Chapter 25 : Receptor-Mediated Recognition of Mycobacterium tuberculosis by Host Cells

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Receptor-Mediated Recognition of Mycobacterium tuberculosis by Host Cells, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap25-2.gif


is an intracellular pathogen of mononuclear phagocytes and is highly adapted to the human host. This chapter reviews advances in the understanding of the molecular determinants that mediate the interaction of with host cells such as monocytes/ macrophages, epithelial cells, and dendritic cell (DC). In this context, it also reviews a family of important regulators of innate immune cell activation, the toll-like receptor (TLR) family. The mannose caps of cell wall LAM (ManLAM) have also recently been shown to be recognized by DC-SIGN on DC, a lectin that functions as a bacterial adhesion and pattern recognition receptor. In addition to the lipoarabinomannan (LAM)-mannose receptor (MR) interaction, strains possess their own lectins, some of which are specific for mannans and may be involved in bacterial binding to host cells. Toll is a member of a family of related proteins in the fly that are important for host defense against pathogens, most probably because they direct the production of antimicrobial peptides. The cytoplasmic domain of Toll was found to be homologous to the cytoplasmic domain of the mammalian interleukin-1 (IL-1) and IL-18 receptors, suggesting that similar receptors might be encoded in the mammalian genome. Some TLR proteins utilize coreceptors that augment TLR-dependent responses and, in some cases, are required for TLR function. Recently, several laboratories have investigated the roles of TLR2 and TLR4 in host responses to mycobacterial infection.

Citation: Fenton M, Riley L, Schlesinger L. 2005. Receptor-Mediated Recognition of Mycobacterium tuberculosis by Host Cells, p 405-426. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch25
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Abel, B.,, N. Thieblemont,, V. J. Quesniaux,, N. Brown,, J. Mpagi,, K. Miyake,, F. Bihl,, and B. Ryffel. 2002. Toll-like receptor 4 expression is required to control chronic Mycobacterium tuberculosis infection in mice. J. Immunol. 169: 3155 3162.
2. Abou-Zeid, C.,, T. Garbe,, R. Lathigra,, H. G. Wiker,, M. Harboe,, G. A. W. Rook,, and D. B. Young. 1991. Genetic and immunological analysis of Mycobacterium tuberculosis fibronectin-binding proteins. Infect. Immun. 59: 2712 2718.
3. Abramson, S. L.,, and J. I. Gallin. 1990. IL-4 inhibits superoxide production by human mononuclear phagocytes. J. Immunol. 144: 625 630.
4. Aderem, A. 2002. How to eat something bigger than your head. Cell 110: 5 8.
5. Alexopoulou, L.,, A. C. Holt,, R. Medzhitov,, and R. A. Flavell. 2001. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413: 732 738.
6. Aliprantis, A. O.,, R.-B. Yang,, M. R. Mark,, S. Suggett,, B. Devaux,, J. D. Radolf,, G. R. Klimpel,, P. Godowski,, and A. Zychlinsky. 1999. Cell activation and apoptosis by bacterial lipoproteins through toll-like receptor-2. Science 285: 736 739.
7. Arbour, N. C.,, E. Lorenz,, B. C. Schutte,, J. Zabner,, J. N. Kline,, M. Jones,, K. Frees,, J. L. Watt,, and D. A. Schwartz. 2000. TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat. Genet. 25: 187 191.
8. Armstrong, J. A.,, and P. D. Hart. 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli: reversal of the usual nonfusion pattern and observations on bacterial survial. J. Exp. Med. 142: 1 16.
9. Arruda, S.,, G. Bomfim,, R. Knights,, T. Huima-Byron,, and L. W. Riley. 1993. Cloning of an M. tuberculosis DNA fragment associated with entry and survival inside cells. Science 261: 1454 1457.
10. Astarie-Dequeker, C.,, E. N. N’Diaye,, V. Le Cabec,, M. G. Rittig,, J. Prandi,, and I. Maridonneau-Parini. 1999. The mannose receptor mediates uptake of pathogenic and nonpathogenic mycobacteria and bypasses bactericidal responses in human macrophages. Infect. Immun. 67: 469 477.
11. Bardana, E. J., Jr.,, J. K. McClatchy,, R. S. Farr,, and P. Minden. 1973. Universal occurrence of antibodies to tubercle bacilli in sera from non-tuberculous and tuberculous individuals. Clin. Exp. Immunol. 13: 65 77.
12. Barnes, P. F.,, R. L. Modlin,, and J. J. Ellner,. 1994. T-cell responses and cytokines, p. 417 435. In B. R. Bloom (ed.) Tuberculosis: Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
13. Becker, S.,, and E. G. Daniel. 2000. Antagonistic and additive effects of IL-4 and interferon-gamma on human monocytes and macrophages: effects on Fc receptors HLA-D antigens, and superoxide production. Cell. Immunol. 129: 351 362.
14. Beharka, A. A.,, C. D. Gaynor,, B. K. Kang,, D. R. Voelker,, F. X. McCormack,, and L. S. Schlesinger. 2002. Pulmonary surfactant protein A up-regulates activity of the mannose receptor, a pattern recognition receptor expressed on human macrophages. J. Immunol. 169: 3565 3573.
15. Bermudez, L. E.,, and J. Goodman. 1996. Mycobacterium tuberculosis invades and replicates within type II alveolar cells. Infect. Immun. 64: 1400 1406.
16. Bermudez, L. E.,, F. J. Sangari,, P. Kolonoski,, M. Petrofsky,, and J. Goodman. 2002. The efficiency of the translocation of Mycobacterium tuberculosis across a bilayer of epithelial and endothelial cells as a model of the alveolar wall is a consequence of transport within mononuclear phagocytes and invasion of alveolar epithelial cells. Infect. Immun. 70: 140 146.
17. Bernardo, J.,, A. M. Billingslea,, R. L. Blumenthal,, K. F. Seetoo,, E. R. Simons,, and M. J. Fenton. 1998. Differential responses of human mononuclear phagocytes to mycobacterial lipoarabinomannans: role of CD14 and the mannose receptor. Infect. Immun. 66: 28 35.
18. Bernier, R.,, B. Barbeau,, M. Olivier,, and M. J. Tremblay. 1998. Mycobcterium tuberculosis mannose-capped lipoarabinomannan can induce NF-κB-dependent activation of human immunodeficiency virus type 1 long terminal repeat in T cells. J. Gen. Virol. 79: 1353 1361.
19. Berón, W.,, C. Alvarez-Dominguez,, L. Mayorga,, and P. D. Stahl. 1995. Membrane trafficking along the phagocytic pathway. Trends Cell Biol. 5: 100 104.
20. Bingisser, P.,, C. Stey,, M. Weller,, P. Groscurth,, and E. Russi. 1996. Apoptosis in human alveolar macrophages is induced by endotoxin and is modulated by cytokines. Am. J. Respir. Cell Mol. Biol. 15: 64 70.
21. Biragyn, A.,, P. A. Ruffini,, C. A. Leifer,, E. Klyushnenkova,, A. Shakhov,, O. Chertov,, A. K. Shirakawa,, J. M. Farber,, D. M. Segal,, J. J. Oppenheim,, and L. W. Kwak. 2002. Toll-like receptor 4-dependent activation of dendritic cells by betadefensin 2. Science 298: 1025 1029.
22. Birkness, K. A.,, M. Deslauriers,, J. H. Bartlett,, E. H. White,, C. H. King,, and F. D. Quinn. 1999. An in vitro tissue culture bilayer model to examine early events in Mycobacterium tuberculosis infection. Infect. Immun. 67: 653 658.
23. Blackford, J.,, H. W. Reid,, D. J. C. Pappin,, F. S. Bowers,, and J. M. Wilkinson. 1996. A monoclonal antibody, 3/22, to rabbit CD11c which induces homotypic T cell aggregation: evidence that ICAM-1 is a ligand for CD11c/CD18. Eur. J. Immunol. 26: 525 531.
24. Bochud, P. Y.,, T. R. Hawn,, and A. Aderem. 2003. Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J. Immunol. 170: 3451 3454.
25. Bouvier, G.,, A.-M. Benoliel,, C. Foa,, and P. Bongrand. 1994. Relationship between phagosome acidification, phagosomelysosome fusion, and mechanism of particle ingestion. J. Leukoc. Biol. 55: 729 734.
