 85A (Ag85A) (31 kDa), Ag85B (30 kDa), and Ag85C (31.5 kDa). These secreted proteins are both antigenic and involved in cell wall maintenance. The secreted antigen MPT70 and its homolog MPT83 (63% sequence identical) are highly immunogenic during the infection of mice. Phosphatidylinositol is a key precursor of many glycolipid cell wall components.

Citation: Goulding C, Pal D, Eisenberg D. 2005. TB or Not TB: a Structural Genomics Mission?, p 165-179. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Flowchart showing the most common experimental path for the determination of structures by members of the TB Structural Genomics Consortium, although many variations of this path are taken in practice.

Citation: Goulding C, Pal D, Eisenberg D. 2005. TB or Not TB: a Structural Genomics Mission?, p 165-179. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

(A) The number of proteins (axis) that have reached each experimental stage (axis). The curve represents an exponential fit of the form = 2113.2 exp (-0.2963); = 0.9834. (B) Number of experiments conducted for all proteins at each given experimental stage.

Citation: Goulding C, Pal D, Eisenberg D. 2005. TB or Not TB: a Structural Genomics Mission?, p 165-179. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap11
1. Almassy, R. J.,, C. A. Janson,, R. Hamlin,, N. H. Xuong,, and D. Eisenberg. 1986. Novel subunit-subunit interactions in the structure of glutamine synthetase. Nature 323: 304 309.
2. Altschul, S. F.,, T. L. Madden,, A. A. Schaffer,, J. Zhang,, Z. Zhang,, W. Miller,, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389 3402.
3. Ames, B. N.,, R. G. Martin,, and B. J. Garry. 1961. The first step of histidine biosynthesis. J. Biol. Chem. 236: 2019 2026.
4. Anderson, D. H.,, G. Harth,, M. A. Horwitz,, and D. Eisenberg. 2001. An interfacial mechanism and a class of inhibitors inferred from two crystal structures of the Mycobacterium tuberculosis 30 kDa major secretory protein (Antigen 85B), a mycolyl transferase. J. Mol. Biol. 307: 671 681.
5. Baca, A. M.,, R. Sirawaraporn,, S. Turley,, W. Sirawaraporn,, and W. G. Hol. 2000. Crystal structure of Mycobacterium tuberculosis 7,8-dihydropteroate synthase in complex with pterin monophosphate: new insight into the enzymatic mechanism and sulfa-drug action. J. Mol. Biol. 302: 1193 1212.
6. Banerjee, A.,, E. Dubnau,, A. Quemard,, V. Balasubramanian,, K. S. Um,, T. Wilson,, D. Collins,, G. de Lisle,, and W. R. Jacobs, Jr. 1994. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 263: 227 230.
7. Bateman, A.,, and D. H. Haft. 2002. HMM-based databases in InterPro. Brief Bioinform. 3: 236 245.
8. Billings, P. C.,, J. C. Whitbeck,, C. S. Adams,, W. R. Abrams,, A. J. Cohen,, B. N. Engelsberg,, P. S. Howard,, and J. Rosenbloom. 2002. The transforming growth factor-beta-inducible matrix protein (beta)ig-h3 interacts with fibronectin. J. Biol. Chem. 277: 28003 28009.
9. Bossi, R. T.,, A. Aliverti,, D. Raimondi,, F. Fischer,, G. Zanetti,, D. Ferrari,, N. Tahallah,, C. S. Maier,, A. J. Heck,, M. Rizzi,, and A. Mattevi. 2002. A covalent modification of NADP + revealed by the atomic resolution structure of FprA, a Mycobacterium tuberculosis oxidoreductase. Biochemistry 41: 8807 8818.
10. Braunstein, M.,, A. M. Brown,, S. Kurtz,, and W. R. Jacobs, Jr. 2001. Two nonredundant SecA homologues function in mycobacteria. J. Bacteriol. 183: 6979 6990.
11. Bryk, R.,, C. D. Lima,, H. Erdjument-Bromage,, P. Tempst,, and C. Nathan. 2002. Metabolic enzymes of mycobacteria linked to antioxidant defense by a thioredoxin-like protein. Science 295: 1073 1077.
12. Camus, J. C.,, M. J. Pryor,, C. Medigue,, and S. T. Cole. 2002. Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 148: 2967 2973.
13. Carr, M. D.,, M. J. Bloemink,, E. Dentten,, A. O. Whelan,, S. V. Gordon,, G. Kelly,, T. A. Frenkiel,, R. G. Hewinson,, and R. A. Williamson. 2003. Solution structure of the Mycobacterium tuberculosis complex protein MPB70: from tuberculosis pathogenesis to inherited human corneal disease. J. Biol. Chem. 278: 43736 43743.
