Chapter 2 : Responses to Microbial Infection: an Overview

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Responses to Microbial Infection: an Overview, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555817671/9781555812911_Chap02-2.gif


The studies on antimicrobial peptide identification were rapidly extended to other insect species and eventually to . During the past decade, the ease of genetic analysis has made the fruit fly an organism of choice for the study of innate host defense. This chapter concentrates on recent developments in this field of study. , like all insects, is very resistant to microbial infections, mounting a multifaceted reaction against invading non-self. Drosophila blood cells (hemocytes) play a significant role in host defense. Three mature hemocyte types are found in circulation: plasmatocytes, crystal cells, and lamellocytes. Infection-dependent melanization is the most immediate response following microbial challenge or septic injury and requires the activation of phenoloxidase (PO), which is an oxidoreductase that catalyzes the conversion of phenols to quinones. The chapter then focuses on humoral immunity. In the early 1990s it was shown that the promoters of the antimicrobial peptides (AMP) genes contained sequence motifs related to mammalian NF- κB response elements. The Imd pathway governs defenses against gram-negative bacteria by controlling the induction of a number of genes, including most of those encoding the antibacterial peptides. Genetic screens and an RNAi-based screen in macrophagelike cultured cells have recently identified PRRs in

Citation: Hoffmann J, Ligoxygakis P. 2004. Responses to Microbial Infection: an Overview, p 31-44. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

The hallmark of the humoral response is the synthesis and secretion into the hemolymph of several potent AMPs by fat body cells. Seven of these families of small cationic peptides have been biochemically and molecularly characterized and are presented here. The gene copy numbers are shown in parentheses followed by the maximum concentration that each peptide can reach after infection. Their main biological activities in physiological concentrations are anti-gram-negative for Diptericins, Attacins, Cecropins, and Drosocin; anti-grampositive for Defensins; and antifungal for Drosomycins and Metchnikowin.

Citation: Hoffmann J, Ligoxygakis P. 2004. Responses to Microbial Infection: an Overview, p 31-44. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Present view of Toll-dependent induction of immune genes following fungal or gram-positive bacterial infection. One of the sensors of gram-positive infection is a circulating recognition protein, PGRP-SA. The recognition receptor(s) for fungi is not yet known. Conversely, it is not clear how PGRP-SA signals to Spz and whether plays a role in inhibiting activation of the proteolytic cascade triggered by gram-positive bacteria as in the one for fungi. Finally, the signaling pathways and the ligands of other Tolls remain to be identified.

Citation: Hoffmann J, Ligoxygakis P. 2004. Responses to Microbial Infection: an Overview, p 31-44. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

The Imd pathway controls the defense against gram-negative bacteria. It is relevant here to note that the receptor is still unknown. The putative transmembrane PGRP-LC does not qualify as one but rather is more of a part of an extensive receptor–adaptor complex (see also text).

Citation: Hoffmann J, Ligoxygakis P. 2004. Responses to Microbial Infection: an Overview, p 31-44. In Kaufmann S, Medzhitov R, Gordon S (ed), The Innate Immune Response to Infection. ASM Press, Washington, DC. doi: 10.1128/9781555817671.ch2
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Akira, S.,, K. Takeda,, and T. Kaisho. 2001. Toll-like receptors: critical proteins linking innate and acquired immunity. Nat. Immunol. 2: 675 708.
2. Ashida, M.,, and P. T. Brey. 1995. Role of the integument in insect defense: prophenoloxidase cascade in the cuticular matrix. Proc. Natl. Acad. Sci. USA 92: 10698 10702.
3. Ashida, M.,, and P. Brey,. 1997. Recent advances in research on the insect prophenoloxidase cascade, p. 133 172. In P. T. Brey, and D. Hultmark (ed.), Molecular Mechanisms of Immune Responses in Insects. Chapman & Hall, London, United Kingdom.