26. Brennan, M. J.,, G. Delogu,, Y. Chen,, S. Bardarov,, J. Kriakov,, M. Alavi,, and W. R. Jacobs, Jr. 2001. Evidence that mycobacterial PE-PGRS proteins are cell surface constituents that influence interactions with other cells. Infect. Immun. 69: 7326 7333.
27. Brennan, P. J.,, and H. Nikaido. 1995. The envelope of mycobacteria. Annu. Rev. Biochem. 64: 29 63.
28. Brightbill, H. D.,, D. H. Libraty,, and S. R. Krutzik. 1999. Host defense mechanisms triggered by microbial lipoproteins through toll-like receptors. Science 285: 732 736.
29. Bulut, Y.,, E. Faure,, L. Thomas,, O. Equils,, and M. Arditi. 2001. Cooperation of Toll-like receptor 2 and 6 for cellular activation by soluble tuberculosis factor and Borrelia burgdorferi outer surface protein A lipoprotein: role of Tollinteracting protein and IL-1 receptor signaling molecules in Toll-like receptor 2 signaling. J. Immunol. 167: 987 994.
30. Byrd, T. F.,, G. M. Green,, S. E. Fowlston,, and C. R. Lyons. 1998. Differential growth characteristics and streptomycin susceptibility of virulent and avirulent Mycobacterium tuberculosis strains in a novel fibroblast-mycobacterium microcolony assay. Infect. Immun. 66: 5132 5139.
31. Casali, N.,, M. Konieczny,, M. A. Schmidt,, and L. W. Riley. 2002. Invasion activity of a Mycobacterium tuberculosis peptide presented by the Escherichia coli AIDA autotransporter. Infect. Immun. 70: 6846 6852.
32. Chamaillard, M.,, M. Hashimoto,, Y. Horie,, J. Masumoto,, S. Qiu,, L. Saab,, Y. Ogura,, A. Kawasaki,, K. Fukase,, S. Kusumoto,, M. A. Valvano,, S. J. Foster,, T. W. Mak,, G. Nunez,, and N. Inohara. 2003. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat. Immunol. 4: 702 707.
33. Chan, E. D.,, K. R. Morris,, J. T. Belisle,, P. Hill,, L. K. Remigio,, P. J. Brennan,, and D. W. H. Riches. 2001. Induction of inducible nitric oxide synthase-NO by lipoarabinomannan of Mycobacterium tuberculosis is mediated by MEK1-ERK, MKK7-JNK, and NF-κB signaling pathways. Infect. Immun. 69: 2001 2010.
34. Chan, J.,, X. Fan,, S. W. Hunter,, P. J. Brennan,, and B. R. Bloom. 1991. Lipoarabinomannan, a possible virulence factor involved in persistence of Mycobacterium tuberculosis within macrophages. Infect. Immun. 59: 1755 1761.
35. Chan, J.,, T. Fujiwara,, P. Brennan,, M. McNeil,, S. J. Turco,, J.-C. Sibille,, M. Snapper,, P. Aisen,, and B. R. Bloom. 1989. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc. Natl. Acad. Sci. USA 86: 2453 2457.
36. Chatterjee, D.,, A. D. Roberts,, K. Lowell,, P. J. Brennan,, and I. M. Orme. 1992. Structural basis of capacity of lipoarabinomannan to induce secretion of tumor necrosis factor. Infect. Immun. 60: 1249 1253.
37. Chitale, S.,, S. Ehrt,, I. Kawamura,, T. Fujimura,, N. Shimono,, N. Anand,, S. Lu,, L. Cohen-Gould,, and L. W. Riley. 2001. Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol. 3: 247 254.
38. Chow, J. C.,, D. W. Young,, D. T. Golenbock,, W. J. Christ,, and F. Gusovsky. 1999. Toll-like receptor-4 mediates lipopolysaccharide- induced signal transduction. J. Biol. Chem. 274: 10689 10692.
39. Chu, R. S.,, D. Askew,, E. H. Noss,, A. Tobian,, A. M. Krieg,, and C. V. Harding. 1999. CpG oligodeoxynucleotides down-regulate macrophage class II MHC antigen processing. J. Immunol. 163: 1188 1194.
40. Cole, F. S.,, W. J. Matthews, Jr.,, T. H. Rossing,, D. J. Gash,, N. A. Lichtenberg,, and J. E. Pennington. 1983. Complement biosynthesis by human bronchoalveolar macrophages. Clin. Immunol. Immunopathol. 27: 153 159.
41. Cole, S. T.,, R. Brosch,, J. Parkhill,, T. Garnier,, C. Churcher,, D. Harris,, S. V. Gordon,, K. Eiglmeier,, S. Gas,, C. E. I. Barry,, F. Tekaia,, K. Badcock,, D. Basham,, D. Brown,, T. Chillingworth,, R. Connor,, R. Davies,, K. Devlin,, T. Feltwell,, S. Gentles,, N. Hamlin,, S. Holroyd,, T. Hornsby,, K. Jagels,, A. Krogh,, J. McLean,, S. Moule,, L. Murphy,, K. Oliver,, J. Osborne,, M. A. Quail,, M.-A. Rajandream,, J. Rogers,, S. Rutter,, K. Seeger,, J. Skelton,, R. Squares,, S. Squares,, J. E. Sulston,, K. Taylor,, S. Whitehead,, and B. G. Barrell. 1998. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393: 537 544.
42. Crandall, E. D.,, and K. J. Kim,. 1991. Alveolar epithelial barrier properties, p. 273 287. In R. J. Crystal, and J. B. West (ed.), The Lung: Scientific Foundations. Raven Press, New York, N.Y.
43. Crowe, L. M.,, B. J. Spargo,, T. Ioneda,, B. L. Beaman,, and J. H. Crowe. 1994. Interaction of cord factor (α,α′-trehalose- 6,6′-dimycolate) with phospholipids. Biochim. Biophys. Acta 1194: 53 60.
44. Crystal, R. J., 1991. Alveolar macrophages, p. 527 538. In R. J. Crystal, and J. B. West (ed.), The Lung: Scientific Foundations. Raven Press, New York, N.Y.
45. Cywes, C.,, N. L. Godenir,, H. C. Hoppe,, R. R. Scholle,, L. M. Steyn,, R. E. Kirsch,, and M. R. W. Ehlers. 1996. Nonopsonic binding of Mycobacterium tuberculosis to human complement receptor type 3 expressed in Chinese hamster ovary cells. Infect. Immun. 64: 5373 5383.
46. Cywes, C.,, H. C. Hoppe,, M. Daffe,, and M. R. W. Ehlers. Nonopsonic binding of Mycobacterium tuberculosis to complement receptor type 3 is mediated by capsular polysaccharides and is strain dependent. Infect. Immun. 65: 4258 4266.
47. Dahl, K. E.,, H. Shiratsuchi,, B. D. Hamilton,, J. J. Ellner,, and Z. Toossi. 1996. Selective induction of transforming growth factor β in human monocytes by lipoarabinomannan of Mycobacterium tuberculosis. Infect. Immun. 64: 399 405.
48. D’Arcy Hart, P.,, and M. R. Young. 1988. Polyanionic agents inhibit phagosome-lysosome fusion in cultured macrophages. J. Leukoc. Biol. 43: 179 182.
49. De Costello, A. M.,, A. Kumar,, V. Narayan,, M. S. Akbar,, S. Ahmed,, C. Abou-Zeid,, G. A. W. Rook,, J. Stanford,, and C. Moreno. 1992. Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis. Trans. R. Soc. Trop. Med. Hyg. 86: 686692..
50. Dobos, K. M.,, K. H. Khoo,, K. M. Swiderek,, P. J. Brennan,, and J. T. Belisle. 1996. Definition of the full extent of glycosylation of the 45-kilodalton glycoprotein of Mycobacterium tuberculosis. J. Bacteriol. 178: 2498 2506.
51. Dorman, S. E.,, and S. M. Holland. 2000. Interferon-gamma and interleukin-12 pathway defects and human disease. Cytokine Growth Factor Rev. 11: 321 333.
