Chapter 11 : Hospital Infections: Gram-Negative Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Hospital Infections: Gram-Negative Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817688/9781555812683_Chap11-2.gif


In this chapter, a few key examples of gram-negative bacteria, especially those that are considered saprophytes, are highlighted in which molecular biology methods were used to elucidate the epidemiology of hospital infections. The major clinical manifestations of infections caused by gram-negative organisms include bacteremia, urinary tract infection, pneumonia, intra-abdominal infections, and surgical wound infections. The major gram-negative bacterial pathogens associated with nosocomial infections are , , , and spp. Others include spp., spp., spp., spp., and . In the current Bush-Jacoby-Medeiros classification method, β-lactamases are divided into four main groups based on their substrate activity against penicillin, carbenicillin, oxacillin, cephaloridine, cefotaxime, aztreonam, and imipenem. possesses outer membrane proteins that are part of multidrug efflux systems, which can catalyze the energy-dependent extrusion of different classes of antibiotics. Quinolone (e.g., ciprofloxacin) resistance in (as well as in other gram-negative organisms) can be mediated by mutations that occur in DNA gyrase. Genotyping tests have shown that in cystic fibrosis patients with chronic infection, a patient may harbor the same genotype for decades. Gram-negative bacteria, especially those that reside in natural environmental habitats, are nearly impossible to categorize as pathovars or nonpathovars. Nevertheless, it is clear that molecular epidemiologic approaches to studying these organisms have yielded new epidemiologic knowledge that could not have been obtained from traditional epidemiologic and laboratory methods.

Citation: Riley L. 2004. Hospital Infections: Gram-Negative Bacteria, p 281-305. In Molecular Epidemiology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817688.ch11
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. Ser. B 289: 321 331.
2. Bernard, H.,, C. Tancrede,, V. Livrelli,, A. Morand,, M. Marthelemy,, and R. Labia. 1992. A novel plasmid-mediated extended-spectrum beta-lactamase not derived from TEM- or SHV-type enzymes. J. Antimicrob. Chemother. 29: 590 592.
3. Bouvet, P. J. M.,, and S. Jeanjean. 1989. Delineation of new proteolytic genomic species in the genus Acinetobacter. Res. Microbiol. 140: 291 299.
4. Bouvet, P. J. M.,, and P. A. D. Grimont. 1986. Taxonomy of the genus Acinetobacter with recognition of Acinetobacter baumannii sp. nov., Acinetobacter haemolyticus sp. nov., Acinetobacter johnsonii sp. nov., and Acinetobacter junii sp. nov. and emended descriptions of Acinetobacter calocoaceticus and Acinetobacter lwoffii. Int. J. Syst. Bacteriol. 36: 228 240.
5. Brauner, A.,, B. Kaijser,, and I. Kuhn. 1994. Recurrent Escherichia coli bacteremia—clinical characteristics and bacterial properties. J. Infect. 28: 49 57.
6. Bryan, C. S.,, and K. L. Reynolds. 1983. Analysis of 1,186 episodes of Gram-negative bacteremia in non-university hospitals: the effects of antimicrobial therapy. Rev. Infect. Dis. 5: 629 638.
7. Bush, K.,, G. A. Jacoby,, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39: 1211 1233.
8. Capdevilla, J. A.,, B. Almirante,, A. Pahissa,, A. M Planes,, E. Ribera,, and J. M. Marinez-Vazquez. 1994. Incidence and risk factors of recurrent episodes of bacteremia in adults. Arch. Intern. Med. 154: 411 415.
9. Couture, F.,, J. Lachapelle,, and R. C. Levesque. 1992. Phylogeny of LCR-1 and OXA-5 with class A and class D β-lactamases. Mol. Microbiol. 6: 1693 1705.
10. D’Agata, E. M.,, M. M. Gerrits,, Y. W. Tang,, M. Samore,, and J. G. Kusters. 2001. Comparison of pulsed-field gel electrophoresis and amplified fragment-length polymorphism for epidemiological investigations of common nosocomial pathogens. Infect. Control Hosp. Epidemiol. 22: 550 554.
11. D’Agata, E. M. C.,, L. Venkataraman,, P. DeGirolami,, and M. Samore. 1999. Molecular epidemiology of ceftazidime-resistant Gram-negative bacilli on inanimate surfaces and their role in cross-transmission during nonoutbreak periods. J. Clin. Microbiol. 37: 3065 3067.