4. Belvin, M. P.,, and K.V. Anderson. 1996. A conserved signalling pathway: the Drosophila Toll-dorsal pathway. Annu. Rev. Cell Dev. Biol. 12: 393 416.
5. Boutros, M.,, H. Agaisse,, and N. Perrimon. 2002. Sequential activation of signalling pathways during innate immunity in Drosophila. Dev. Cell 3: 711 722.
6. Bulet, P.,, C. Hetru,, J.-L. Dimarcq,, and D. Hoffmann. 1999. Antimicrobial peptides in insects; structure and function. Dev. Comp. Immunol. 23: 329 344.
7. Carton, Y.,, and A. J. Nappi. 1997. Drosophila cellular immunity against parasitoids. Parasitol. Today 13: 218 227.
8. Choe, K.-M.,, T. Werner,, S. Stoven,, D. Hultmark,, and K.V. Anderson. 2002. Requirement for a peptidoglycan recognition protein PGRP in Relish activation and Antibacterial immune responses in Drosophila. Science 296: 359 361.
9. Chosa, N.,, T. Fukumitsu,, K. Fujimoto,, and E. Ohnishi. 1997. Activation of prophenoloxydase A1 by an activating enzyme in Drosophila melanogaster. Insect Biochem. Mol. Biol. 27: 61 68.
10. Christophides, G. K., et al. 2002. Immunity-related genes and gene families in Anopheles gambiae: a comparative genomic analysis. Science 298: 159 165.
11. Cuénot, L. 1891. Etudes sur le sang et les glandes lymphatiques dans la serie animale. Arch. Zool. Gen. 2: 13 90.
12. De Gregorio, E.,, P. T. Spellman,, G. M. Rubin,, and B. Lemaitre. 2001. Genome-wide analysis of the Drosophila immune response by using oligonucleotide microarrays. Proc. Natl. Acad. Sci. USA 98: 12590 12595.
13. De Gregorio, E.,, S.-J. Han,, W.-J. Lee,, M.-J. Baek,, T. Osaki,, S. I. Kawabata,, B. L. Lee,, S. Iwanaga,, B. Lemaitre,, and P. T. Brey. 2002a. An immuneresponsive Serpin regulates the melanization cascade in Drosophila. Dev. Cell. 3: 581 592.
14. De Gregorio, E.,, P.T. Spellman,, P. Tzou,, G. M. Rubin,, and B. Lemaitre. 2002b. The Toll and Imd pathways are the major regulators of immune response in Drosophila. EMBO J. 21: 2568 2579.
15. Dimopoulos, G.,, A. Richman,, H. M. Muller,, and F. C. Kafatos. 1997. Molecular immune responses of the mosquito Anopheles gambiae to bacteria and malaria parasites. Proc. Natl. Acad. Sci. USA 94: 11508 11511.
16. Dushay, M. S.,, B. Asling,, and D. Hultmark. 1996. Origins of immunity: Relish, a compound Rel-like gene in the antibacterial defence of Drosophila. Proc. Natl. Acad. Sci. USA 93: 10343 10347.
17. Duvic, B.,, J. A. Hoffmann,, M. Meister,, and J. Royet. 2002. Notch signaling controls lineage specification during Drosophila larval hematopoiesis. Curr. Biol. 12: 1923 1927.
18. Eldon, E.,, S. Kooyer,, D. D'Evelyn,, M. Duman,, P. Lawinger,, J. Botas,, and H. Bellen. 1994. The Drosophila 18wheeler is required for morphogenesis and has striking similarities to Toll. Development 120: 885 899.
19. Engstrom, Y.,, L. Kadalayil,, S.-C. Sun,, C. Samakovlis,, and D. Hultmark. 1993. KappaB-like motifs regulate the induction of immune genes in Drosophila. J. Mol. Biol. 232: 327 333.
