1887

Chapter 32 : Role of Antibody-Mediated Immunity in Host Defense against

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Role of Antibody-Mediated Immunity in Host Defense against , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap32-1.gif /docserver/preview/fulltext/10.1128/9781555817657/9781555812959_Chap32-2.gif

Abstract:

For many decades, the dominant view in the field of mycobacterial immunology has been that host defense against relies exclusively on cell-mediated immunity. In search of new solutions to the overwhelming problem of tuberculosis, investigators set out several years ago to evaluate the help that can be offered by antibody-mediated immunity in host defense against , with the possibility that it may lead to the development of a novel and effective vaccine strategy. The literature on studies of antibody-mediated immunity against can be divided into several general categories: serological studies, passive antibody studies, animal studies, in vitro studies, and human studies. Monoclonal antibody (MAb) technology, described for the first time in the 1970s, allowed the selection of individual antibodies with particular antigen specificities. Vaccines presently used in humans belong to one of three main categories: inactivated, live attenuated, and subunit vaccines. Adhesion of microbes to host tissues is a significant step in the colonization of the host and the establishment of infection. The majority of these vaccines are thought to provide protection by eliciting protective antibody responses. The progress made in recent years is encouraging and should stimulate interest in evaluating the mechanisms by which antibodies may contribute to host defense against . The future challenges are to systematically dissect the conditions required for optimal antibody-mediated immunity against and to develop vaccine candidates that will work by eliciting protective antibody responses.

Citation: Glatman-Freedman A, Casadevall A. 2005. Role of Antibody-Mediated Immunity in Host Defense against , p 497-512. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch32
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of a proposed mechanism for antibody-mediated immunity to . 1, Interference with adhesion to macrophages (1a) or respiratory epithelium (1b); 2, neutralization or clearance of mycobacterial antigens or toxins; 3, promotion of phagosome-lysosome fusion; 4, opsonization via Fc receptor; 5, complement activation; 6, effect on signal transduction with release of cytokines and chemokines.

Citation: Glatman-Freedman A, Casadevall A. 2005. Role of Antibody-Mediated Immunity in Host Defense against , p 497-512. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Survival (A) and body weight (B) of C57BL/6 mice immunized with AM conjugated to tetanus toxoid (TT) in L3 adjuvant emulsion (top panels) or suspension (middle panels), as compared to mice immunized with BCG (bottom panels) and infected intranasally with (105 CFU). Black symbols represent mice immunized with AM conjugate vaccine or BCG, and open symbols represent controls. Adapted from reference 36. © 2003 with permission from Elsevier.

Citation: Glatman-Freedman A, Casadevall A. 2005. Role of Antibody-Mediated Immunity in Host Defense against , p 497-512. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch32
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817657.chap32
1. Andersen, P. 1997. Host responses and antigens involved in protective immunity to Mycobcterium tuberculosis. Scand. J. Immunol. 45: 115 131.
2. Armstrong, J. A.,, and P. D. Hart. 1975. Phagosome-lysosome interactions in cultured macrophages infected with virulent tubercle bacilli. J. Exp. Med. 142: 1 16.
3. Band, H.,, S. Sinha,, and G. P. Talwar. 1987. Inhibition of interaction of mycobacteria with Schwann cells by antimycobacterial antibodies. J. Neuroimmunol. 14: 235 239.
4. Barrera, L.,, I. de Kantor,, V. Ritacco,, A. Reniero,, B. Lopez,, J. Benetucci,, M. Beltran,, O. Libonatti,, E. Padula,, J. Castagnino,, and L. Gonzalez Montaner. 1992. Humoral response to Mycobacterium tuberculosis in patients with human immunodeficiency virus infection. Tubercle Lung Dis. 73: 187 191.
5. Bluhm, I. 1952. The influence of immune and normal human serum on the respiration of tubercle bacilli. Acta Med. Scand. Suppl. 275: 1 28.
6. Bosio, C. M.,, D. Gardner,, and K. L. Elkins. 2003. Infection of B cell-deficient mice with CDC 1551, a clinical isolate of Mycobacterium tuberculosis: delay in dissemination and development of lung pathology. J. Immunol. 164: 6417 6425.