12. D’Amato, R. F.,, and H. D. Isenberg,. 1988. Enteric bacteriosis, p. 217 231. In A. Balows,, W. J. Hausler, Jr.,, M. Ohashi,, and A. Turano (ed.), Laboratory Diagnosis of Infectious Diseases: Principles and Practice, vol. 1. Bacterial, Mycotic, and Parasitic Diseases. Springer-Verlag, New York, N.Y.
13. Dijkshoorn, L.,, H. M. Aucken,, P. Gerner-Smidt,, P. Janssen,, M. E. Kaufmann,, J. Garaizar,, J. Ursing,, and T. L. Pitt. 1996. Comparison of outbreak and nonoutbreak Acinetobacter baumannii strains by genotypic and phenotypic methods. J. Clin. Microbiol. 34: 1519 1525.
14. DuPont, H. L.,, and W. W. Spink. 1969. Infections due to Gram-negative organisms: an analysis of 860 patients with bacteremia at the University of Minnesota Medical Center, 1958-1966. Medicine 48: 307 332.
15. Emori, T. G.,, D. H. Culver,, and T. C. Horan. 1991. National Nosocomial Infection Surveillance (NNIS) system: description of surveillance methods. Am. J. Infect. Control 19: 19 35.
16. Fagon, J. Y.,, J. Chastre,, A. J. Hance,, P. Montravers,, A. Novara,, and C. Gibert. 1993. Nosocomial pneumonia in ventilated patients: a cohort study evaluating attributable mortality and hospital stay. Am. J. Med. 94: 281 288.
17. Falcone, G.,, and M. Campa,. 1988. Diseases caused by Pseudomonas, p. 435 447. In A. Balows,, W. J. Hausler, Jr.,, M. Ohashi,, and A. Turano (ed.), Laboratory Diagnosis of Infectious Diseases: Principles and Practice, vol. 1. Bacterial, Mycotic, and Parasitic Diseases. Springer-Verlag, New York, N.Y.
18. Fleming, P. C.,, M. Goldner,, and D. G. Glass. 1963. Observations on the nature, distribution, and significance of cephalosporinase. Lancet i: 1399 i: 1399 1401.
19. Fridkin, S. K.,, and R. P. Gaynes. 1999. Antimicrobial resistance in intensive care units. Clin. Chest Med. 20: 303 316.
20. Gales, A. C.,, H. S. Sader,, R. E. Mendes,, and R. N. Jones. 2002. Salmonella spp. isolates causing bloodstream infections in Latin America: report of antimicrobial activity from the SENTRY Antimicrobial Surveillance Program (1997-2000). Diagn. Microbiol. Infect. Dis. 44: 313 318.
21. Gerner-Smidt, P.,, and I. Tjernberg. 1993. Acinetobacter in Denmark. II. Molecular studies of the Acinetobacter calcoaceticus-Acinetobacter baumannii complex. APMIS 101: 826 832.
22. Gold, H. S.,, and R. C. Moellering. 1996. Antimicrobial-drug resistance. N. Engl. J. Med. 335: 1445 1453.
23. Goldstein, C.,, M. D. Lee,, S. Sanchez,, C. Hudson,, B. Phillips,, B. Register,, M. Grady,, C. Liebert,, A. O. Summers,, D. G. White,, and J. J. Maurer. 2001. Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob. Agents Chemother. 45: 723 726.
24. Grundman, H.,, C. Schneider,, D. Harung,, F. D. Daschner,, and T. L. Pitt. 1995. Discriminatory power of three DNA-based typing techniques for Pseudomonas aeruginosa. J. Clin. Microbiol. 33: 528 534.
25. Hall, R. M.,, and C. M. Collis. 1995. Mobile gene cassettes and integrons: capture and spread of genes by site-specific recombination. Mol. Microbiol. 15: 593 600.
26. Hall, R. M.,, C. M. Collis,, M.-J. Kim,, S. R. Partridge,, G. D. Recchia,, and H. W. Stokes. 1999. Mobile gene cassettes and integrons in evolution. Ann. N. Y. Acad. Sci. 870: 68 80.
27. Hanberger, H.,, J.-A. Garcia-Rodriquez,, M. Governado,, H. Gossens,, L. E. Nilsson,, and M. J. Struelens. 1999. Antibiotic susceptibility among aerobic Gram-negative bacilli in intensive care units in 5 European countries. JAMA 181: 67 71.