20. Ferrandon, D.,, A. C. Jung,, M. Criqui,, B. Lemaitre,, S. Uttenweiler-Joseph,, L. Michaut,, J. Reichhart,, and J. A. Hoffmann. 1998. A drosomycin- GFP reporter transgene reveals a local immune response in Drosophila that is not dependent on the Toll pathway. EMBO J. 17: 1217 1227.
21. Geisler, R.,, A. Bergmann,, Y. Hiromi,, and C. Nusslein-Volhard. 1992. Cactus, a gene involved in dorsoventral pattern formation of Drosophila, is related to the IγB gene family of vertebrates. Cell 71: 613 621.
22. Georgel, P.,, S. Naitza,, C. Kappler,, D. Ferrandon,, D. Zachary,, C. Swimmer,, C. Kopczynski,, G. Duyk,, J. M. Reichhart,, and J.A. Hoffmann. 2001. Drosophila Immune Deficiency (Imd) is a Death Domain protein that activates the antibacterial defence and can promote apoptosis. Dev. Cell 1: 503 514.
23. Glaser, G. W. 1918. On the existence of immunity principles in Insects. Psyche (Boston, Mass.) 25: 38 46.
24. Gottar, M.,, V. Gobert,, T. Michel,, M. Belvin,, G. Duyk,, J. A. Hoffmann,, D. Ferrandon,, and J. Royet. 2002. The Drosophila immune response against Gram negative bacteria is mediated by a peptidoglycan recognition protein. Nature 416: 640 644.
25. Heitzler, P.,, D. Coulson,, M.T. Saenz-Robles,, M. Ashburner,, J. Roote,, P. Simpson,, and D. Gubb. 1993. Genetic and cytogenetic analysis of the 43A-E region containing the segment polarity gene costa and the cellular polarity genes prickle and spiny-legs in Drosophila melanogaster. Genetics 135: 105 115.
26. Hoffmann, J. A.,, and J.-M. Reichhart. 2002. Drosophila innate immunity: an evolutionary perspective. Nat. Immunol. 3: 121 125.
27. Horng, T.,, and R. Medzhitov. 2001. Drosophila Myd88 is an adapter in the Toll signalling pathway. Proc. Natl. Acad. Sci. USA 98: 12654 12658.
28. Imler, J.-L.,, and J. A. Hoffmann. 2001. Toll receptors in innate immunity. Trends Cell Biol. 11: 304 311.
29. Ip, Y.T.,, M. Reach,, Y. Engstrom,, L. Kadalayil,, H. Cai,, S. Gonzalez-Crespo,, K. Tatei,, and M. Levine. 1993. Dif, a dorsal-related gene that mediates an immune response in Drosophila. Cell 75: 753 763.
30. Irving, P.,, L. Troxler,, T. S. Heuer,, M. Belvin,, C. Kopczynski,, J.-M. Reichhart,, J. A. Hoffmann,, and C. Hetru. 2001. A genome-wide analysis of immune responses in Drosophila. Proc. Natl. Acad. Sci. USA 98: 15119 15124.
31. Jiang, H.,, Y. Wang,, and M. R. Kanost. 1998. Pro- Phenoloxydase activating proteinase from an insect, Manduca sexta: a bacteria-inducible protein similar to Drosophila Easter. Proc. Natl. Acad. Sci. USA 95: 12220 12225.
32. Kambris, Z.,, J.A. Hoffmann,, J.-L. Imler,, and M. Capovilla. 2002. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Mech. Dev. 22: 311 317.
33. Kappler, C.,, M. Meister,, M. Lagueux,, E. Gateff,, J. A. Hoffmann,, and J. M. Reichhart. 1993. Insect immunity: two 17-bp repeats nesting a kappaB-related sequence confer inducibility to the diptericin gene and bind a polypeptide in bacteria-challenged Drosophila. EMBO J. 12: 1561 1568.
34. Karin, M.,, and Y. Ben-Neriah. 2000. Phosphorylation meets ubiquitination: the control of NF- γB activity. Annu. Rev. Immunol. 18: 621 663.