7. Buttery, J.,, and E. R. Moxon. 2002. Capsulate bacteria and the lung. Br. Med. Bull. 61: 63 80.
8. Calmette, A. 1923. Passive immunity: attempts at antituberculous serotherapy, p. 603 623. In Tubercle Bacillus Infection and Tuberculosis in Man and Animals. The Williams & Wilkins Co., Baltimore, Md.
9. Casadevall, A. 2003. Antibody-mediated immunity against intracellular pathogens: two-dimentional thinking comes full circle. Infect. Immun. 71: 4225 4228.
10. Casadevall, A.,, and M. D. Scharff. 1994. Serum therapy revisited: animal models of infection and development of passive antibody therapy. Antimicrob. Agents Chemother. 38: 1695 1702.
11. Casadevall, A.,, and M. D. Scharff. 1995. Return to the past: the case for antibody-based therapies in infectious diseases. Clin. Infect. Dis. 21: 150 161.
12. Centers for Disease Control and Prevention. 1996. The role of BCG vaccine in the prevention and control of tuberculosis in the United States. A joint statement by the Advisory Council for the Elimination of Tuberculosis and the Advisory Committee on Immunization Practices. Morb. Mortal. Wkly. Rep. 45: 118.
12.a. Chambers, M. A.,, D. Gavier-Widén,, and R. G. Hewinson. 2004. Antibody bound to the surface antigen MPB83 of Mycobacterium bovis enhances survival against high dose and low dose challenge. FEMS Immunol. Med. Microbiol. 41: 93 100.
13. Chan, J.,, and S. H. E. Kaufmann,. 1994. Immune mechanism of protection, p. 389 415. In B. R. Barry (ed.), Tuberculosis. Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
14. Chatterjee, D.,, K. Lowell,, B. Rivoire,, M. R. McNeil,, and P. J. Brennan. 1992. Lipoarabinomannan of Mycobacterium tuberculosis. Capping with mannosyl residues in some strains. J. Biol. Chem. 267: 6234 6239.
15. Choucroun, N. 1949. Precipitin test for carbohydrate antibodies in human tuberculosis. Am. Rev. Tuberc. 59: 710 712.
16. Choudhury, A.,, N. F. Mistry,, and N. H. Antia. 1989. Blocking of Mycobacterium leprae adherence to dissociated Schwann cells by anti-mycobacterial antibodies. Scand. J. Immunol. 30: 505 509.
17. Clawson, B. J. 1936. The destruction of tubercle bacilli within phagocytes in vitro. J. Infect. Dis. 58: 64 69.
18. Collins, F. M. 1991. Antituberculous immunity: new solutions to an old problem. Rev. Infect. Dis. 13: 940 950.
19. Collins, H. L.,, and S. H. E. Kaufmann. 2001. Prospects for better tuberculosis vaccines. Lancet Infect. Dis. 1: 21 28.
20. Conti, S.,, F. Fanti,, W. Magliani,, M. Gerloni,, D. Bertolotti,, A. Salati,, A. Cassone,, and L. Polonelli. 1998. Mycobactericidal activity of human natural, monoclonal, and recombinant yeast killer toxin-like antibodies. J. Infect. Dis. 177: 807 811.
21. Costello, A. M.,, A. Kumar,, V. Narayan,, M. S. Akbar,, S. Ahmed,, C. Abou-Zeid,, G. A. W. Rook,, J. Stanford,, and C. Moreno. 1992. Does antibody to mycobacterial antigens, including lipoarabinomannan, limit dissemination in childhood tuberculosis? Trans. R. Soc. Trop. Med. Hyg. 86: 686 692.
22. Da Costa, C. T. K. A.,, S. Khanolkar-Young,, A. M. Elliott,, K. M. A. Wasunna,, and K. P. W. J. McAdam. 1993. Immunoglobulin G subclass responses to mycobacterial lipoarabinomannan in HIV-infected and non-infected patients with tuberculosis. Clin. Exp. Immunol. 91: 25 29.
23. Daffe, M.,, and P. Draper. 1998. The envelope layers of mycobacteria with reference to their pathogenicity. Adv. Microb. Physiol. 39: 131 203.
24. Daniel, T. M.,, M. J. Oxtoby,, E. M. Pinto,, and E. S. Moreno. 1981. The immune spectrum in patients with pulmonary tuberculosis. Am. Rev. Respir. Dis. 123: 556 559.