14. Chang, G.,, R. H. Spencer,, A. T. Lee,, M. T. Barclay,, and D. C. Rees. 1998. Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel. Science 282: 2220 2226.
15. Chaudhuri, B. N.,, M. R. Sawaya,, C. Y. Kim,, G. S. Waldo,, M. S. Park,, T. C. Terwilliger,, and T. O. Yeates. 2003. The crystal structure of the first enzyme in the pantothenate biosynthetic pathway, ketopantoate hydroxymethyltransferase, from M. tuberculosis. Structure 11: 753 764.
16. Chen, Y.,, S. Morera,, J. Mocan,, I. Lascu,, and J. Janin. 2002. X-ray structure of Mycobacterium tuberculosis nucleoside diphosphate kinase. Proteins 47: 556 557.
17. Cho, Y.,, V. Sharma,, and J. C. Sacchettini. 2003. Crystal structure of ATP phosphoribosyltransferase from Mycobacterium tuberculosis. J. Biol. Chem. 278: 8333 8339.
18. Cirilli, M.,, R. Zheng,, G. Scapin,, and J. S. Blanchard. 2003. The three-dimensional structures of the Mycobacterium tuberculosis dihydrodipicolinate reductase-NADH-2,6-PDC and -NADPH-2,6-PDC complexes. Structural and mutagenic analysis of relaxed nucleotide specificity. Biochemistry 42: 10644 10650.
19. Clout, N. J.,, D. Tisi,, and E. Hohenester. 2003. Novel fold revealed by the structure of a FAS1 domain pair from the insect cell adhesion molecule fasciclin I. Structure 11: 197 203.
20. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. Barry III,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Soeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
21. Cooper, J. B.,, K. McIntyre,, M. O. Badasso,, S. P. Wood,, Y. Zhang,, T. R. Garbe,, and D. Young. 1995. X-ray structure analysis of the iron-dependent superoxide dismutase from Mycobacterium tuberculosis at 2.0 Ångstroms resolution reveals novel dimer-dimer interactions. J. Mol. Biol. 246: 531 544.
22. Daffe, M. 2000. The mycobacterial antigens 85 complex— from structure to function and beyond. Trends Microbiol. 8: 438 440.
23. Datta, S.,, N. Ganesh,, N. R. Chandra,, K. Muniyappa,, and M. Vijayan. 2003. Structural studies on MtRecA-nucleotide complexes: insights into DNA and nucleotide binding and the structural signature of NTP recognition. Proteins 50: 474 485.
24. Daugelat, S.,, J. Kowall,, J. Mattow,, D. Bumann,, R. Winter,, R. Hurwitz,, and S. H. Kaufmann. 2003. The RD1 proteins of Mycobacterium tuberculosis: expression in Mycobacterium smegmatis and biochemical characterization. Microbes Infect. 5: 1082 1095.
25. Davis, E. O.,, S. G. Sedgwick,, and M. J. Colston. 1991. Novel structure of the recA locus of Mycobacterium tuberculosis implies processing of the gene product. J. Bacteriol. 173: 5653 5662.
26. Dessen, A.,, A. Quemard,, J. S. Blanchard,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 1995. Crystal structure and function of the isoniazid target of Mycobacterium tuberculosis. Science 267: 1638 1641.
27. Durbin, R.,, and S. Dear. 1998. Base qualities help sequencing software. Genome Res. 8: 161 162.
28. Eisenberg, D.,, H. S. Gill,, G. M. Pfluegl,, and S. H. Rotstein. 2000. Structure-function relationships of glutamine synthetases. Biochim. Biophys. Acta 1477: 122 145.
29. Evans, L. D.,, A. W. Roszak,, L. J. Noble,, D. A. Robinson,, P. A. Chalk,, J. L. Matthews,, J. R. Coggins,, N. C. Price,, and A. J. Lapthorn. 2002. Specificity of substrate recognition by type II dehydroquinases as revealed by binding of polyanions. FEBS Lett. 530: 24 30.
30. Feese, M. D.,, B. P. Ingason,, J. Goranson-Siekierke,, R. K. Holmes,, and W. G. Hol. 2001. Crystal structure of the irondependent regulator from Mycobacterium tuberculosis at 2.0-Å resolution reveals the Src homology domain 3-like fold and metal binding function of the third domain. J. Biol. Chem. 276: 5959 5966.