52. Douvas, G. S.,, D. L. Looker,, A. E. Vatter,, and A. J. Crowle. 1985. Gamma interferon activates human macrophages to become tumoricidal and leishmanicidal but enhances replication of macrophage-associated mycobacteria. Infect. Immun. 50: 1 8.
53. Downing, J. F.,, R. Pasula,, J. R. Wright,, H. L. Twigg III,, and W. J. Martin, Jr. 1995. Surfactant protein A promotes attachment of Mycobacterium tuberculosis to alveolar macrophages during infection with human immunodeficiency virus. Proc. Natl. Acad. Sci. USA 92: 4848 4852.
54. Ehlers, M. R. W.,, and M. Daffe. 1998. Interactions between Mycobacterium tuberculosis and host cells: are mycobacterial sugars the key? Trends Microbiol. 6: 328 335.
55. Eichbaum, Q.,, P. Clerc,, G. Bruns,, F. McKeon,, and R. A. B. Ezekowitz. 1994. Assignment of the human macrophage mannose receptor gene (MRC1) to 10p13 by in situ hybridization and PCR-based somatic cell hybrid mapping. Genomics 22: 656 658.
56. Ezekowitz, R. A. B.,, R. B. Sim,, G. G. MacPherson,, and S. Gordon. 1985. Interaction of human monocytes, macrophages, and polymorphonuclear leukocytes with zymosan in vitro. J. Clin. Investig. 76: 2368 2376.
57. Fels, A.,, and Z. A. Cohn. 1986. The alveolar macrophage. J. Appl. Physiol. 60: 353 369.
58. Fenton, M. J.,, and D. T. Golenbock. 1998. LPS-binding proteins and receptors. J. Leukoc. Biol. 64: 25 32.
59. Ferguson, J. S.,, D. R. Voelker,, F. X. McCormack,, and L. S. Schlesinger. 1999. Surfactant protein D binds to Mycobacterium tuberculosis bacili and lipoarrabinomannan via carbohydrate- lectin interactions resulting in reduced phagocytosis of the bacteria by macrophages. J. Immunol. 163: 312 321.
60. Ferguson, J. S.,, D. R. Voelker,, J. A. Ufnar,, and L. S. Schlesinger. 2002. Surfactant protein D inhibition of human macrophage uptake of Mycobacterium tuberculosis is indepenndent of bacterial agglutination. J. Immunol. 168: 1309 1314.
61. Fietta, A.,, C. Francioli,, and G. Galdroni Grassi. 2000. Mycobacterial lipoarabinomannan affects human polymorphonuclear and mononuclear phagocyte functions differently. Haematologica 85: 11 18.
62. Filley, E. A.,, H. A. Bull,, P. M. Dowd,, and G. A. W. Rook. 1992. The effect of Mycobacterium tuberculosis on the susceptibility of human cells to the stimulatory and toxic effects of tumour necrosis factor. Immunology 77: 505 509.
63. Filley, E. A.,, and G. A. W. Rook. 1991. Effect of mycobacteria on sensitivity to the cytotoxic effects of tumor necrosis factor. Infect. Immun. 59: 2567 2572.
64. Fitzgerald, K. A.,, E. M. Palsson-McDermott,, A. G. Bowie,, C. A. Jefferies,, A. S. Mansell,, G. Brady,, E. Brint,, A. Dunne,, P. Gray,, M. T. Harte,, D. McMurray,, D. E. Smith,, J. E. Sims,, T. A. Bird,, and L. A. O’Neill. 2001. Mal (MyD88-adapterlike) is required for Toll-like receptor-4 signal transduction. Nature 413: 78 83.
65. Fitzgerald, K. A.,, D. C. Rowe,, B. J. Barnes,, D. R. Caffrey,, A. Visintin,, E. Latz,, B. Monks,, P. M. Pitha,, and D. T. Golenbock. 2003. LPS-TLR4 signaling to IRF-3/7 and NF- κB involves the Toll adapters TRAM and TRIF. J. Exp. Med. 198: 1043 1055.
66. Flesselles, B.,, N. N. Anand,, J. Remani,, S. M. Loosmore,, and M. H. Klein. 1999. Disruption of the mycobacterial cell entry gene of Mycobacterium bovis BCG results in a mutant that exhibits a reduced invasiveness for epithelial cells. FEMS Microbiol. Lett. 177: 237 242.
67. Floros, J.,, H. M. Lin,, A. García,, M. A. Salazar,, X. Guo,, S. DiAngelo,, M. Montano,, J. Luo,, A. Pardo,, and M. Selman. 2000. Surfactant protein genetic marker alleles identify a subgroup of tuberculosis in a Mexican population. J. Infect. Dis. 182: 1473 1478.
68. Forget, A.,, J. C. Benoit,, R. Turcotte,, and N. Gusew- Chartrand. 1976. Enhanced activity of anti-mycobacterial sera in experimental Mycobacterium bovis (BCG) infection in mice. Infect. Immun. 13: 1301 1306.
69. Fratti, R. A.,, J. M. Backer,, J. Gruenberg,, S. Corvera,, and V. Deretic. 2001. Role of phosphatidylinositol 3-kinase and Rab5 effectors in phagosomal biogenesis and mycobacterial phagosome maturation arrest. J. Cell Biol. 154: 631 644.
70. Fratti, R. A.,, J. Chua,, I. Vergne,, and V. Deretic. 2003. Mycobacterium tuberculosis glycosylated phosphatidylinositol causes phagosome maturation arrest. Proc. Natl. Acad. Sci. USA 100: 5437 5442.
71. Garred, P.,, C. Richter,, A. B. Andersen,, H. O. Madsen,, I. Mtoni,, A. Svejgaard,, and J. Shao. 1997. Mannan-binding lectin in the sub-Saharan HIV and tuberculosis epidemics. Scand. J. Immunol. 46: 204 208.
72. Gatfield, J.,, and J. Pieters. 2000. Essential role for cholesterol in entry of mycobacteria into macrophages. Science 288: 1647 1650.
73. Gaynor, C. D.,, F. X. McCormack,, D. R. Voelker,, S. E. McGowan,, and L. S. Schlesinger. 1995. Pulmonary surfactant protein A mediates enhanced phagocytosis of Mycobacterium tuberculosis by a direct interaction with human macrophages. J. Immunol. 155: 5343 5351.
74. Gehring, A. J.,, R. E. Rojas,, D. H. Canaday,, D. L. Lakey,, C. V. Harding,, and W. H. Boom. 2003. The Mycobacterium tuberculosis 19-kilodalton lipoprotein inhibits gamma interferon- regulated HLA-DR and Fc gamma R1 on human macrophages through Toll-like receptor 2. Infect. Immun. 71: 4487 4497.
75. Geijtenbeek, T. B.,, S. J. Van Vliet,, E. A. Koppel,, M. Sanchez-Hernandez,, C. M. Vandenbroucke-Grauls,, B. Appelmelk,, and Y. Van Kooyk. 2003. Mycobacteria target DC-SIGN to suppress dendritic cell function. J. Exp. Med. 197: 7 17.
76. Germann, T.,, E. Rude,, F. Mattner,, and M. K. Gately. 1995. The IL-12 p40 homodimer as a specific antagonist of the IL-12 heterodimer. Immunol. Today 16: 500 501.
77. Girardin, S. E.,, I. G. Boneca,, L. A. Carneiro,, A. Antignac,, M. Jehanno,, J. Viala,, K. Tedin,, M. K. Taha,, A. Labigne,, U. Zahringer,, A. J. Coyle,, P. S. DiStefano,, J. Bertin,, P. J. Sansonetti,, and D. J. Philpott. 2003. Nod1 detects a unique muropeptide from gram-negative bacterial peptidoglycan. Science 300: 1584 1587.
78. Goerdt, S.,, and C. E. Orfanos. 1999. Other functions, other genes: alternative activation of antigen-presenting cells. Immunity 10: 137 142.
79. Goren, M. B.,, P. D. Hart,, M. R. Young,, and J. A. Armstrong. 1976. Prevention of phagosome-lysosome fusion in cultured macrophages by sulfatides of Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 73: 2510 2514.
80. Goswami, S.,, S. Sarkar,, J. Basu,, M. Kundu,, and P. Chakrabarti. 1994. Mycotin: a lectin involved in the adherence of mycobacteria to macrophages. FEBS Lett. 355: 183 186.