25. De Schweinitz, E. A., and M. Dorset. 1897. Some products of the tuberculosis bacillus and the treatment of experimental tuberculosis with antitoxic serum. N. Y. Med. J. 66: 105 111.
26. Dunlap, N. E.,, and D. E. Briles. 1993. Immunology of tuberculosis. Med. Clin. North Am. 77: 1235 1251.
27. Emmart, E. W.,, and F. B. Seibert. 1945. The effect of tuberculous and sensitized sera and serum fractions on the development of tubercles in the chorio-allantoic membrane of the chick. J. Immunol. 50: 143 160.
28. Engele, M.,, E. Stossel,, K. Castiglione,, N. Schwerdtner,, M. Wagner,, P. Bolcskei,, M. Rollinghoff,, and S. Stenger. 2002. Induction of TNF in human alveolar macrophages as a potential evasion mechanism of virulent Mycobacterium tuberculosis. J. Immunol. 168: 1328 1337.
29. Falero-Diaz, G.,, S. Challacombe,, D. Rahman,, M. Mistry,, G. Douce,, G. Dougan,, A. Acosta,, and J. Ivanyi. 2000. Transmission of IgA and IgG monoclonal antibodies to mucosal fluids following intranasal or parenteral delivery. Int. Arch. Allergy Immunol. 122: 143 150.
30. Feldmesser, M.,, and A. Casadevall. 1997. Effect of serum IgG1 to Cryptococcus neoformans glucuronoxylomannan on murine pulmonary infection. J. Immunol. 158: 790 799.
31. Fisch, C. 1897. The antitoxic and bactericidal properties of the serum of horses treated with Koch’s new tuberculin. JAMA 29: 882 889.
32. Forget, A.,, J. C. Benoit,, R. Turcotte,, and N. Gusew-Chartrand. 1976. Enhancement activity of anti-mycobacterial sera in experimental Mycobacterium bovis (BCG) infection in mice. Infect. Immun. 13: 1301 1306.
33. Glatman-Freedman, A. 2003. Advances in antibody-mediated immunity against Mycobacterium tuberculosis: implications for a novel vaccine strategy. FEMS Immunol. Med. Microbiol. 39: 9 16.
34. Glatman-Freedman, A.,, and A. Casadevall. 1998. Serum therapy for tuberculosis revisited: reappraisal of the role of antibody-mediated immunity against Mycobacterium tuberculosis. Clin. Microbiol. Rev. 11: 514 532.
34.a. Glatman-Freedman, A.,, A. Casadevall,, Z. Dai,, W. R. Jacobs, Jr.,, A. Li,, S. L. Morris,, J. A. Navoa,, S. Piperdi,, J. B. Robbins,, R. Schneerson,, J. R. Schwebach,, and M. Shapiro. 2004. Antigenic evidence of prevalence and diversity of Mycobacterium tuberculosis arabinomannan. J. Clin. Microbiol. 42: 3225 3231.
35. Glatman-Freedman, A.,, A. J. Mednick,, N. Lendvai,, and A. Casadevall. 2000. Clearance and organ distribution of Mycobacterium tuberculosis lipoarabinomannan (LAM) in the presence and absence of LAM-binding IgM. Infect. Immun. 68: 335 341.
36. Hamasur, B.,, M. Haile,, A. Pawlowski,, U. Schroder,, A. Williams,, G. Hatch,, G. Hall,, P. Marsh,, G. Kallenius,, and S. B. Svenson. 2003. Mycobacterium tuberculosis arabinomannan- protein conjugates protect against tuberculosis. Vaccine 21: 4081 4093.
37. Hamasur, B.,, G. Kallenius,, and S. B. Svenson. 1999. Synthesis and immunologic characterization of Mycobacterium tuberculosis lipoarabinomannan specific oligosaccharideprotein conjugates. Vaccine 17: 2853 2861.
38. Hayden, A. M. 1896. Report of results and recoveries obtained by the use of anti-tubercle serum. JAMA 26: 965 966.
39. Hetland, G.,, H. G. Wiker,, K. Hogasen,, B. Hamasur,, S. B. Svenson,, and M. Harboe. 1998. Involvement of antilipoarabinomannan antibodies in classical complement activation in tuberculosis. Clin. Diagn. Lab. Immunol. 5: 211 218.