35. Keith, F. J.,, and N. J. Gay. 1990. The Drosophila membrane receptor Toll can function to promote cellular adhesion. EMBO J. 9: 4299 4306.
36. Khush, R. S.,, W. D. Cornwell,, J. N. Uram,, and B. Lemaitre. 2002. A ubiquitin-proteasome pathway represses the Drosophila immune deficiency signaling cascade. Curr. Biol. 20: 1728 1737.
37. Kim, Y. S.,, J. H. Ryu,, S. J. Han,, K. H. Choi,, K. B. Nam,, I. H. Jang,, B. Lemaitre,, P. T. Brey,, and W. J. Lee. 2000. Gram-negative bacteria-binding protein, a pattern recognition receptor for lipopolysaccharide and beta-1, 3-glucan that mediates the signaling for the induction of innate immune genes in Drosophila melanogaster cells. J. Biol. Chem. 275: 32721 32727.
38. Kowalevsky, A. 1892. Sur les organes excréteurs chez les Arthropodes terrestres. Congr. Int. Zool. (Moscow) 1: 187 205.
39. Lagueux, M.,, E. Perrodou,, E. A. Levashina,, M. Capovilla,, and J. A. Hoffmann. 2000. Constitutive expression of a complement-like protein in Toll and JAK gain of function mutants of Drosophila. Proc. Natl. Acad. Sci. USA 97: 11427 11432.
40. Lanot, R.,, D. Zachary,, F. Holder,, and M. Meister. 2001. Post-embryonic hematopoiesis in Drosophila. Dev. Biol. 230: 243 257.
41. Lee, W. J.,, J. D. Lee,, V. V. Kravchenko,, R. J. Ulevich,, and P.T. Brey. 1996. Purification and molecular cloning of an inducible Gram-negative bacteria- binding protein from the silkworm Bombyx mori. Proc. Natl. Acad. Sci. USA 93: 7888 7893.
42. Lemaitre, B.,, E. Kromer-Metzger,, L. Michaut,, E. Nicolas,, M. Meister,, P. Georgel,, J. M. Reichhart,, and J. A. Hoffmann. 1995. A recessive mutation, immune deficiency ( imd), defines two distinct control pathways in the Drosophila host defence. Proc. Natl. Acad. Sci. USA 92: 9465 9469.
43. Lemaitre, B.,, E. Nicolas,, L. Michaut,, J.-M. Reichhart,, and J. A. Hoffmann. 1996. The dorsoventral regulatory gene cassette spaetzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 86: 973 983.
44. LeMosy, E. K.,, C. C. Hong,, and C. Hashimoto. 1999. Signal transduction by a protease cascade. Trends Cell Biol. 9: 102 107.
45. Letsou, A.,, S. Alexander,, K. Orth,, and S. A. Wasserman. 1991. Genetic and molecular characterisation of tube, a Drosophila gene maternally required for embryonic dorsoventral polarity. Proc. Natl. Acad. Sci. USA 88: 810 814.
46. Leulier, F.,, A. Rodriguez,, R. S. Khush,, J. M. Abrams,, and B. Lemaitre. 2000. The Drosophila cas pase Dredd is required to resist Gram-negative bacterial infection. EMBO Rep. 1: 353 358.
47. Levashina, E. A.,, E. Langley,, C. Green,, D. Gubb,, M. Ashburner,, J. A. Hoffmann,, and J. M. Reichhart. 1999. Constitutive activation of Tollmediated antifungal defence in serpin-deficient Drosophila. Science 285: 1917 1919.
48. Levashina, E. A.,, L. F. Moita,, S. Blandin,, G. Vriend,, M. Lagueux,, and F.C. Kafatos. 2001. Conserved role of a complement-like protein in phagocytosis revealed by dsRNA knockout in cultured cells of the mosquito Anopheles gambiae. Cell 104: 709 718.