31. Flory, J.,, S. S. Tsang,, and K. Muniyappa. 1984. Isolation and visualization of active presynaptic filaments of recA protein and single-stranded DNA. Proc. Natl. Acad. Sci. USA 81: 7026 7030.
32. Galli, G.,, P. Ghezzi,, P. Mascagni,, F. Marcucci,, and M. Fratelli. 1996. Mycobacterium tuberculosis heat shock protein 10 increases both proliferation and death in mouse P19 teratocarcinoma cells. In Vitro Cell. Dev. Biol. Anim. 32: 446 450.
33. George, K. M.,, Y. Yuan,, D. R. Sherman,, and C. E. Barry III. 1995. The biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Identification and functional analysis of CMAS-2. J. Biol. Chem. 270: 27292 27298.
34. Gill, H. S.,, G. M. Pfluegl,, and D. Eisenberg. 2002. Multicopy crystallographic refinement of a relaxed glutamine synthetase from Mycobacterium tuberculosis highlights flexible loops in the enzymatic mechanism and its regulation. Biochemistry 41: 9863 9872.
35. Glickman, M. S.,, J. S. Cox,, and W. R. Jacobs, Jr. 2000. A novel mycolic acid cyclopropane synthetase is required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol. Cell. 5: 717 727.
36. Gokulan, K.,, B. Rupp,, M. S. Pavelka, Jr.,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 2003. Crystal structure of Mycobacterium tuberculosis diaminopimelate decarboxylase, an essential enzyme in bacterial lysine biosynthesis. J. Biol. Chem. 278: 18588 18596.
37. Gopal, B.,, L. F. Haire,, R. A. Cox,, M. Jo Colston,, S. Major,, J. A. Brannigan,, S. J. Smerdon,, and G. Dodson. 2000. The crystal structure of NusB from Mycobacterium tuberculosis. Nat. Struct. Biol. 7: 475 478.
38. Gopal, B.,, L. F. Haire,, S. J. Gamblin,, E. J. Dodson,, A. N. Lane,, K. G. Papavinasasundaram,, M. J. Colston,, and G. Dodson. 2001. Crystal structure of the transcription elongation/ anti-termination factor NusA from Mycobacterium tuberculosis at 1.7 A resolution. J. Mol. Biol. 314: 1087 1095.
39. Goulding, C. W.,, M. Apostol,, D. H. Anderson,, H. S. Gill,, C. V. Smith,, M. R. Kuo,, J. K. Yang,, G. S. Waldo,, S. W. Suh,, R. Chauhan,, A. Kale,, N. Bachhawat,, S. C. Mande,, J. M. Johnston,, J. S. Lott,, E. N. Baker,, V. L. Arcus,, D. Leys,, K. J. McLean,, A. W. Munro,, J. Berendzen,, V. Sharma,, M. S. Park,, D. Eisenberg,, J. Sacchettini,, T. Alber,, B. Rupp,, W. Jacobs, Jr.,, and T. C. Terwilliger. 2002. The TB structural genomics consortium: providing a structural foundation for drug discovery. Curr. Drug Targets Infect. Disord. 2: 121 141.
40. Goulding, C. W.,, S. Gleiter,, M. I. Apostol,, A. Parseghian,, J. Bardwell,, M. L. Gennaro,, and D. Eisenberg. 2004. Grampositive DsbE proteins function differently from gram-negative DsbE homologs: a structure to function analysis of DsbE from Mycobacterium tuberculosis. J. Biol. Chem. 279: 3516 3524.
41. Goulding, C. W.,, and L. Jeanne Perry. 2003. Protein production in Escherichia coli for structural studies by X-ray crystallography. J. Struct. Biol. 142: 133 143.
42. Goulding, C. W.,, A. Parseghian,, M. R. Sawaya,, D. Cascio,, M. I. Apostol,, M. L. Gennaro,, and D. Eisenberg. 2002. Crystal structure of a major secreted protein of Mycobacterium tuberculosis-MPT63 at 1.5-Å resolution. Protein Sci. 11: 2887 2893.
43. Gu, Y.,, L. Reshetnikova,, Y. Li,, Y. Wu,, H. Yan,, S. Singh,, and X. Ji. 2002. Crystal structure of shikimate kinase from Mycobacterium tuberculosis reveals the dynamic role of the LID domain in catalysis. J. Mol. Biol. 319: 779 789.
44. Gupta, A.,, P. H. Kumar,, T. K. Dineshkumar,, U. Varshney,, and H. S. Subramanya. 2001. Crystal structure of Rv2118c: an AdoMet-dependent methyltransferase from Mycobacterium tuberculosis H37Rv. J. Mol. Biol. 312: 381 391.