28. Ispahani, P.,, N. J. Pearson,, and D. Greenwood. 1987. An analysis of community and hospital-acquired bacteremia in a large teaching hospital in the United Kingdom. Q. J. Med. 63: 427 440.
29. Kiska, D. L.,, and P. H. Gilligan,. 2003. Pseudomonas, p. 719 728. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
30. Klugman, K. P. 2003. The role of clonality in the global spread of fluoroquinolone-resistant bacteria. Clin. Infect. Dis. 36: 783 785.
31. Kohler, T.,, M. Michae-Hamzehpour,, U. Henze,, N. Gotoh,, L. K. Curty,, and J. C. Pechere. 1997. Characterization of MexE-MexF-OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 23: 345 354.
32. Kohler, T.,, S. F. Epp,, L. K. Curty,, and J.-C. Pechere. 1999. Characterization of MexT, the regulator of the MexE-MexF-OprN multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 181: 6300 6305.
33. Kollef, M. H.,, P. Silver,, D. M. Murphy,, and E. Trovillion. 1995. The effect of late-onset ventilator-associated pneumonia in determining patient mortality. Chest 108: 343 349.
34. Kreger, B. E.,, D. Craven,, and W. R. McCabe. 1980. Gram negative bacteremia. IV. Re-evaluation of clinical features and treatment in 612 patients. Am. J. Med. 68: 344 355.
35. Li, X.,, H. Nikaido,, and K. Poole. 1995. Role of MexA-MexB-OprM in antibiotic efflux in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 39: 1948 1953.
36. Livermore, D. M. 1995. -Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8: 557 584.
37. Livermore, D. M.,, and N. Woodford. 2000. Carbapenemases: a problem in waiting? Curr. Opin. Microbiol. 3: 489 495.
38. Livermore, D. M.,, and Y.-J. Yang. 1987. β-Lactamase lability and inducer power of newer -lactam antibiotics in relation to their activity against -lactamase inducibility mutants of Pseudomonas aeruginosa. J. Infect. Dis. 155: 775 782.
39. Lomholt, J. A.,, K. Poulsen,, and M. Kilian. 2001. Epidemic population structure of Pseudomonas aeruginosa: evidence for a clone that is pathogenic to the eye and that has a distinct combination of virulence factors. Infect. Immun. 69: 6284 6295.
40. Maslow, J. N.,, M. E. Mulligan,, and R. D. Arbeit. 1994. Recurrent Escherichia coli bacteremia. J. Clin. Microbiol. 32: 710 714.
41. McCabe, W. R.,, and G. G. Jackson. 1962. Gram-negative bacteremia. I. Etiology and ecology. Arch. Intern. Med. 110: 847 855.
42. McGowan, J. E.,, M. W. Barnes,, and M. Finland. 1975. Bacteremia at Boston City Hospital: occurrence and mortality during 12 selected years (1935-1972), with special reference to hospital-acquired cases. J. Infect. Dis. 132: 316 334.
43. Mifsud, A. J.,, J. Watine,, B. Picard,, J. C. Charet,, C. Solignac-Bourrel,, and T. L. Pitt. 1997. Epidemiologically related and unrelated strains of Pseudomonas aeruginosa serotype O12 cannot be distinguished by phenotypic and genotypic typing. J. Hosp. Infect. 36: 105 116.
44. Mylotte, J. M.,, and C. McDermott. 1988. Recurrent gram-negative bacteremia. Am. J. Med. 85: 159 163.
45. Neter, E.,, O. Westphal,, O. Luderitz,, R. M. Gino,, and E. A. Gorzunski. 1955. Demonstration of antibodies against enteropathogenic Escherichia coli in sera of children of various ages. Paediatrics 16: 801 807.
46. Nordmann, P.,, E. Ronco,, T. Naas,, C. Duport,, C. Y. Michel-Briand,, and R. Labia. 1993. Characterization of a novel extended-spectrum -lactamase from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 37: 962 969.
47. O’Brien, O. J.,, D. G. Ross,, M. A. Guzman,, A. A. Medeiros,, R. W. Hedges,, and D. Botstein. 1980. Dissemination of an antibiotic resistance plasmid in hospital patient flora. Antimicrob. Agents Chemother. 17: 537 543.