49. Ligoxygakis, P.,, N. Pelte,, C. Ji,, V. Leclerc,, B. Duvic,, M. Belvin,, H. Jiang,, J. A. Hoffmann,, and J.-M. Reichhart. 2002a. A serpin mutant links Toll activation to melanization in the host defense of Drosophila. EMBO J. 21: 6330 6337.
50. Ligoxygakis, P.,, N. Pelte,, J. A. Hoffmann,, and J.-M. Reichhart. 2002b. Activation of DrosophilaToll during fungal infection by a novel blood serine protease. Science 297: 114 117.
51. Locksley, R. M.,, N. Killeen,, and M. J. Lenardo. 2001. The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104: 487 501.
52. Lu, Y.,, L. Wu,, and K.V. Anderson. 2001. The antibacterial arm of the Drosophila innate immune response requires an IκB kinase. Genes Dev. 15: 104 110.
53. Manfruelli, P.,, J.-M. Reichhart,, R. Steward,, J.A. Hoffmann,, and B. Lemaitre. 1999. A mosaic analysis in Drosophila fat body cells of the control of antimicrobial peptide genes by the Rel proteins Dorsal and DIF. EMBO J. 18: 3380 3391.
54. Meister, M.,, A. Braun,, C. Kappler,, J.-M. Reichhart,, and J. A. Hoffmann. 1994. Insect immunity: a transgenic analysis in Drosophila defines several functional domains in the diptericin promoter. EMBO J. 14: 5958 5966.
55. Metalnikow, S. 1920. L'immunité chez les Insectes. CR.Acad. Sci. Paris 171: 757 834.
56. Metalnikow, S. 1929. Immunité d'adaptation et immunité de defense. CR. Soc. Biol. 101: 34 67.
57. Michel, T.,, J.-M. Reichhart,, J. A. Hoffmann,, and J. Royet. 2001. Drosophila Toll is activated by Grampositive bacteria via a circulating peptidoglycan recognition protein. Nature 414: 756 759.
58. Mizuguchi, K.,, J. S. Parker,, T. L. Blundel,, and N. G. Gay. 1998. Getting knotted: a model for the structure and function of Spaetzle. Trends Biochem. Sci. 23: 239 242.
59. Naitza, S.,, C. Rosse,, C. Kappler,, P. Georgel,, M. Belvin,, D. Gubb,, J. Camonis,, J. A. Hoffmann,, and J. M. Reichhart. 2002. The Drosophila immune defence against Gram-negative infection requires the death domain protein FADD. Immunity 17: 576 591.
60. Nappi, A. J.,, and E. Ottaviani. 2000. Cytotoxicity and cytotoxic molecules in invertebrates. Bioessays 22: 469 480.
61. Nappi, A. J.,, E. Vass,, F. Frey,, and Y. Carton. 1995. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. Eur. J. Cell Biol. 68: 450 456.
62. Paillot, A. 1921. Méchanisme de l'immunité humorale chez les Insectes. CR.Acad. Sci. Paris 172: 397 416.
63. Paillot, A. 1933. L'Infection chez les insectes (immunité et symbiose). Editions G. Patissier, Trévoux, France.
64. Pye, A. E. 1974. Microbial activation of prophenoloxidase from immune insect larvae. Nature 251: 610 613.
65. Ramet, M.,, A. Pearson,, P. Manfruelli,, X. Li,, H. Koziel,, V. Gobel,, E. Chung,, M. Krieger,, and R. A. Ezekowitz. 2001. Drosophila scavenger receptor CI is a pattern recognition receptor for bacteria. Immunity 15: 1027 1038.
66. Ramet, M.,, P. Manfruelli,, A. Pearson,, B. Mathey- Prevot,, and R. A. Ezekowitz. 2002. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 416: 644 648.
67. Rizki, T. M., 1984. The cellular defense system of Drosophila melanogaster, p. 579 604. In R. C. King, and H. Akai (ed.), Insect Ultrastructure, vol. 2. Plenum, New York, N.Y.