45. Hanks, S. K.,, and T. Hunter. 1995. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9: 576 596.
46. Harth, G.,, D. L. Clemens,, and M. A. Horwitz. 1994. Glutamine synthetase of Mycobacterium tuberculosis: extracellular release and characterization of its enzymatic activity. Proc. Natl. Acad. Sci. USA 91: 9342 9346.
47. Harth, G.,, and M. A. Horwitz. 2003. Inhibition of Mycobacterium tuberculosis glutamine synthetase as a novel antibiotic strategy against tuberculosis: demonstration of efficacy in vivo. Infect. Immun. 71: 456 464.
48. Harth, G.,, and M. A. Horwitz. 1999. An inhibitor of exported Mycobacterium tuberculosis glutamine synthetase selectively blocks the growth of pathogenic mycobacteria in axenic culture and in human monocytes: extracellular proteins as potential novel drug targets. J. Exp. Med. 189: 1425 1436.
49. Harth, G.,, B. Y. Lee,, J. Wang,, D. L. Clemens,, and M. A. Horwitz. 1996. Novel insights into the genetics, biochemistry, and immunocytochemistry of the 30-kilodalton major extracellular protein of Mycobacterium tuberculosis. Infect. Immun. 64: 3038 3047.
50. Haschemeyer, R. H. 1968. Electron microscopy of enzymes. Trans. N.Y. Acad. Sci. 30: 875 891.
51. Hewinson, R. G.,, S. L. Michell,, W. P. Russell,, R. A. McAdam,, and W. R. Jacobs, Jr. 1996. Molecular characterization of MPT83: a seroreactive antigen of Mycobacterium tuberculosis with homology to MPT70. Scand. J. Immunol. 43: 490 499.
52. Hingley-Wilson, S. M.,, V. K. Sambandamurthy,, and W. R. Jacobs, Jr. 2003. Survival perspectives from the world’s most successful pathogen, Mycobacterium tuberculosis. Nat. Immunol. 4: 949 955.
53. Hirschfield, G. R.,, M. McNeil,, and P. J. Brennan. 1990. Peptidoglycan- associated polypeptides of Mycobacterium tuberculosis. J. Bacteriol. 172: 1005 1013.
54. Horwitz, M. A.,, G. Harth,, B. J. Dillon,, and S. Maslesa- Galic. 2000. Recombinant bacillus Calmette-Guérin (BCG) vaccines expressing the Mycobacterium tuberculosis 30-kDa major secretory protein induce greater protective immunity against tuberculosis than conventional BCG vaccines in a highly susceptible animal model. Proc. Natl. Acad. Sci. USA 97: 13853 13858.
55. Huang, C.-C.,, C. V. Smith,, M. S. Glickman,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 2002. Crystal structures of mycolic acid cyclopropane synthases from M. tuberculosis. J. Biol. Chem. 277: 11559 11569.
56. Huse, M.,, and J. Kuriyan. 2002. The conformational plasticity of protein kinases. Cell 109: 275 282.
57. Johnson, S.,, P. Brusasca,, K. Lyashchenko,, J. S. Spencer,, H. G. Wiker,, P. Bifani,, E. Shashkina,, B. Kreiswirth,, M. Harboe,, N. Schluger,, M. Gomez,, and M. L. Gennaro. 2001. Characterization of the secreted MPT53 antigen of Mycobacterium tuberculosis. Infect. Immun. 69: 5936 5939.
58. Johnston, J. M.,, V. L. Arcus,, C. J. Morton,, M. W. Parker,, and E. N. Baker. 2003. Crystal structure of a putative methyltransferase from Mycobacterium tuberculosis: misannotation of a genome clarified by protein structural analysis. J. Bacteriol. 185: 4057 4065.
59. Juarez, M. D.,, A. Torres,, and C. Espitia. 2001. Characterization of the Mycobacterium tuberculosis region containing the mpt83 and mpt70 genes. FEMS Microbiol. Lett. 203: 95 102.
60. Kang, L. W.,, S. B. Gabelli,, J. E. Cunningham,, S. F. O’Handley,, and L. M. Amzel. 2003. Structure and mechanism of MTADPRase, a nudix hydrolase from Mycobacterium tuberculosis. Structure 11: 1015 1023.
61. Lee, B. Y.,, and M. A. Horwitz. 1995. Identification of macrophage and stress-induced proteins of Mycobacterium tuberculosis. J. Clin. Investig. 96: 245 249.
62. Legault, P.,, J. Li,, J. Mogridge,, L. E. Kay,, and J. Greenblatt. 1998. NMR structure of the bacteriophage lambda N peptide/ boxB RNA complex: recognition of a GNRA fold by an arginine-rich motif. Cell 93: 289 299.