48. Paterson, D. L.,, L. Mulazimoglu,, J. M. Casellas,, W.-C. Ko,, H. Gossens,, A. Von Gottberg,, S. Mohapatra,, G. M. Trenholme,, K. P. Klugman,, J. G. McCormack,, and V. L. Yu. 2000. Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum β-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin. Infect. Dis. 30: 473 478.
49. Pellegrino, F. L.,, L. M. Teixeira,, M. M. G. Carvalho,, N. S. Aranha,, M. Pinto De Oliveria,, J. L. Mello Sampaio,, A. D’Avila Freitas,, A. L. Ferreira,, L. Amorim Ed Ede,, L. W. Riley,, and B. M. Moreira. 2002. Occurrence of a multidrug-resistant Pseudomonas aeruginosa clone in different hospitals in Rio de Janeiro, Brazil. J. Clin. Microbiol. 40: 2420 2424.
50. Pessoa-Silva, C. L.,, C. M. Toscano,, B. M. Moreira,, A. L. Santos,, A. C. Frota,, C. A. Solari,, E. L. Amorim,, M. da G. Carvalho,, L. M. Teixeira,, and W. R. Jarvis. 2002. Infection due to extended-spectrum beta-lactamase-producing Salmonella enterica subsp. enterica serotype infantis in a neonatal unit. J. Pediatr. 141: 381 387.
51. Pfaller, M. A.,, J. Acar,, R. N. Jones,, J. Verhoef,, J. Turnidge,, and H. S. Sader. 2001. Integration of molecular characterization of microorganisms in a global antimicrobial resistance surveillance program. Clin. Infect. Dis. 32( Suppl. 2): S156 S167.
52. Pirnay, J.-P.,, D. De Vos,, C. Cochez,, F. Bilocq,, A. Vanderkelen,, M. Zizi,, B. Ghysels,, and P. Cornelis. 2002. Pseudomonas aeruginosa displays an epidemic population structure. Environ. Microbiol. 4: 898 911.
53. Pitt, T. L.,, D. M. Livermore,, D. Pitcher,, A. C. Vatopoulos,, and N. J. Legakis. 1989. Multiresistant serotype O:12 Pseudomonas aeruginosa: evidence for a common strain in Europe. Epidemiol. Infect. 103: 565 576.
54. Poole, K.,, K. Krebes,, C. McNally,, and S. Neshat. 1993. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon. J. Bacteriol. 175: 7363 7372.
55. Poole, K.,, N. Gotoh,, H. Tsujimoto,, Q. Zhao,, A. Wada,, T. Yamasaki,, S. Neshat,, J. Yamagishi,, X. Z. Li,, and T. Nishino. 1996. Overexpression of the mexC-mexD-oprJ efflux operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol. Microbiol. 21: 713 724.
56. Recchia, G. D.,, and R. M. Hall. 1995. Gene cassettes: a new class of mobile elements. Microbiology 141: 3015 3027.
57. Rello, J.,, P. Jubert,, J. Valles,, A. Artigas,, M. Rue,, and M. S. Niederman. 1996. Evaluation of outcome for intubated patients with pneumonia due to Pseudomonas aeruginosa. Clin. Infect. Dis. 23: 973 978.
58. Revathi, G.,, K. P. Shannon,, P. D. Stapleton,, B. K. Jain,, and G. L. French. 1998. An outbreak of extended-spectrum, beta-lactamase-producing Salmonella senftenberg in a burns ward. J. Hosp. Infect. 40: 295 302.
59. Robins-Browne, R. M. 1987. Traditional enteropathogenic Escherichia coli of infantile diarrhea. Rev. Infect. Dis. 9: 28 53.
60. Roe, E.,, and E. J. L. Lowbury. 1972. Changes in antibiotic sensitivity patterns of Gram-negative bacilli in burns. J. Clin. Pathol. 25: 176 178.
61. Romling, U.,, J. Wingender,, H. Muller,, and B. Tummler. 1994. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl. Environ. Microbiol. 60: 1734 1738.
62. Ruimy, R.,, E. Genauzeau,, C. Barnabe,, A. Beaulieu,, M. Tibayrenc,, and A. Andremont. 2001. Genetic diversity of Pseudomonas aeruginosa strains isolated from ventilated patients with nosocomial pneumonia, cancer patients with bacteremia, and environmental water. Infect. Immun. 69: 584 588.