68. Rizki, T. M.,, R. M. Rizki,, and E. H. Grell. 1980. A mutant affecting the crystal cells in Drosophila melanogaster. Roux Arch. Dev. Biol. 188: 91 99.
69. Rutschmann, S.,, A. C. Jung,, C. Hetru,, J. M. Reichhart,, J. A. Hoffmann,, and D. Ferrandon. 2000a. The Rel protein DIF mediates the antifungal but not the antibacterial host defence in Drosophila. Immunity 12: 569 580.
70. Rutschmann, S.,, A. C. Jung,, R. Zhou,, N. Silverman,, J. A. Hoffmann,, and D. Ferrandon. 2000b. Role of the Drosophila IKKγ in a Toll-independent antibacterial immune response. Nat. Immunol. 1: 342 347.
71. Shelton, C. A.,, and S. A. Wasserman. 1993. Pelle encodes a protein kinase required to establish dorsoventral polarity in the Drosophila embryo. Cell 72: 515 525.
72. Shen, B.,, and J. L. Manley. 1998. Phosphorylation modulates direct interactions between the Toll receptor, Pelle kinase and Tube. Development 125: 4719 4728.
73. Silverman, N.,, R. Zhou,, S. Stoven,, N. Pandey,, D. Hultmark,, and T. Maniatis. 2000. A Drosophila IκB kinase complex required for Relish cleavage and antibacterial immunity. Genes Dev. 14: 2461 2471.
74. Söderhäll, K.,, and L. Cerenius. 1998. Role of the prophenoloxidase-activating system in invertebrate immunity. Curr. Opin. Immunol. 10: 23 28.
75. Stein, D.,, J. S. Goltz,, J. Jurcsak,, and L. Stevens. 1998. The Dorsal-related immunity factor (Dif) can define the dorsal-ventral axis of polarity in the Drosophila embryo. Development 11: 2159 2169.
76. Steiner, H.,, D. Hultmark,, A. Engström,, H. Bennich,, and H. G. Boman. 1981. Sequence and specificity of two antibacterial proteins involved in insect immunity. Nature 292: 246 248.
77. Steward, R. 1987. Dorsal, an embryonic polarity gene in Drosophila is homologous to the vertebrate proto-oncogene, c-rel. Science 238: 692 694.
78. Stoven, S.,, I. Ando,, L. Kadalayil,, Y. Engstrom,, and D. Hultmark. 2000. Activation of the NF-κB factor Relish by rapid endoproteolytic cleavage. EMBO Rep. 1: 347 352.
79. Tauszig, S.,, E. Jouanguy,, J. A. Hoffmann,, and J.-L. Imler. 2000. Toll-related receptors and the control of antimicrobial expression in Drosophila. Proc. Natl. Acad. Sci. USA 97: 10520 10525.
80. Tauszig-Delamasure, S.,, H. Bilak,, M. Capovilla,, J. A. Hoffmann,, and J.-L. Imler. 2002. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections. Nat. Immunol. 3: 91 97.
81. Tzou, P.,, S. Ohresser,, D. Ferrandon,, M. Capovilla,, J. M. Reichhart,, B. Lemaitre,, J. A. Hoffmann,, and J. L. Imler. 2000. Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity 13: 737 748.
82. Tzou, P.,, J.M. Reichhart,, and B. Lemaitre. 2002. Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc. Natl.Acad. Sci USA 99: 2152 2157.
83. Vidal, S.,, R. S. Khush,, F. Leulier,, P. Tzou,, M. Nakamura,, and B. Lemaitre. 2001. Mutations in the Drosophila dTAK1 gene reveal a conserved function for MAPKKKs in the control of rel/NF-κB dependent innate immune responses. Genes Dev. 15: 1900 1912.
84. Werner, T.,, G. Liu,, D. Kang,, S. Ekengren,, H. Steiner,, and D. Hultmark. 2000. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 97: 13772 13776.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error