63. Leys, D.,, C. G. Mowat,, K. J. McLean,, A. Richmond,, S. K. Chapman,, M. D. Walkinshaw,, and A. W. Munro. 2003. Atomic structure of Mycobacterium tuberculosis CYP121 to 1.06 Å reveals novel features of cytochrome P450. J. Biol. Chem. 278: 5141 5147.
64. Li, R.,, R. Sirawaraporn,, P. Chitnumsub,, W. Sirawaraporn,, J. Wooden,, F. Athappilly,, S. Turley,, and W. G. Hol. 2000. Three-dimensional structure of M. tuberculosis dihydrofolate reductase reveals opportunities for the design of novel tuberculosis drugs. J. Mol. Biol. 295: 307 323.
65. Li de la Sierra, I.,, H. Munier-Lehmann,, A. M. Gilles,, O. Barzu,, and M. Delarue. 2001. X-ray structure of TMP kinase from Mycobacterium tuberculosis complexed with TMP at 1.95 Å resolution. J. Mol. Biol. 311: 87 100.
66. Lo Conte, L.,, S. E. Brenner,, T. J. Hubbard,, C. Chothia,, and A. G. Murzin. 2002. SCOP database in 2002: refinements accommodate structural genomics. Nucleic Acids Res. 30: 264 267.
67. Mah, T. F.,, K. Kuznedelov,, A. Mushegian,, K. Severinov,, and J. Greenblatt. 2000. The alpha subunit of E. coli RNA polymerase activates RNA binding by NusA. Genes Dev. 14: 2664 2675.
68. Mallick, P.,, R. Weiss,, and D. Eisenberg. 2002. The directional atomic solvation energy: an atom-based potential for the assignment of protein sequences to known folds. Proc. Natl. Acad. Sci. USA 99: 16041 16046.
69. Manca, C.,, K. Lyashchenko,, H. G. Wiker,, D. Usai,, R. Colangeli,, and M. L. Gennaro. 1997. Molecular cloning, purification, and serological characterization of MPT63, a novel antigen secreted by Mycobacterium tuberculosis. Infect. Immun. 65: 16 23.
70. McKinney, J. D.,, K. Honer zu Bentrup,, E. J. Munoz-Elias,, A. Miczak,, B. Chen,, W. T. Chan,, D. Swenson,, J. C. Sacchettini,, W. R. Jacobs, Jr.,, and D. G. Russell. 2000. Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406: 735 738.
71. Meganathan, R. 2001. Biosynthesis of menaquinone (vitamin K2) and ubiquinone (coenzyme Q): a perspective on enzymatic mechanisms. Vitam. Horm. 61: 173 218.
72. Milani, M.,, A. Pesce,, Y. Ouellet,, P. Ascenzi,, M. Guertin,, and M. Bolognesi. 2001. Mycobacterium tuberculosis hemoglobin N displays a protein tunnel suited for O2 diffusion to the heme. EMBO J. 20: 3902 3909.
73. Milani, M.,, P. Y. Savard,, H. Ouellet,, P. Ascenzi,, M. Guertin,, and M. Bolognesi. 2003. A TyrCD1/TrpG8 hydrogen bond network and a TyrB10TyrCD1 covalent link shape the heme distal site of Mycobacterium tuberculosis hemoglobin O. Proc. Natl. Acad. Sci. USA 100: 5766 5771.
74. Mori, H.,, and K. Ito. 2001. The Sec protein-translocation pathway. Trends Microbiol. 9: 494 500.
75. Moskovitz, J.,, S. Bar-Noy,, W. M. Williams,, J. Requena,, B. S. Berlett,, and E. R. Stadtman. 2001. Methionine sulfoxide reductase (MsrA) is a regulator of antioxidant defense and lifespan in mammals. Proc. Natl. Acad. Sci. USA 98: 12920 12925.
76. Munro, A. W.,, K. J. McLean,, K. R. Marshall,, A. J. Warman,, G. Lewis,, O. Roitel,, M. J. Sutcliffe,, C. A. Kemp,, S. Modi,, N. S. Scrutton,, and D. Leys. 2003. Cytochromes P450: novel drug targets in the war against multidrug-resistant Mycobacterium tuberculosis. Biochem. Soc. Trans. 31: 625 630.
77. Mushegian, A. R.,, and E. V. Koonin. 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA 93: 10268 10273.
78. Nagai, S.,, H. G. Wiker,, M. Harboe,, and M. Kinomoto. 1991. Isolation and partial characterization of major protein antigens in the culture fluid of Mycobacterium tuberculosis. Infect. Immun. 59: 372 382.