81. Graves, B. J. 1995. Integrin binding revealed. Nature Struct. Biol. 2: 181 183.
82. Harris, E. S.,, T. M. McIntyre,, S. M. Prescott,, and G. A. Zimmerman. 2000. The leukocyte integrins. J. Biol. Chem. 275: 23409 23412.
83. Hayashi, F.,, K. D. Smith,, A. Ozinsky,, T. R. Hawn,, E. C. Yi,, D. R. Goodlett,, J. K. Eng,, S. Akira,, D. M. Underhill,, and A. Aderem. 2001. The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410: 1099 1103.
84. Heldwein, K. A.,, M. D. Liang,, T. K., Andresen,, K. E. Thomas,, A. M. Marty,, N. Cuesta,, S. N. Vogel,, and M. J. Fenton. 2003. TLR2 and TLR4 serve distinct roles in the host immune response against Mycobacterium bovis BCG. J. Leukoc. Biol. 74: 277 286.
85. Hemmi, H.,, O. Takeuchi,, T. Kawai,, T. Kaisho,, S. Sato,, H. Sanjo,, M. Matsumoto,, K. Hoshino,, H. Wagner,, K. Takeda,, and S. Akira. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408: 740 745.
86. Hernandez-Pando, R.,, M. Jeyanathan,, G. Mengistu,, D. Aguilar,, H. Orozco,, M. Harboe,, G. A. Rook,, and G. Bjune. 2000. Persistence of DNA from Mycobacterium tuberculosis in superficially normal lung tissue during latent infection. Lancet 356: 2133 2138.
87. Hertz, C. J.,, S. M. Kiertscher,, P. J. Godowski,, D. A. Bouis,, M. V. Norgard,, M. D. Roth,, and R. L. Modlin. 2001. Microbial lipopeptides stimulate dendritic cell maturation via toll-like receptor 2. J. Immunol. 166: 2444 2450.
88. Hetland, G.,, and H. G. Wiker. 1994. Antigen 85C on Mycobacterium bovis BCG and M. tuberculosis promotes monocyte- CR3-mediated uptake of microbeads coated with mycobacterial products. Immunology 82: 445 449.
89. Hirsch, C. S.,, J. J. Ellner,, D. G. Russell,, and E. A. Rich. 1994. Complement receptor-mediated uptake and tumor necrosis factor-alpha-mediated growth inhibition of Mycobacterium tuberculosis by human alveolar macrophages. J. Immunol. 152: 743 753.
90. Hirsch, C. S.,, T. Yoneda,, L. Averill,, J. J. Ellner,, and Z. Toossi. 1994. Enhancement of intracellular growth of Mycobacterium tuberculosis in human monocytes by transforming growth factor-β1. J. Infect. Dis. 170: 1229 1237.
91. Hirschfeld, M.,, J. J. Weis,, V. Toshchakov,, C. A. Salkowski,, M. J. Cody,, D. C. Ward,, N. Qureshi,, S. M. Michalek,, and S. N. Vogel. 2001. Signaling by toll-like receptor 2 and 4 agonists results in differential gene expression in murine macrophages. Infect. Immun. 69: 1477 1482.
92. Hoebe, K.,, X. Du,, P. Georgel,, E. Janssen,, K. Tabeta,, S. O. Kim,, J. Goode,, P. Lin,, N. Mann,, S. Mudd,, K. Crozat,, S. Sovath,, J. Han,, and B. Beutler. 2003. Identification of Lps2 as a key transducer of MyD88-independent TIR signalling. Nature 424: 743 748.
93. Hoppe, H. C.,, J. M. De Wet,, C. Cywes,, M. Daffe,, and M. R. Ehlers. 1997. Identification of phosphatidylinositol mannoside as a mycobacterial adhesin mediating both direct and opsonic binding to nonphagocytic mammalian cells. Infect. Immun. 65: 3896 3905.
94. Horng, T.,, G. M. Barton,, and R. Medzhitov. 2001. TIRAP: an adapter molecule in the Toll signaling pathway. Nat. Immunol. 2: 835 841.
95. Hu, C.,, T. Mayadas-Norton,, K. Tanaka,, J. Chan,, and P. Salgame. 2000. Mycobacterium tuberculosis infection in complement receptor 3-deficient mice. J. Immunol. 165: 2596 2602.
96. Ingalls, R. R.,, and D. T. Golenbock. 1995. CD11c/CD18, a transmembrane signaling receptor for lipopolysaccharide. J. Exp. Med. 181: 1473 1479.
97. Jones, B. W.,, T. K. Means,, K. A. Heldwein,, M. A. Keen,, P. J. Hill,, J. T. Belisle,, and M. J. Fenton. 2001. Different toll-like receptor agonists induce distinct macrophage responses. J. Leukoc. Biol. 69: 1036 1044.
98. Juffermans, N. P.,, A. Verbon,, J. T. Belisle,, P. J. Hill,, P. Speelman,, S. J. H. Van Deventer,, and T. Van der Poll. 2000. Mycobacterial lipoarabinomannan induces an inflammatory response in the mouse lung. A role for interleukin-1. Am. J. Respir. Crit. Care Med. 162: 486 489.
99. Kaisho, T.,, O. Takeuchi,, T. Kawai,, K. Hoshino,, and S. Akira. 2001. Endotoxin-induced maturation of MyD88- deficient dendritic cells. J. Immunol. 166: 5688 5694.
100. Kang, B. K.,, and L. S. Schlesinger. 1998. Characterization of mannose receptor-dependent phagocytosis mediated by Mycobacterium tuberculosis lipoarabinomannan. Infect. Immun. 66: 2769 2777.
101. Kang, T. J.,, and G. T. Chae. 2001. Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol. Med. Microbiol. 31: 53 58.
102. Kawasaki, K.,, S. Akashi,, R. Shimazu,, T. Yoshida,, K. Miyake,, and M. Nishijima. 2000. Mouse toll-like receptor 4.MD-2 complex mediates lipopolysaccharide-mimetic signal transduction by Taxol. J. Biol. Chem. 275: 2251 2254.
103. Khanna, K. V.,, C. S. Choi,, G. Gekker,, P. K. Peterson,, and T. W. Molitor. 1996. Differential infection of porcine alveolar macrophage subpopulations by nonopsonized Mycobacterium bovis involves CD14 receptors. J. Leukoc. Biol. 60: 214 220.
104. Khoo, K.-H.,, A. Dell,, H. R. Morris,, P. J. Brennan,, and D. Chatterjee. 1995. Inositol phosphate capping of the nonreducing termini of lipoarabinomannan from rapidly growing strains of Mycobacterium. J. Biol. Chem. 270: 12380 12389.
105. Knutson, K. L.,, Z. Hmama,, P. Herrera-Velit,, R. Rochford,, and N. E. Reiner. 1997. Lipoarabinomannan of Mycobacterium tuberculosis promotes portein tyrosine dephosphorylation and inhibition of mitogen-activated protein kinase in human mononuclear phagocytes. J. Biol. Chem. 273: 645 652.
106. Kurt-Jones, E. A.,, L. Popova,, L. Kwinn,, L. M. Haynes,, L. P. Jones,, R. A. Tripp,, E. E. Walsh,, M. W. Freeman,, D. T. Golenbock,, L. J., Anderson,, and R. W. Finberg. 2000. Pattern recognition receptors TLR4 and CD14 mediate response to respiratory syncytial virus. Nat. Immunol. 1: 398 401.
107. Kusner, D. J.,, C. F. Hall,, and L. S. Schlesinger. 1996. Activation of phospholipase D is tightly coupled to the phagocytosis of Mycobacterium tuberculosis or opsonized zymosan by human macrophages. J. Exp. Med. 184: 585 595.
108. Le Cabec, V.,, S. Carreno,, A. Moisand,, C. Bordier,, and I. Maridonneau-Parini. 2002. Complement receptor 3 (CD11b/ CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J. Immunol. 169: 2003 2009.
109. Le Cabec, V.,, C. Cols,, and I. Maridonneau-Parini. 2000. Nonopsonic phagocytosis of zymosan and Mycobacterium kansasii by CR3 (CD11b/CD18) involves distinct molecular determinants and is or is not coupled with NADPH oxidase activation. Infect. Immun. 68: 4736 4745.
110. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J. M. Reichhart,, and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973 983.
111. Lien, E.,, T. J. Sellati,, A. Yoshimura,, T. H. Flo,, G. Rawadi,, R. W. Finberg,, J. D. Carroll,, T. Espevik,, R. R. Ingalls,, J. D. Radolf,, and D. T. Golenbock. 1999. Toll-like receptor 2 functions as a pattern recognition receptor for diverse bacterial products. J. Biol. Chem. 574: 33419 33425.
112. Lin, Y.,, M. Zhang,, and P. F. Barnes. 1998. Chemokine production by a human alveolar epithelial cell line in response to Mycobacterium tuberculosis. Infect. Immun. 66: 1121 1126.
113. Lipscombe, R. J.,, D. W. Beatty,, M. Ganczakowski,, E. A. Goddard,, T. Jenkins,, Y. L. Lau,, A. B. Spurdle,, M. Sumiya,, J. A. Summerfield,, and M. W. Turner. 1996. Mutations in the human mannose-binding protein gene: frequencies in several population groups. Eur. J. Hum. Genet. 4: 13 19.
114. Loftus, J. C.,, J. W. Smith,, and M. H. Ginsberg. 1994. Integrin- mediated cell adhesion: the extracellular face. J. Biol. Chem. 269: 25235 25238.
115. Loike, J. D.,, B. Sodeik,, L. Cao,, S. Leucona,, J. I. Weitz,, P. A. Detmers,, S. D. Wright,, and S. C. Silverstin. 1991. CD11c/ CD18 on neutrophils recognizes a domain at the N terminus of the Aα chain of fibrinogen. Proc. Natl. Acad. Sci. USA 88: 1044 1048.
116. Lopez, M.,, L. M. Sly,, Y. Luu,, D. Young,, H. Cooper,, and N. E. Reiner. 2003. The 19-kDa Mycobacterium tuberculosis protein induces macrophage apoptosis through Toll-like receptor-2. J. Immunol. 170: 2409 2416.
117. Lorenz, E.,, J. P. Mira,, K. L. Cornish,, N. C. Arbour,, and D. A. Schwartz. 2000. A novel polymorphism in the toll-like receptor 2 gene and its potential association with staphylococcal infection. Infect. Immun. 68: 6398 6401.
118. Maeda, N.,, J. Nigou,, J. L. Herrmann,, M. Jackson,, A. Amara,, P. H. Lagrange,, G. Puzo,, B. Gicquel,, and O. Neyrolles. 2003. The cell surface receptor DC-SIGN discriminates between Mycobacterium species through selective recognition of the mannose caps on lipoarabinomannan. J. Biol. Chem. 278: 5513 5516.
119. Maiti, D.,, A. Bhattacharyya,, and J. Basu. 2001. Lipoarabinomannan from Mycobacterium tuberculosis promotes macrophage survival by phosphorylating Bad through a phosphatidylinositol 3-kinase/Akt pathway. J. Biol. Chem. 276: 329 333.
120. Malik, Z. A.,, G. D. Denning,, and D. J. Kusner. 2000. Inhibition of CA 2+ signaling by Mycobacterium tuberculosis is associated with reduced phagosome-lysosome fusion and increased survival within human macrophages. J. Exp. Med. 191: 287 302.
121. Malik, Z. A.,, S. S. Iyer,, and D. J. Kusner. 2001. Mycobacterium tuberculosis phagosomes exhibit altered calmodulindependent signal transduction: contribution to inhibition of phagosome-lysosome fusion and intracellular survival in human macrophages. J. Immunol. 166: 3392 3401.
122. Malik, Z. A.,, C. R. Thompson,, S. Hashimi,, B. Porter,, S. S. Iyer,, and D. J. Kusner. 2003. Cutting edge: Mycobacterium tuberculosis blocks Ca 2+ signaling and phagosome maturation in human macrophages via specific inhibition of sphingosine kinase. J. Immunol. 170: 2811 2815.
123. Marth, T.,, and B. L. Kelsall. 1997. Regulation of interleukin- 12 by complement receptor 3 signaling. J. Exp. Med. 185: 1987 1995.
124. Matsushita, M. 1996. The lectin pathway of the complement system. Microbiol. Immunol. 40: 887 893.
125. McDonough, K. A.,, and Y. Kress. 1995. Cytotoxicity for lung epithelial cells is a virulence-associated phenotype of Mycobacterium tuberculosis. Infect. Immun. 63: 4802 4811.
126. McPhaden, A. R.,, and K. Whaley. 1993. Complement biosynthesis by mononuclear phagocytes. Immunol. Res. 12: 213 232.
127. Means, T. K.,, B. W. Jones,, A. B. Schromm,, B. A. Shurtleff,, J. A. Smith,, J. Keane,, D. T. Golenbock,, S. N. Vogel,, and M. J. Fenton. 2001. Differential effects of a toll-like receptor antagonist on Mycobacterium tuberculosis-induced macrophage responses. J. Immunol. 166: 4074 4082.
128. Means, T. K.,, E. Lien,, A. Yoshimura,, S. Wang,, D. T. Golenbock,, and M. J. Fenton. 1999. The CD14 ligands lipoarabinomannan and lipopolysaccharide differ in their requirement for toll-like receptors. J. Immunol. 163: 6748 6755.
129. Means, T. K.,, S. Wang,, E. Lien,, A. Yoshimura,, D. T. Golenbock,, and M. J. Fenton. 1999. Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J. Immunol. 163: 3920 3927.
130. Medzhihtov, R.,, and C. Janeway, Jr. 2000. Innate immunity. N. Engl. J. Med. 343: 338 344.
131. Medzhitov, R.,, P. Preston-Hurlburt,, and C. A. Janeway, Jr. 1997. A human homologue of the Drosophia Toll protein signals activation of adaptive immunity. Nature 388: 394 397.
132. Mehta, P. K.,, C. H. King,, E. H. White,, J. J. Murtagh, Jr.,, and F. D. Quinn. 1996. Comparison of in vitro models for the study of Mycobacterium tuberculosis invasion and intracellular replication. Infect. Immun. 64: 2673 2679.
133. Menozzi, F. D.,, R. Bischoff,, E. Fort,, M. J. Brennan,, and C. Locht. 1998. Molecular characterization of the mycobacterial heparin-binding hemagglutinin, a mycobacterial adhesin. Proc. Natl. Acad. Sci. USA 95: 12625 12630.
134. Michelsen, K. S.,, A. Aicher,, M. Mohaupt,, T. Hartung,, S. Dimmeler,, C. J. Kirschning,, and R. R. Schumann. 2001. The role of toll-like receptors (TLRs) in bacteria-induced maturation of murine dendritic cells (DCS). Peptidoglycan and lipoteichoic acid are inducers of DC maturation and require TLR2. J. Biol. Chem. 276: 25680 25686.
135. Mokoena, T.,, and S. Gordon. 1987. Human macrophage activation: modulation of mannosyl, fucosyl receptor activity in vitro by lymphokines, gamma and alpha interferons, and dexamethasone. J. Clin. Investig. 75: 624 631.
136. Moss, J. E.,, A. O. Aliprantis,, and A. Zychlinsky. 1999. The regulation of apoptosis by microbial pathogens. Int. Rev. Cytol. 187: 203 259.
137. Mueller-Ortiz, S. L.,, A. R. Wanger,, and S. J. Norris. 2001. Mycobacterial protein HbhA binds human complement component C3. Infect. Immun. 69: 7501 7511.
138. Munder, M.,, K. Eichmann,, and M. Modolell. 1998. Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4 + T cells correlates with Th1/Th2 phenotype. J. Immunol. 160: 5347 5354.
139. Myones, B. L.,, J. G. Dalzell,, N. Hogg,, and G. D. Ross. 1988. Neutrophil and monocyte cell surface p150,955 has iC3breceptor (CR4) activity resembling CR3. J. Clin. Investig. 82: 640 651.
140. Nigou, J.,, C. Zelle-Rieser,, M. Gilleron,, M. Thurnher,, and G. Puzo. 2001. Mannosylated liparabinomannans inhibit IL-12 production by human dendritic cells: evidence for a negative signal delivered through the mannose receptor. J. Immunol. 166: 7477 7485.