40. Holmes, A. M. 1899. A further report on the use of “antiphthisic serum T.R.” (Fisch) in tuberculosis. JAMA 33: 886 888.
41. Hussain, R.,, H. Shiratsuchi,, J. J. Ellner,, and R. S. Wallis. 2000. PPD-specific IgG1 antibody subclass upregulate tumor necrosis factor expression in PPD-stimulated monocytes: possible link with disease pathogenesis in tuberculosis. Clin. Exp. Immunol. 119: 449 455.
42. Hussain, R.,, H. Shiratsuchi,, M. Phillips,, J. J. Ellner,, and R. S. Wallis. 2001. Opsonizing antibodies (IgG1) upregulate monocyte proinflammatory cytokines tumour necrosis factor-alpha (TNF-α) and IL-6 but not anti-inflammatory cytokine IL-10 in mycobacterial antigen-stimulated monocytes implications for pathogenesis. Clin. Exp. Immunol. 123: 210 218.
43. Johnson, C. M.,, A. M. Cooper,, A. A. Frank,, C. B. C. Bonorino,, L. J. Wysoki,, and I. M. Orme. 1997. Mycobacterium tuberculosis aerogenic rechallenge infections in B celldeficient mice. Tubercle Lung. Dis. 78: 257 261.
44. Josset, A. 1924. Les conditions de succes de la serotherapie antituberculeuse chez l’homme. Bull. Mem. Soc. Medi. Hop. Paris 40: 923 939.
45. Josset, A. 1924. Seize année de serotherapie antituberculeuse. Bull. Mem. Soc. Med. Hop. Paris 40: 777 781.
46. Josset, A. 1924. Resultats experimentaux de la serotherapie antituberculeuse. Bull. Mem. Soc. Hop. Paris 40: 826 831.
47. Kardito, T.,, and J. M. Grange. 1980. Immunological and clinical features of smear-positive pulmonary tuberculosis in East Java. Tubercle 61: 231 238.
48. Kato, M. 1972. Antibody formation to trehalose-6,6'-dimycolate (cord factor) of Mycobacterium tuberculosis. Infect. Immun. 5: 203 212.
49. Kato, M. 1974. Further study on neutralization of biochemical activity of cord factor by anti-cord factor antibody. Infect. Immun. 10: 277 279.
50. Kisich, K. O.,, M. Higgins,, G. Diamond,, and L. Heifets. 2002. Tumor necrosis factor alpha stimulates killing of Mycobacterium tuberculosis by human neutrophils. Infect. Immun. 70: 4591 4599.
51. Lemen, J. R. 1898. Three years of serum therapy in tuberculosis. N. Y. Med. J. 67: 672 677.
52. Lenzini, L.,, P. Rottoli,, and L. Rottoli. 1977. The spectrum of human tuberculosis. Clin. Exp. Immunol. 27: 230 237.
53. Lesinski, G. B., and M. A. Westerink. 2001. Vaccines against polysaccharide antigens. Curr. Drug Targets Infect. Disorders 1: 325 334.
54. Macpherson, A. J. S.,, A. Lamarre,, K. McCoy,, G. R. Harriman,, B. Odermatt,, G. Dougan,, H. Hengartner,, and R. M. Zinkernagel. 2001. IgA production without mu or delta chain expression in developing B cells. Nat. Immunol. 2: 625 631.
55. Maragliano, C. 1896. Le serum antituberculeux et son antitoxine. Rev. Tuberc. 1896: 131 138.
56. Maragliano, E. 1896. Premiere statistique du traitement de la tuberculose par la serum Maragliano. Rev. Tuberc. 1896: 156 157.
57. Marchant, C. D., and M. L. Kumar,. 2002. Immunizations, p. 232 262. In H. B. Jenson, and R. S. Baltimore (ed.), Pediatric Infectious Diseases: Principles and Practices. The W. B. Saunders Co., Philadelphia, Pa.
58. Marmorek, A. 1903. Antituberculous serum and “vaccine.” Lancet ii: 1642 1645.
59. Menozzi, F. D.,, J. H. Rouse,, M. Alavi,, M. Laude-Sharp,, J. Muller,, R. Bischoff,, M. J. Brennan,, and C. Locht. 1996. Identification of a heparin-binding hemagglutinin present in mycobacteria. J. Exp. Med. 184: 993 1001.