79. Norman, R. A.,, M. S. McAlister,, J. Murray-Rust,, F. Movahedzadeh,, N. G. Stoker,, and N. Q. McDonald. 2002. Crystal structure of inositol 1-phosphate synthase from Mycobacterium tuberculosis, a key enzyme in phosphatidylinositol synthesis. Structure 10: 393 402.
80. Ortiz-Lombardia, M.,, F. Pompeo,, B. Boitel,, and P. M. Alzari. 2003. Crystal structure of the catalytic domain of the PknB serine/threonine kinase from Mycobacterium tuberculosis. J. Biol. Chem. 278: 13094 13100.
81. Pavelka, M. S., Jr.,, B. Chen,, C. L. Kelley,, F. M. Collins,, and W. R. Jacobs, Jr. 2003. Vaccine efficacy of a lysine auxotroph of Mycobacterium tuberculosis. Infect. Immun. 71: 4190 4192.
82. Pearl, F. M.,, D. Lee,, J. E. Bray,, I. Sillitoe,, A. E. Todd,, A. P. Harrison,, J. M. Thornton,, and C. A. Orengo. 2000. Assigning genomic sequences to CATH. Nucleic Acids Res. 28: 277 282.
83. Perrakis, A.,, R. Morris,, and V. S. Lamzin. 1999. Automated protein model building combined with iterative structure refinement. Nat. Struct. Biol. 6: 458 463.
84. Podust, L. M.,, T. L. Poulos,, and M. R. Waterman. 2001. Crystal structure of cytochrome P450 14alpha-sterol demethylase (CYP51) from Mycobacterium tuberculosis in complex with azole inhibitors. Proc. Natl. Acad. Sci. USA 98: 3068 3073.
85. Powers, S. G.,, and E. E. Snell. 1976. Ketopantoate hydroxymethyltransferase. II. Physical, catalytic, and regulatory properties. J. Biol. Chem. 251: 3786 3793.
86. Roberts, M. M.,, A. R. Coker,, G. Fossati,, P. Mascagni,, A. R. Coates,, and S. P. Wood. 2003. Mycobacterium tuberculosis chaperonin 10 heptamers self-associate through their biologically active loops. J. Bacteriol. 185: 4172 4185.
87. Roca, A. I.,, and M. M. Cox. 1997. RecA protein: structure, function, and role in recombinational DNA repair. Prog. Nucleic Acid Res. Mol. Biol. 56: 129 223.
88. Ronning, D. R.,, T. Klabunde,, G. S. Besra,, V. D. Vissa,, J. T. Belisle,, and J. C. Sacchettini. 2000. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat. Struct. Biol. 7: 141 146.
89. Rozwarski, D. A.,, G. A. Grant,, D. H. Barton,, W. R. Jacobs, Jr., and J. C. Sacchettini. 1998. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 279: 98 102.
90. Rozwarski, D. A.,, C. Vilcheze,, M. Sugantino,, R. Bittman,, and J. C. Sacchettini. 1999. Crystal structure of the Mycobacterium tuberculosis enoyl-ACP reductase, InhA, in complex with NAD + and a C 16 fatty acyl substrate. J. Biol. Chem. 274: 15582 15589.
91. Rupp, B. 2003. High-throughput crystallography at an affordable cost: the TB Structural Genomics Consortium Crystallization Facility. Acc. Chem. Res. 36: 173 181.
92. Rupp, B.,, B. W. Segelke,, H. I. Krupka,, T. Lekin,, J. Schafer,, A. Zemla,, D. Toppani,, G. Snell,, and T. Earnest. 2002. The TB structural genomics consortium crystallization facility: towards automation from protein to electron density. Acta Crystallogr. Ser. D 58: 1514 1518.
93. Saikrishnan, K.,, J. Jeyakanthan,, J. Venkatesh,, N. Acharya,, K. Sekar,, U. Varshney,, and M. Vijayan. 2003. Structure of Mycobacterium tuberculosis single-stranded DNA-binding protein. Variability in quaternary structure and its implications. J. Mol. Biol. 331: 385 393.
94. Sambandamurthy, V. K.,, X. Wang,, B. Chen,, R. G. Russell,, S. Derrick,, F. M. Collins,, S. L. Morris,, and W. R. Jacobs, Jr. 2002. A pantothenate auxotroph of Mycobacterium tuberculosis is highly attenuated and protects mice against tuberculosis. Nat. Med. 8: 1171 1174.