141. Noss, E. H.,, C. V. Harding,, and W. H. Boom. 2000. Mycobacterium tuberculosis inhibits MHC class II antigen processing in murine bone marrow macrophages. Cell. Immunol. 201: 63 74.
142. Noss, E. H.,, R. K. Pai,, T. J. Sellati,, J. D. Radolf,, J. Belisle,, D. T. Golenbock,, W. H. Boom,, and C. V. Harding. 2001. Toll-like receptor 2-dependent inhibition of macrophage class II MHC expression and antigen processing by 19-kDa lipoprotein of Mycobacterium tuberculosis. J. Immunol. 167: 910 918.
143. Ohashi, K.,, V. Burkart,, S. Flohe,, and H. Kolb. 2000. Cutting edge: heat shock protein 60 is a putative endogenous ligand of the toll-like receptor-4 complex. J. Immunol. 164: 558 561.
144. Ohmori, Y.,, and T. A. Hamilton. 2001. Requirement for STAT1 in LPS-induced gene expression in macrophages. J. Leukoc. Biol. 69: 598 604.
145. Okamura, Y.,, M. Watari,, E. S. Jerud,, D. W. Young,, S. T. Ishizaka,, J. Rose,, J. C. Chow,, and J. F. Strauss III. 2001. The extra domain A of fibronectin activates Toll-like receptor 4. J. Biol. Chem. 276: 10229 10233.
146. O’Neill, L. A. 2002. Signal transduction pathways activated by the IL-1 receptor/toll-like receptor superfamily. Curr. Top. Microbiol. Immunol. 270: 47 61.
147. Opie, E. L.,, and J. D. Aronson. 1927. Tubercle bacilli in latent tuberculous lesions and in lung tissue without tuberculous lesions. Arch. Pathol. Lab. Med. 4: 1 21.
148. Oppmann, B.,, R. Lesley,, B. Blom,, J. C. Timans,, Y. Xu,, B. Hunte,, F. Vega,, N. Yu,, J. Wang,, K. Singh,, F. Zonin,, E. Vaisberg,, T. Churakova,, M. Liu,, D. Gorman,, J. Wagner,, S. Zurawski,, Y. Liu,, J. S. Abrams,, K. W. Moore,, D. Rennick,, R. Waal-Malefyt,, C. Hannum,, J. F. Bazan,, and R. A. Kastelein. 2000. Novel p19 protein engages IL-12p40 to form a cytokine, IL-23, with biological activities similar as well as distinct from IL-12. Immunity 13: 715 725.
149. Oren, R.,, A. E. Farnham,, K. Saito,, E. Milofsky,, and M. L. Karnovsky. 1963. Metabolic patterns in three types of phagocytizing cells. J. Cell Biol. 17: 487 501.
150. Orr, S. L.,, and P. Tobias. 2000. LPS and LAM activation of the U373 astrocytoma cell line: differential requirement for CD14. J. Endotoxin Res. 6: 215 222.
151. Ortalo-Magné, A.,, M.-A. Dupont,, A. Lemassu,, A. B., Andersen,, P. Gounon,, and M. Daffé. 1995. Molecular composition of the outermost capsular material of the tubercle bacillus. Microbiology 141: 1609 1620.
152. Oshiumi, H.,, M. Matsumoto,, K. Funami,, T. Akazawa,, and T. Seya. 2003. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat. Immunol. 4: 161 167.
153. O’Toole, T. E.,, Y. Katagiri,, R. J. Faull,, K. Peter,, R. Tamura,, V. Quaranta,, J. C. Loftus,, S. J. Shattil,, and M. H. Ginsberg. 1994. Integrin cytoplasmic domains mediate inside-out signal transduction. J. Cell Biol. 124: 1047 1059.
154. Pasula, R.,, J. F. Downing,, J. R. Wright,, D. L. Kachel,, T. E. Davis, Jr.,, and W. J. Martin, Jr. 1997. Surfactant protein A (SP-A) mediates attachment of Mycobacterium tuberculosis to murine alveolar macrophages. Am. J. Respir. Cell Mol. Biol. 17: 209 217.
155. Perera, P. Y.,, T. N. Mayadas,, O. Takeuchi,, S. Akira,, M. Zaks-Zilberman,, S. M. Goyert,, and S. N. Vogel. 2001. CD11b/CD18 acts in concert with CD14 and toll-like receptor (TLR) 4 to elicit full lipopolysaccharide and taxol-inducible gene expression. J. Immunol. 166: 574 581.
156. Peterson, P. K.,, G. Gekker,, S. Hu,, W. S. Sheng,, W. R., Anderson,, R. J. Ulevitch,, P. S. Tobias,, K. V. Gustafson,, T. W. Molitor,, and C. C. Chao. 1995. CD14 receptor-mediated uptake of nonopsonized Mycobacterium tuberculosis by human microglia. Infect. Immun. 63: 1598 1602.
157. Peyron, P.,, C. Bordier,, E. N. N’Diaye,, and I. Maridonneau- Parini. 2000. Nonopsonic phagocytosis of Mycobacterium kansasii by human neutrophils depends on cholesterol and is mediated by CR3 associated with glycosylphosphatidylinositol- anchored proteins. J. Immunol. 165: 5186 5191.
158. Phelps, D. S.,, and R. M. Rose. 1991. Increased recovery of surfactant protein A in AIDS-related pneumonia. Am. Rev. Respir. Dis. 143: 1072 1075.
159. Phyu, S.,, T. Mustafa,, T. Hofstad,, R. Nilsen,, R. Fosse,, and G. Bjune. 1998. A mouse model for latent tuberculosis. Scand. J. Infect. Dis. 30: 59 68.
160. Pitt, A.,, L. S. Mayorga,, P. D. Stahl,, and A. L. Schwartz. 1992. Alterations in the protein composition of maturing phagosomes. J. Clin. Investig. 90: 1978 1983.
161. Polotsky, V. Y.,, J. T. Belisle,, K. Mikusova,, R. A. B. Ezekowitz,, and K. A. Joiner. 1997. Interaction of human mannose-binding protein with Mycobacterium avium. J. Infect. Dis. 175: 1159 1168.
162. Prigozy, T. I.,, P. A. Sieling,, D. Clemens,, P. L. Stewart,, S. M. Behar,, S. A. Porcelli,, M. B. Brenner,, R. L. Modlin,, and M. Kronenberg. 1997. The mannose receptor delivers lipoglycan antigens to endosomes for presentation to T cells by CD1b molecules. Immunity 6: 187 197.
163. Prinzis, S.,, D. Chatterjee,, and P. J. Brennan. 1993. Structure and antigenicity of lipoarabinomannan from Mycobacterium bovis BCG. J. Gen. Microbiol. 139: 2649 2658.
164. Ramanathan V. D.,, J. Curtis,, and J. L. Turk. 1980. Activation of the alternative pathway of complement by mycobacteria and cord factor. Infect. Immun. 29: 30 35.
165. Ratliff, T. L.,, R. McCarthy,, W. B. Telle,, and E. J. Brown. 1993. Purification of a mycobacterial adhesion for fibronectin. Infect. Immun. 61: 1889 1894.
166. Re, F.,, and J. L. Strominger. 2001. Toll-like receptor 2 (TLR2) and TLR4 differentially activate human dendritic cells. J. Biol. Chem. 276: 37692 37699.
167. Reiling, N.,, C. Holscher,, A. Fehrenbach,, S. Kroger,, C. J. Kirschning,, S. Goyert,, and S. Ehlers. 2002. Cutting edge: Toll-like receptor (TLR)2- and TLR4-mediated pathogen recognition in resistance to airborne infection with Mycobacterium tuberculosis. J. Immunol. 169: 3480 3484.
168. Reyes, J. M.,, and P. B. Putong. 1980. Association of pulmonary alveolar lipoproteinosis with mycobacterial infection. Am. J. Clin. Pathol. 74: 478 485.
169. Riedel, D. D.,, and S. H. E. Kaufmann. 2000. Differential tolerance induction by lipoarabinomannan and lipopolysaccharide in human macrophages. Microbes Infect. 2: 463 471.