63. Sabath, L. D. 1969. Current concepts: drug resistance of bacteria. N. Engl. J. Med. 280: 91 94.
64. Sader, H. S.,, A. C. Gales,, M. A. Pfaller,, R. E. Mendes,, C. Zoccoli,, A. Barth,, and R. N. Jones. 2001. Pathogen frequency and resistance patterns in Brazilian hospitals: summary of results from three years of the SENTRY Antimicrobial Surveillance Program. Braz. J. Infect. Dis. 5: 200 214.
65. Sanders, C. C.,, and W. E. Sanders. 1992. β-Lactam resistance in gram-negative bacteria: global trends and clinical impact. Clin. Infect. Dis. 15: 824 839.
66. Schaberg, D. R.,, D. H. Culver,, and R. P. Gaynes. 1991. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91(3B): 72S 75S.
67. Schmitz, F.-J.,, D. Hafner,, R. Geisel,, P. Follmann,, C. Kirschke,, J. Verhoef,, K. Köhrer,, and A. C. Fluit. 2001. Increased prevalence of class I integrons in Escherichia coli, Klebsiella species, and Enterobacter species isolates over a 7-year period in a German university hospital. J. Clin. Microbiol. 39: 3724 3726.
68. Schreckenberger, P. C.,, M. I. Daneshvar,, R. S. Weyant,, and D. G. Hollis,. 2003. Acinetobacter, Achromobacter, Chryseobacterium, Moraxella, and other nonfermentative gram-negative rods, p. 749 779. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, D.C.
69. Seifert, H.,, R. Baginski,, A. Schultze,, and G. Pulverer. 1993. Antimicrobial susceptibility of Acinetobacter species. Antimicrob. Agents Chemother. 37: 750 753.
70. Seigel, R. R.,, C. S. Sant’anna,, K. Salgado,, P. deJesus,, and L. W. Riley. 1996. Acute diarrhea among children from high and low socioeconomic communities in Salvador, Brazil. Int. J. Infect. Dis. 1: 28 34.
71. Speert, D. P. 2002. Molecular epidemiology of Pseudomonas aeruginosa. Front. Biosci. 7: e354 e361.
72. Starling, C. 2001. Infection control in developing countries. Curr. Opin. Infect. Dis. 14: 461 466.
73. Steward, C. D.,, J. K. Racheed,, S .K. Hubert,, J. W. Biddle,, P. M. Raney,, G. J. Anderson,, P. P. Williams,, K. L. Brittain,, A. Oliver,, J. E. McGowan, Jr.,, and F. C. Tenover. 2001. Characterization of clinical isolates of Klebsiella pneumoniae from 19 laboratories using the National Committee for Clinical Laboratory Standards extended spectrum -lactamase detection methods. J. Clin. Microbiol. 39: 2864 2872.
74. Stokes, H. W.,, and R. M. Hall. 1989. A novel family of potentially mobile DNA elements encoding site-specific gene-integration functions: integrons. Mol. Microbiol. 3: 1669 1683.
75. Stokes, H. W.,, D. B. O’Gorman,, G. D. Recchia,, M. Parsekhian,, and R. M. Hall. 1997. Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol. Microbiol. 26: 731 745.
76. Struelens, M. J.,, V. Schwam,, A. Deplano,, and D. Baran. 1993. Genome macrorestriction analysis of diversity and variability of Pseudomonas aeruginosa strains infecting cystic fibrosis patients. J. Clin. Microbiol. 31: 2320 2326.
77. Tassios, P. T.,, V. Gennimata,, A. N. Maniatis,, C. Fock,, N. J. Legakis, and the Greek Pseudomonas aeruginosa Study Group. 1998. Emergence of multidrug resistance in ubiquitous and dominant Pseudomonas aeruginosa serogroup O:11. J. Clin. Microbiol. 36: 897 901.
78. Tolzis, P.,, M. J. Dul,, C. Hoyen,, A. Salvador,, M. Walsh,, L. Zetts,, and H. Tolzis. 2001. Molecular epidemiology of antibiotic-resistant Gram-negative bacilli in a neonatal intensive care unit during a nonoutbreak period. Pediatrics 108: 1143 1148.