95. Scarsdale, J. N.,, G. Kazanina,, X. He,, K. A. Reynolds,, and H. T. Wright. 2001. Crystal structure of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthase III. J. Biol. Chem. 276: 20516 205122.
96. Sharma, V.,, A. Arockiasamy,, D. R. Ronning,, C. G. Savva,, A. Holzenburg,, M. Braunstein,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 2003. Crystal structure of Mycobacterium tuberculosis SecA, a preprotein translocating ATPase. Proc. Natl. Acad. Sci. USA 100: 2243 2248.
97. Sharma, V.,, C. Grubmeyer,, and J. C. Sacchettini. 1998. Crystal structure of quinolinic acid phosphoribosyltransferase from Mycobacterium tuberculosis: a potential TB drug target. Structure 6: 1587 1599.
98. Sharma, V.,, S. Sharma,, K. Hoener zu Bentrup,, J. D. McKinney,, D. G. Russell,, W. R. Jacobs, Jr.,, and J. C. Sacchettini. 2000. Structure of isocitrate lyase, a persistence factor of Mycobacterium tuberculosis. Nat. Struct. Biol. 7: 663 668.
99. Shi, W.,, L. A. Basso,, D. S. Santos,, P. C. Tyler,, R. H. Furneaux,, J. S. Blanchard,, S. C. Almo,, and V. L. Schramm. 2001. Structures of purine nucleoside phosphorylase from Mycobacterium tuberculosis in complexes with immucillin- H and its pieces. Biochemistry 40: 8204 8215.
100. Smith, C. V.,, C. C. Huang,, A. Miczak,, D. G. Russell,, J. C. Sacchettini,, and K. Honer zu Bentrup. 2003. Biochemical and structural studies of malate synthase from Mycobacterium tuberculosis. J. Biol. Chem. 278: 1735 1743.
101. Smyth, D. R.,, M. K. Mrozkiewicz,, W. J. McGrath,, P. Listwan,, and B. Kobe. 2003. Crystal structures of fusion proteins with large-affinity tags. Protein Sci. 12: 1313 1322.
102. Stewart, G.,, B. Robertson,, and D. Young. 2003. Tuberculosis: a problem with persistence. Nat. Rev. Microbiol. 1: 97 105.
103. Story, R. M.,, and T. A. Steitz. 1992. Structure of the recA protein-ADP complex. Nature 355: 374 376.
104. Story, R. M.,, I. T. Weber,, and T. A. Steitz. 1992. The structure of the E. coli recA protein monomer and polymer. Nature 355: 318 325.
105. Strong, M.,, P. Mallick,, M. Pellegrini,, M. J. Thompson,, and D. Eisenberg. 2003. Inference of protein function and protein linkages in Mycobacterium tuberculosis based on prokaryotic genome organization: a combined computational approach. Genome Biol. 4: R59.
106. Taneja, B.,, and S. C. Mande. 2002. Structure of Mycobacterium tuberculosis chaperonin-10 at 3.5 Å resolution. Acta Crystallogr. Ser D 58: 260 266.
107. Taylor, A. B.,, D. M. Benglis, Jr., S. Dhandayuthapani, and P. J. Hart. 2003. Structure of Mycobacterium tuberculosis methionine sulfoxide reductase A in complex with proteinbound methionine. J. Bacteriol. 185: 4119 4126.
108. Terwilliger, T. C. 2002. Structural genomics: foundation for the future of biology? Sci. World J. 2: 5 6.
109. Terwilliger, T. C.,, M. S. Park,, G. S. Waldo,, J. Berendzen,, L. W. Hung,, C. Y. Kim,, C. V. Smith,, J. C. Sacchettini,, M. Bellinzoni,, R. Bossi,, E. De Rossi,, A. Mattevi,, A. Milano,, G. Riccardi,, M. Rizzi,, M. M. Roberts,, A. R. Coker,, G. Fossati,, P. Mascagni,, A. R. Coates,, S. P. Wood,, C. W. Goulding,, M. I. Apostol,, D. H. Anderson,, H. S. Gill,, D. S. Eisenberg,, B. Taneja,, S. Mande,, E. Pohl,, V. Lamzin,, P. Tucker,, M. Wilmanns,, C. Colovos,, W. Meyer-Klaucke,, A. W. Munro,, K. J. McLean,, K. R. Marshall,, D. Leys,, J. K. Yang,, H. J. Yoon,, B. I. Lee,, M. G. Lee,, J. E. Kwak,, B. W. Han,, J. Y. Lee,, S. H. Baek,, S. W. Suh,, M. M. Komen,, V. L. Arcus,, E. N. Baker,, J. S. Lott,, W. Jacobs, Jr.,, T. Alber,, and B. Rupp. 2003. The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology. Tuberculosis (Edinburgh) 83: 223 249.