170. Rieu, P.,, T. Ueda,, I. Haruta,, C. P. Sharma,, and M. A. Arnaout. 1994. The A-domain of b2 integrin CR3 (CD11b/ CD18) is a receptor for the hookworm-derived neutrophil adhesion inhibitor NIF. J. Cell Biol. 127: 2081 2091.
171. Roach, S. K.,, and J. S. Schorey. 2002. Differential regulation of the mitogen-activated protein kinases by pathogenic and nonpathogenic mycobacteria. Infect. Immun. 70: 3040 3052.
172. Roach, T. I. A.,, C. H. Barton,, D. Chatterjee,, and J. M. Blackwell. 1993. Macrophage activation: lipoarabinomannan from avirulent and virulent strains of Mycobacterium tuberculosis differentially induces the early genes c- fos, KC, JE, and tumor necrosis factor-alpha. J. Immunol. 150: 1886 1896.
173. Rojas, M.,, L. F. Garcia,, J. Nigou,, G. Puzo,, and M. Olivier. 2000. Mannosylated lipoarabinomannan antagonizes Mycobacterium tuberculosis-induced macrophage apoptosis by altering Ca +2-dependent cell signaling. J. Infect. Dis. 182: 240 251.
174. Rourke, F. J.,, S. S. Fan,, and M. S. Wilder. 1979. Anticomplementary activity of tuberculin: relationship to platelet aggregation and lytic response. Infect. Immun. 23: 160 167.
175. Savedra, R., Jr.,, R. L. Delude,, R. R. Ingalls,, M. J. Fenton,, and D. T. Golenbock. 1996. Mycobacterial lipoarabinomannan recognition requires a receptor that shares components of the endotoxin signaling system. J. Immunol. 157: 2549 2554.
176. Schlesinger, L. S. 1993. Macrophage phagocytosis of virulent but not attenuated strains of Mycobacterium tuberculosis is mediated by mannose receptors in addition to complement receptors. J. Immunol. 150: 2920 2930.
177. Schlesinger, L. S. 1998. Mycobacterium tuberculosis and the complement system. Trends Microbiol. 6: 47 49.
178. Schlesinger, L. S.,, C. G. Bellinger-Kawahara,, N. R. Payne,, and M. A. Horwitz. 1990. Phagocytosis of Mycobacterium tuberculosis is mediated by human monocyte complement receptors and complement component C3. J. Immunol. 144: 2771 2780.
179. Schlesinger, L. S.,, and M. A. Horwitz. 1991. Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1(CD35), CR3(CD11b/CD18), and CR4(CD11c/CD18), and interferon gamma activation inhibits complement receptor function and phagocytosis of this bacterium. J. Immunol. 147: 1983 1994.
180. Schlesinger, L. S.,, and M. A. Horwitz. 1994. A role for natural antibody in the pathogenesis of leprosy: antibody in nonimmune serum mediates C3 fixation to the Mycobacterium leprae surface and hence phagocytosis by human mononuclear phagocytes. Infect. Immun. 62: 280 289.
181. Schlesinger, L. S.,, S. R. Hull,, and T. M. Kaufman. 1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. Immunol. 152: 4070 4079.
182. Schlesinger, L. S.,, T. M. Kaufman,, S. Iyer,, S. R. Hull,, and L. K. Marciando. 1996. Differences in mannose receptor-mediated uptake of lipoarabinomannan from virulent and attenuated strains of Mycobacterium tuberculosis by human macrophages. J. Immunol. 157: 4568 4575.
183. Schneeberger, E. E., 1991. Alveolar type I cells, p. 229 234. In R. J. Crystal, and J. B. West (ed.), The Lung: Scientific Foundations. Raven Press, New York, N. Y.
184. Schorey, J. S.,, M. C. Carroll,, and E. J. Brown. 1997. A macrophage invasion mechanism of pathogenic mycobacteria. Science 277: 1091 1093.
185. Schreiber, S.,, S. L. Perkins,, S. L. Teitelbaum,, J. Chappel,, P. D. Stahl,, and J. S. Blum. 1993. Regulation of mouse bone marrow macrophage mannose receptor expression and activation by prostaglandin E and IFN-gamma. J. Immunol. 151: 4973 4981.
186. Schwebach, J. R.,, A. Glatman-Freeman,, L. Gunther- Cummins,, Z. Dai,, J. B. Robbins,, R. Schneerson,, and A. Casadevall. 2002. Glucan is a component of the Mycobacterium tuberculosis surface that is expressed in vitro and in vivo. Infect. Immun. 70: 2566 2575.
187. Selvaraj, P.,, P. R. Narayannan,, and A. M. Reetha. 1999. Association of functional mutant homozygotes of the mannose binding protein gene with susceptibility to pulmonary tuberculosis in India. Tubercle Lung Dis. 79: 221 227.
188. Shams, H.,, B. Wizel,, D. L. Lakey,, B. Samten,, R. Vankayalapati,, R. H. Valdivia,, R. L. Kitchens,, D. E. Griffith,, and P. F. Barnes. 2003. The CD14 receptor does not mediate entry of Mycobacterium tuberculosis into human mononuclear phagocytes. FEMS Immunol. Med. Microbiol. 36: 63 69.
189. Shepard, C. C. 1957. Growth characteristics of tubercle bacilli and certain other mycobacteria in HeLa cells. J. Exp. Med. 105: 39 48.
190. Shepard, C. C. 1958. A comparison of the growth of selected mycobacteria in HeLa, monkey kidney, and human amnion cells in tissue culture. J. Exp. Med. 107: 237 246.
191. Shimazu, R.,, S. Akashi,, H. Ogata,, Y. Nagai,, K. Fukudome,, K. Miyake,, and M. Kimoto. 1999. MD-2, a molecule that confers lipopolysaccharide responsiveness on Toll-like receptor 4. J. Exp. Med. 189: 1777 1782.
192. Shimono, N.,, L. Morici,, N. Casali,, S. Cantrell,, B. Sidders,, S. Ehrt,, and L. W. Riley. 2003. Hypervirulent mutant of Mycobacterium tuberculosis resulting from disruption of the mce1 operon. Proc. Natl. Acad. Sci. USA 100: 15918 15923.
193. Siddiqui, M. R.,, S. Meisner,, K. Tosh,, K. Balakrishnan,, S. Ghei,, S. E. Fisher,, M. Golding,, N. P. S. Narayan,, T. Sitaraman,, U. Sengupta,, R. Pitchappan,, and A. V. S. Hill. 2001. A major susceptibility locus for leprosy in India maps to chromosome 10p13. Nat. Genet. 27: 439 441.
194. Sieling, P. A.,, D. Chatterjee,, S. A. Porcelli,, T. I. Prigozy,, R. J. Mazzaccaro,, T. Soriano,, B. R. Bloom,, M. B. Brenner,, M. Kronenberg,, P. J. Brennan,, and R. L. Modlin. 1995. CD1-restricted T cell recognition of microbial lipoglycan antigens. Science 269: 227 230.
195. Soilleux, E. J.,, L. S. Morris,, G. Leslie,, J. Chehimi,, Q. Luo,, E. Levroney,, J. Trowsdale,, L. J. Montaner,, R. W. Doms,, D. Weissman,, N. Coleman,, and B. Lee. 2002. Constitutive and induced expression of DC-SIGN on dendritic cell and macrophage subpopulations in situ and in vitro. J. Leukoc. Biol. 71: 445 457.
196. Spargo, B. J.,, L. M. Crowe,, T. Ioneda,, B. L. Beaman,, and J. H. Crowe. 1991. Cord factor (α,α-trehalose 6,6′-dimycolate) inhibits fusion between phospholipid vesicles. Proc. Natl. Acad. Sci. USA 88: 737 740.
197. Speert, D. P.,, and S. C. Silverstein. 1985. Phagocytosis of unopsonized zymosan by human monocyte-derived macrophages: maturation and inhibition by mannan. J. Leukoc. Biol. 38: 655 658.
198. Stahl, P. D. 1990. The macrophage mannose receptor: current status. Am. J. Respir. Cell Mol. Biol. 2: 317 318.
199. Stahl, P. D.,, and R. A. Ezekowitz. 1998. The mannose receptor is a pattern recognition receptor involved in host defense. Curr. Opin. Immunol. 10: 50 55.