79. Tolzis, P.,, C. Hoyen,, S. Spinner-Block,, A. E. Salvador,, and L. B. Rice. 1999. Factors that predict preexisting colonization with antibiotic-resistant Gram-negative bacilli in patients admitted to a pediatric intensive care unit. Pediatrics 103: 719 723.
80. Traub, W. H.,, and B. Leonhard. 1994. Serotyping of Acinetobacter baumannii and genospecies 3: an update. Med. Microbiol. Lett. 3: 120 127.
81.. Walsh, T. R.,, A. P. MacGowan,, and P. M. Bennett. 1997. Sequence analysis and enzyme kinetics of the L2 serine -lactamase from Stenotrophomonas maltophilia. Antimicrob. Agents Chemother. 41: 1460 1464.
82. Wang, F.,, D. M. Zhu,, F. P. Hu,, and Y. Y. Zhang. 2001. Surveillance of bacterial resistance among isolates in Shanghai in 1999. J. Infect. Chemother. 7: 117 120.
83. Watanabe, M.,, S. Iyobe,, M. Inoue,, and S. Mitsuhashi. 1991. Transferable imipenem resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 35: 147 151.
84. Waterer, G. W.,, and R. G. Wunderink. 2001. Increasing threat of Gram-negative bacteria. Crit. Care Med. 29( 4 Suppl.): N75 N81.
85. Webb, E. C. (ed.). 1984. Enzyme Nomenclature, vol. 1. Academic Press, Inc., London, England.
86. Weber, S.,, M. A. Pfaller,, and L. A. Herwaldt. 1997. Role of molecular epidemiology in infection control. Infect. Dis. Clin. N. Am. 11: 257 278.
87. Webster, C. A.,, and K. J. Towner. 2000. Use of RAPD-ALF analysis for investigating the frequency of bacterial cross-contamination in an adult intensive care unit. J. Hosp. Infect. 44: 254 260.
88. Wendt, C.,, S. A. Messer,, R. J. Hollis,, M. A. Pfaller,, and L. A. Herwaldt. 1998. Epidemiology of polyclonal gram-negative bacteremia. Diagn. Microbiol. Infect. Dis. 32: 9 13.
89. Wendt, C.,, S. A. Messer,, R. J. Hollis,, M. A. Pfaller,, R. P. Wenzel,, and L. A. Herwaldt. 1999. Molecular epidemiology of Gram-negative bacteremia. Clin. Infect. Dis. 28: 605 610.
90. White, P. A.,, C. J. McIver,, and W. D. Rawlinson. 2001. Integron and gene cassettes in the Enterobacteriaceae. Antimicrob. Agents Chemother. 45: 2658 2661.
91. Wisplinghoff, H.,, M. B. Edmond,, M. A. Pfaller,, R. N. Jones,, R. P. Wenzel,, and H. Seifert. 2000. Nosocomial bloodstream infections caused by Acinetobacter species in United States hospitals: clinical features, molecular epidemiology, and antimicrobial susceptibility. Clin. Infect. Dis. 31: 690 697.
92. Wood, C. A.,, and A. C. Reboli. 1993. Infections caused by imipenem-resistant Acinetobacter calcoaceticus biotype anitratus. J. Infect. Dis. 168: 1602 1603.
93. Yoshida, H.,, M. Bogaki,, M. Nakamura,, L. M. Yamanaka,, and S. Nakamura. 1991. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 35: 1647 1650.
94. Yoshida, H.,, M. Nakamura,, M. Bogaki,, and S. Nakamura. 1990. Proportion of DNA gyrase mutants among quinolone-resistant strains of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 34: 1273 1275.
95. Yu, W.-L.,, R. N. Jones,, R. J. Hollis,, S. A. Messer,, D. J. Biedenbach,, L. M. Deshpande,, and M. A. Pfaller. 2002. Molecular epidemiology of extended-spectrum β-lactamase-producing, fluoroquinolone-resistant isolates of Klebsiella pneumoniae in Taiwan. J. Clin. Microbiol. 40: 4666 4669.


Generic image for table
Table 11.1

Classification of bacterial β-lactamases

Adapted from reference 7.

CA, clavulanic acid.

ND, not determined.

Citation: Riley L. 2004. Hospital Infections: Gram-Negative Bacteria, p 281-305. In Molecular Epidemiology of Infectious Diseases. ASM Press, Washington, DC. doi: 10.1128/9781555817688.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error