110. Tullius, M. V.,, G. Harth,, and M. A. Horwitz. 2003. Glutamine synthetase GlnA1 is essential for growth of Mycobac- terium tuberculosis in human THP-1 macrophages and guinea pigs. Infect. Immun. 71: 3927 3936.
111. Vetting, M. W.,, S. L. Roderick,, M. Yu,, and J. S. Blanchard. 2003. Crystal structure of mycothiol synthase (Rv0819) from Mycobacterium tuberculosis shows structural homology to the GNAT family of N-acetyltransferases. Protein Sci. 12: 1954 1959.
112. Vilcheze, C.,, H. R. Morbidoni,, T. R. Weisbrod,, H. Iwamoto,, M. Kuo,, J. C. Sacchettini,, and W. R. Jacobs, Jr. 2000. Inactivation of the inhA-encoded fatty acid synthase II (FASII) enoyl-acyl carrier protein reductase induces accumulation of the FASI end products and cell lysis of Mycobacterium smegmatis. J. Bacteriol. 182: 4059 4067.
113. Vyas, N. K.,, M. N. Vyas,, and F. A. Quiocho. 2003. Crystal structure of M. tuberculosis ABC phosphate transport receptor: specificity and charge compensation dominated by iondipole interactions. Structure 11: 765 774.
114. Waldo, G. S. 2003. Genetic screens and directed evolution for protein solubility. Curr. Opin. Chem. Biol. 7: 33 38.
115. Waldo, G. S.,, B. M. Standish,, J. Berendzen,, and T. C. Terwilliger. 1999. Rapid protein-folding assay using green fluorescent protein. Nat. Biotechnol. 17: 691 695.
116. Wang, S.,, and D. Eisenberg. 2003. Crystal structures of a pantothenate synthetase from M. tuberculosis and its complexes with substrates and a reaction intermediate. Protein Sci. 12: 1097 1108.
117. Westbrook, J. D.,, and P. M. Fitzgerald. 2003. The PDB format, mmCIF, and other data formats. Methods Biochem. Anal. 44: 161 179.
118. Wiker, H. G.,, and M. Harboe. 1992. The antigen 85 complex: a major secretion product of Mycobacterium tuberculosis. Microbiol Rev. 56: 648 661.
119. Wiker, H. G.,, M. Harboe,, and S. Nagai. 1991. A localization index for distinction between extracellular and intracellular antigens of Mycobacterium tuberculosis. J. Gen. Microbiol. 137: 875 884.
120. Wong, H. C.,, G. Liu,, Y. M. Zhang,, C. O. Rock,, and J. Zheng. 2002. The solution structure of acyl carrier protein from Mycobacterium tuberculosis. J. Biol. Chem. 277: 15874 15880.
121. Yang, C.,, U. Curth,, C. Urbanke,, and C. Kang. 1997. Crystal structure of human mitochondrial single-stranded DNA binding protein at 2.4 Å resolution. Nat. Struct. Biol. 4: 153 157.
122. Yang, J. K.,, M. S. Park,, G. S. Waldo,, and S. W. Suh. 2003. Directed evolution approach to a structural genomics project: Rv2002 from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 100: 455 460.
123. Yeats, C.,, R. D. Finn,, and A. Bateman. 2002. The PASTA domain: a beta-lactam-binding domain. Trends Biochem. Sci. 27: 438.
124. Young, D.,, T. Garbe,, R. Lathigra,, C. Abou-Zeid,, and Y. Zhang. 1991. Characterization of prominent protein antigens from mycobacteria. Bull. Int. Union Tuberc. Lung Dis. 66: 47 51.
125. Young, T. A.,, B. Delagoutte,, J. A. Endrizzi,, A. M. Falick,, and T. Alber. 2003. Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases. Nat. Struct. Biol. 10: 168 174.
126. Yuan, Y.,, R. E. Lee,, G. S. Besra,, J. T. Belisle,, and C. E. Barry III. 1995. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 92: 6630 6634.

Tables

Generic image for table
Table 1

Information about protein structures determined by consortium nonmembers prior to 1998

Citation: Goulding C, Pal D, Eisenberg D. 2005. TB or Not TB: a Structural Genomics Mission?, p 165-179. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch11
Generic image for table
Untitled

PDB ID codes for structures in this chapter not in Color Plate 6

Citation: Goulding C, Pal D, Eisenberg D. 2005. TB or Not TB: a Structural Genomics Mission?, p 165-179. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error