200. Stein, D.,, S. Roth,, E. Vogelsang,, and C. Nusslein-Volhard. 1991. The polarity of the dorsoventral axis in the Drosophila embryo is defined by an extracellular signal. Cell 65: 725 735.
201. Stein, M.,, S. Keshav,, N. Harris,, and S. Gordon. 1992. Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J. Exp. Med. 176: 287 292.
202. Stokes, R. W.,, I. D. Haidl,, W. A. Jefferies,, and D. P. Speert. 1993. Mycobacteria-macrophage interactions: macrophage phenotype determines the nonopsonic binding of Mycobacterium tuberculosis to murine macrophages. J. Immunol. 151: 7067 7076.
203. Strunk, R. C.,, D. M. Eidlen,, and R. J. Mason. 1988. Pulmonary alveolar type II epithelial cells synthesize and secrete proteins of the classical and alternative complement pathways. J. Clin. Investig. 81: 1419 1426.
204. Sugawara, I.,, H. Yamada,, C. Li,, S. Mizuno,, O. Takeuchi,, and S. Akira. 2003. Mycobacterial infection in TLR2 and TLR6 knockout mice. Microbiol. Immunol. 47: 327 336.
205. Tailleux, L.,, O. Schwartz,, J. L. Herrmann,, E. Pivert,, M. Jackson,, A. Amara,, L. Legres,, D. Dreher,, L. P. Nicod,, J. C. Gluckman,, P. H. Lagrange,, B. Gicquel,, and O. Neyrolles. 2003. DC-SIGN is the major Mycobacterium tuberculosis receptor on human dendritic cells. J. Exp. Med. 197: 121 127.
206. Takeda, K.,, T. Kaisho,, and S. Akira. 2003. Toll-like receptors. Annu. Rev. Immunol. 21: 335 376.
207. Taylor, M. E.,, K. Bezouska,, and K. Drickamer. 1992. Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J. Biol. Chem. 267: 1719 1726.
208. Teitelbaum, R.,, A. Glatman-Freedman,, and B. Chen. 1998. A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl. Acad. Sci. USA 95: 15688 15693.
209. Tekaia, F.,, S. V. Gordon,, T. Garnier,, R. Brosch,, B. G. Barrell,, and S. T. Cole. 1999. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tubercle Lung Dis. 79: 329 342.
210. Tenner, A. J.,, S. L. Robinson,, J. Borchelt,, and J. R. Wright. 1989. Human pulmonary surfactant protein (SP-A), a protein structurally homologous to C1q, can enhance FcR- and CR1-mediated phagocytosis. J. Biol. Chem. 264: 13923 13928.
211. Thoma-Uszynski, S.,, S. Stenger,, O. Takeuchi,, M. Ochoa,, M. Engele,, P. Sieling,, P. Barnes,, M. Rollinghoff,, P. Bolcskei,, M. Wagner,, S. Akira,, M. Norgard,, J. Belisle,, P. Godowski,, B. Bloom,, and R. Modlin. 2001. Induction of direct antimicrobial activity through mammalian Toll-like receptors. Science 291: 1544 1547.
212. Thornton, B. P.,, V. Vetvicka,, M. Pitman,, R. C. Goldman,, and G. D. Ross. 1996. Analysis of the sugar specificity and molecular location of the b-glucan-binding lectin site of complement receptor type 3 (CD11b/CD18). J. Immunol. 156: 1235 1246.
213. Toba, H.,, J. T. Crowford,, and J. J. Ellner. 1989. Pathogenicity of Mycobacterium avium for human monocytes: absence of macrophage activating factor activity of gamma interferon. Infect. Immun. 57: 239 244.
214. Tobian, A. A.,, N. S. Potter,, L. Ramachandra,, R. K. Pai,, M. Convery,, W. H. Boom,, and C. V. Harding. 2003. Alternate class I MHC antigen processing is inhibited by Toll-like receptor signaling pathogen-associated molecular patterns: Mycobacterium tuberculosis 19-kDa lipoprotein, CpG DNA, and lipopolysaccharide. J. Immunol. 171: 1413 1422.
215. Toshchakov, V.,, B. W. Jones,, P. Y. Perera,, K. Thomas,, M. J. Cody,, S. Zhang,, B. R. Williams,, J. Major,, T. A. Hamilton,, M. J. Fenton,, and S. N. Vogel. 2002. TLR4, but not TLR2, mediates IFN-beta-induced STAT1alpha/beta- dependent gene expression in macrophages. Nat. Immunol. 3: 392 398.
216. Ueda, T.,, P. Rieu,, J. Brayer,, and M. A. Arnaout. 1994. Identification of the complement iC3b binding site in the β2 integrin CR3 (CD11b/CD18). Proc. Natl. Acad. Sci. USA 91: 10680 10684.
217. Uehori, J.,, M. Matsumoto,, S. Tsuji,, T. Akazawa,, O. Takeuchi,, S. Akira,, T. Kawata,, I. Azuma,, K. Toyoshima,, and T. Seya. 2003. Simultaneous blocking of human Tolllike receptors 2 and 4 suppresses myeloid dendritic cell activation induced by Mycobacterium bovis bacillus Calmette- Guérin peptidoglycan. Infect. Immun. 71: 4238 4249.
218. Venisse, A.,, J.-M. Berjeaud,, P. Chaurand,, M. Gilleron,, and G. Puzo. 1993. Structural features of lipoarabinomannan from Mycobacterium bovis BCG. Determination of molecular mass by laser desorption mass spectrometry. J. Biol. Chem. 268: 12401 12411.
219. Vergne, I.,, J. Chua,, and V. Deretic. 2003. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2 +/ calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 198: 653 659.
220. Wileman, T. E.,, M. R. Lennartz,, and P. D. Stahl. 1986. Identification of the macrophage mannose receptor as a 175-kDa membrane protein. Proc. Natl. Acad. Sci. USA 83: 2501 2505.
221. Williams, M. J.,, P. E. Hughes,, T. E. O’Toole,, and M. H. Ginsberg. 1994. The inner world of cell adhesion: integrin cytoplasmic domains. Trends Cell Biol. 4: 109 112.
222. Wilson, C. B.,, V. Tsai,, and J. S. Remington. 1980. Failure to trigger the oxidative metabolic burst by normal macrophages: possible mechanism for survival of intracellular pathogens. J. Exp. Med. 151: 328 346.
223. Wright, S. D.,, P. A. Detmers,, M. T. C. Jong,, and B. C. Meyer. 1986. Inteferon-gamma depresses binding of ligand by C3b and C3bi receptors on cultured human monocytes, an effect reversed by fibronectin. J. Exp. Med. 163: 1245 1259.
224. Yamamoto, M.,, S. Sato,, H. Hemmi,, K. Hoshino,, T. Kaisho,, H. Sanjo,, O. Takeuchi,, M. Sugiyama,, M. Okabe,, K. Takeda,, and S. Akira. 2003. Role of adaptor TRIF in the MyD88- independent toll-like receptor signaling pathway. Science 301: 640 643.
225. Yoshida, A.,, and Y. Koide. 1997. Arabinofuranosyl-terminated and mannosylated lipoarabinomannans from Mycobacterium tuberculosis induce different levels of interleukin- 12 expression in murine macrophages. Infect. Immun. 65: 1953 1955.
226. Zach, T. L.,, L. D. Hill,, V. A. Herrman,, M. P. Leuschen,, and M. K. Hostetter. 1992. Effect of glucocorticoids on C3 gene expression by the A549 human pulmonary epithelial cell line. J. Immunol. 148: 3964 3969.
227. Zhang, Y.,, M. Doerfler,, T. C. Lee,, B. Guillemin,, and W. N. Rom. 1993. Mechanisms of stimulation of interleukin-1beta and tumor necrosis factor-alpha by Mycobacterium tuberculosis components. J. Clin. Investig. 91: 2076 2083.
228. Zimmerli, S.,, S. Edwards,, and J. D. Ernst. 1996. Selective receptor blockade during phagocytosis does not alter the survival and growth of Mycobacterium tuberculosis in human macrophages. Am. J. Respir. Cell Mol. Biol. 15: 760 770.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error