60. Michell, S. L.,, A. O. Whelan,, P. R. Wheeler,, M. Panico,, R. L. Easton,, A. T. Etienne,, S. M. Haslam,, A. Dell,, H. R. Morris,, A. J. Reason,, J. L. Herrmann,, D. B. Young,, and R. G. Hewinson. 2003. The MPB83 antigen from Mycobacteium bovis contains O-linked mannose and (1→3) mannobiose moieties. J. Biol. Chem. 278: 16423 16432.
61. Mukherjee, J.,, G. Nussbaum,, M. D. Scharff,, and A. Casadevall. 1995. Protective and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J. Exp. Med. 181: 405 409.
62. Mukherjee, J.,, M. D. Scharff,, and A. Casadevall. 1992. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect. Immun. 60: 4534 4541.
63. Mukherjee, S.,, S. C. Lee,, and A. Casadevall. 1995. Antibodies to Cryptococcus neoformans glucuronoxylomannan enhance antifungal activity of murine macrophages. Infect. Immun. 63: 573 579.
64. Nigou, J.,, M. Gilleron,, M. Rojas,, L. F. Garcia,, M. Thurnher,, and G. Puzo. 2002. Mycobacterial lipoarabinomannans: modulators of dendritic cell function and the apoptotic response. Microbes Infect. 4: 945 953.
65. Nussbaum, G.,, W. Cleare,, A. Casadevall,, M. D. Scharff,, and P. Valdom. 1997. Epitope location in the Cryptococcus neoformans capsule is a determinant of antibody efficacy. J. Exp. Med. 185: 685 694.
66. Nussbaum, G.,, R. Yuan,, A. Casadevall,, and M. D. Scharff. 1996. Immunoglobulin G3 blocking antibodies to the fungal pathogen Cryptococcus neoformans. J. Exp. Med. 183: 1905 1909.
67. Paquin, P. 1895. The treatment of tuberculosis by injections of immunized blood serum. JAMA 24: 842 845.
68. Paquin, P. 1895. Anti tubercle serum. JAMA 24: 341 346.
69. Paquin, P. 1897. Further report of cases treated with antitubercle serum. JAMA 29: 98 99.
70. Paquin, P. 1898. How we treat consumption today. JAMA 30: 294 299.
71. Peterson, J. C.,, R. Langercranz,, S. I. Rollof,, and J. Lind. 1952. Tuberculin hemmagglutination studies in active tuberculosis infections, benign and virulent. Acta Paediatr. 41: 57 73.
72. Pethe, K.,, S. Alonso,, F. Biet,, G. Delogu,, M. J. Brennan,, C. Locht,, and F. D. Menozzi. 2001. The heparin-binding haemagglutinin of M. tuberculosis is required for extrapulmonary dissemination. Nature 412: 190 194.
73. Prioleau, W. H. 1898. Antitubercle serum (Paquin) in tuberculosis. JAMA 31: 687 688.
74. Raffel, S. 1946. The relationship of acquired resistance, allergy, antibodies and tissue reactivities to the components of the tubercle bacillus. Am. Rev. Tuberc. 54: 564 573.
75. Reggiardo, Z.,, and G. Middlebrook. 1974. Failure of passive serum transfer of immunity against aerogenic tuberculosis in rabbits. Proc. Soc. Exp. Biol. Med. 145: 173 175.
76. Reiss, F.,, G. Szilagyi,, and E. Mayer. 1975. Immunological studies of anticryptococcal factor of normal human serum. Mycopathologia 55: 175 178.
77. Roach, D. R.,, A. G. Bean,, C. Demangel,, M. P. France,, H. Briscoe,, and W. J. Britton. 2002. TNF regulates chemokine induction essential for cell recruitment, granuloma formation, and clearance of mycobacterial infection. J. Immunol. 168: 4620 4627.
78. Robbins, J. B.,, R. Schneerson,, and S. C. Szu. 1996. Hypothesis: how licenced vaccines confer protective immunity. Adv. Exp. Med. Biol. 397: 169 182.
79. Ryll, R.,, Y. Kumazawa,, and I. Yano. 2001. Immunological properties of trehalose dimycolate (cord factor) and other mycolic acid-containing glycolipids—a review. Microbiol. Immunol. 45: 801 811.
80. Sanchez-Rodriguez, C.,, C. Estrada-Chavez,, J. Garcia-Vigil,, F. Laredo-Sanchez,, J. Halabe-Cherem,, A. Pereira-Suarez,, and R. Mancilla. 2002. An IgG antibody response to the antigen 85 complex is associated with good outcome in Mexican Totonaca Indians with pulmonary tuberculosis. Int. J. Tuberc. Lung Dis. 6: 706 712.
81. Sanford, J. E.,, D. M. Lupan,, A. M. Schlageter,, and T. R. Kozel. 1990. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococcal polysaccharide. Infect. Immun. 58: 1919 1923.
82. Schlesinger, L. S. 1998. Mycobacterium tuberculosis and the complement system. Trends Microbiol. 6: 47 49.
83. Schlesinger, L. S.,, and M. A. Horwitz. 1991. Phenolic glycolipid-1 of Mycobacterium leprae binds complement component C3 in serum and mediates phagocytosis by human monocytes. J. Exp. Med. 174: 1031 1038.
84. Schlesinger, L. S.,, S. R. Hull,, and T. M. Kaufman. 1994. Binding of the terminal mannosyl units of lipoarabinomannan from a virulent strain of Mycobacterium tuberculosis to human macrophages. J. Immunol. 152: 4070 4079.
85. Schwebach, J. R.,, A. Casadevall,, R. Schneerson,, Z. Dai,, X. Wang,, J. B. Robbins,, and A. Glatman-Freedman. 2001. Expression of a Mycobacterium tuberculosis arabinomannan antigen in vitro and in vivo. Infect. Immun. 69: 5671 5678.
86. Schwebach, J. R.,, A. Glatman-Freedman,, L. Gunter-Cummins,, Z. Dai,, J. R. Robbins,, R. Schneerson,, and A. Casadevall. 2002. Glucan is a component of the Mycobacterium tuberculosis surface that is expressed in vitro and in vivo. Infect. Immun. 70: 2566 2575.
87. Seibert, F. B. 1956. The significance of antigen-antibody reactions in tuberculosis. J. Infect. Dis. 99: 76 83.
88. Seibert, F. B. 1958. The interplay of an immune substance with tuberculopolysaccharide and its antibody in tuberculosis. J. Infect. Dis. 103: 52 60.
89. Seibert, F. B.,, E. E. Miller,, U. Buseman,, M. V. Seibert,, E. Soto-Figueroa,, and L. Fry. 1956. The significance of antibodies to tuberculoprotein and polysaccharide in resistance to tuberculosis. Am. Rev. Tuberc. Pulm. Dis. 73: 547 562.
90. Seibert, F. B.,, and J. W. Nelson. 1943. Proteins of tuberculin. J. Am. Chem. Soc. 65: 272 278.
91. Seibert, F. B.,, and M. V. Seibert. 1957. Relationship between immunity and circulating antibodies, complement and tuberculopolysaccharide in tuberculosis. J. Infect. Dis. 101: 109 118.
92. Shropshire, L. L. 1896. A limited experience with the Paul Paquin antitubercle serum. N. Y. Med. J. 63: 15 16.
93. Smith, S.,, D. Liggitt,, E. Jeromsky,, X. Tan,, S. J. Skerrett,, and C. B. Wilson. 2002. Local role for tumor necrosis factor alpha in the pulmonary inflammatory response to Mycobacterium tuberculosis infection. Infect. Immun. 70: 2082 2089.
94. Snider, D. E.,, M. Raviglione,, and A. Kochi,. 1994. Global burden of tuberculosis, p. 3 11. In B. R. Bloom (ed.), Tuberculosis. Pathogenesis, Protection, and Control. ASM Press, Washington, D.C.
95. Spahlinger, H. 1922. Note on the treatment of tuberculosis. Lancet i: 5 8.
96. Strohmeier, G. R.,, and M. J. Fenton. 1999. Roles of lipoarabinomannan in the pathogenesis of tuberculosis. Microbes Infect. 1: 709 717.
97. Stubbert, J. E. 1898. Some statistics upon sero-therapy in tuberculosis. Trans. Am. Climatol. Assoc. 14: 214 230.
98. Teitelbaum, R.,, A. Glatman-Freedman,, B. Chen,, J. B. Robbins,, E. Unanue,, A. Casadevall,, and B. R. Bloom. 1998. A mAb recognizing a surface antigen of Mycobacterium tuberculosis enhances host survival. Proc. Natl. Acad. Sci. USA 95: 15688 15693.
99. Trotter, C. L.,, M. E. Ramsay,, and E. B. Kaczmarski. 2002. Meningococal serogroup C conjugate vaccination in England and Wales: coverage and initial impact of the campaign. Commun. Dis. Public Health 5: 220 225.
100. Trudeau, E. L.,, and E. R. Baldwin. 1898. Experimental studies on the preparation and effects of antitoxins for tuberculosis. Am. J. Med. Sci. 116: 692 707.
101. Trudeau, E. L.,, and E. R. Baldwin. 1899. Experimental studies on the preparation and effects of antitoxins for tuberculosis. Am. J. Med. Sc. 117: 56 76.
102. Tsuji, S.,, K. Ito,, and S. Oshima. 1957. The role of humoral factors in native and acquired resistance to tuberculosis. Am. Rev. Tuberc. Pulm. Dis. 76: 90 102.
103. Vallee, H. 1909. Sur le proprietes du serum du cheval hyperimmunise contre la tuberculose a l’aide de bacilles humains virulents. C. R. Hebd. Seances Soc. Biol. 67: 700 702.
104. Venisse, A.,, J. J. Fournie,, and G. Puzo. 1995. Mannosylated lipoarabinomannan interacts with phagocytes. Eur. J. Biochem. 231: 440 447.
105. Vordermeier, H. M.,, N. Venkataprasad,, D. P. Harris,, and J. Ivanyi. 1996. Increase of tuberculous infection in the organs of B cell-deficient mice. Clin. Exp. Immunol. 106: 312 316.
106. Wiker, H. G.,, K. P. Lyashchenko,, A. M. Aksoy,, K. A. Lightbody,, J. M. Pollock,, S. V. Komissarenko,, S. O. Bobrovnik,, I. N. Kolesnikova,, L. O. Mykhalsky,, M. L. Gennaro,, and M. Harboe. 1998. Immunochemical characterization of the MPB70/80 and MPB83 proteins of Mycobacterium bovis. Infect. Immun. 66: 1445 1452.
107. Wiker, H. G.,, S. Nagai,, R. G. Hewinson,, W. P. Russell,, and M. Harboe. 1996. Heterogenenous Expression of related MBP 70 and MPB 83 proteins distinguish various substrains of Mycobacterium bovis BCG and Mycobacterium tuberculosis H37Rv. Scand. J. Immunol. 43: 374 380.
107.a. Williams, A.,, R. Reljic,, I. Naylor,, S. O. Clark,, G. Falero- Diaz,, M. Singh,, S. Challacombe,, P. O. Marsh,, and J. Ivanyi. 2004. Passive protection with immunoglobulin A antibodies against tuberculous early infection of the lung. Immunology 111: 328 333.
108. Yuan, R.,, A. Casadevall,, G. Spira,, and M. D. Scharff. 1995. Isotype switching from IgG3 to IgG1 converts a nonprotective murine antibody to Cryptococcus neoformans into a protective antibody. J. Immunol. 154: 1810 1816.
109. Yuan, R. R.,, A. Casadevall,, J. Oh,, and M. D. Scharff. 1997. T cells cooperate with passive antibody to modify Cryptococcus neoformans infection in mice. Proc. Natl. Acad. Sci. USA 94: 2483 2488.
110. Zitrin, C. M.,, and O. Wasz-Höckert. 1957. Preliminary experiments on passive transfer of protective humoral antibodies in tuberculosis. Am. Rev. Tuberc. Pulm. Dis. 76: 256 262.

Tables

Generic image for table
Table 1

Effect of MAbs on various aspects of mycobacterial infection

Citation: Glatman-Freedman A, Casadevall A. 2005. Role of Antibody-Mediated Immunity in Host Defense against , p 497-512. In Cole S, Eisenach K, McMurray D, Jacobs, Jr. W (ed), Tuberculosis and the Tubercle Bacillus. ASM Press, Washington, DC. doi: 10.1128/9781555817657.ch32

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error