1887

Chapter 12 : Microbial Interactions in Mixed-Species Biofilms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Microbial Interactions in Mixed-Species Biofilms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap12-2.gif

Abstract:

The strong-and increasing-interest in microbial biofilms, and the special properties connected with this life form, is related, in part, to their importance in medical and industrial contexts and, in part, to the unexpected complexity of the processes that apparently lie behind their development; the three-dimensional structures of many biofilms indicate organized buildup programs, which challenge one's previous understanding of bacterial capabilities. This chapter talks about a series of investigations carried out under standardized conditions in flow chambers. Specific interactions are monitored through the application of molecular reporters, and confocal microscopy has been used to localize specific features and events in the structured communities developing in the flow-chamber biofilms. The purpose of these experiments has been to document how bacterial populations use their chemosensory repertoire to record and react to the presence of other populations. Despite the simplicity of these defined mixed-species model biofilm consortia, the obtained results turned out to be complex eye-openers for ecological and evolutionary aspects of “life on surfaces. Interactions between such phenotypically distinct subpopulations may be commensal, competitive, or antagonistic, just as we know from mixed-species communities, and it is likely that discussions and conclusions about microbial interactions based on nutrient acquisition are also relevant for phenotypically distinct single-species populations.

Citation: Molin S, Tolker-Nielsen T, Kirkelund Hansen S. 2004. Microbial Interactions in Mixed-Species Biofilms, p 206-222. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch12
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The flow-chamber biofilm setup.

Citation: Molin S, Tolker-Nielsen T, Kirkelund Hansen S. 2004. Microbial Interactions in Mixed-Species Biofilms, p 206-222. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The LB400/B13 consortium. Commensal growth on 3-chlorobiphenyl leads to mineralization to CO and HO. Both strains are able to use citrate as a carbon source.

Citation: Molin S, Tolker-Nielsen T, Kirkelund Hansen S. 2004. Microbial Interactions in Mixed-Species Biofilms, p 206-222. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Carbon flow in the mixed-species toluene-degrading consortium. TCA refers to the citric acid cycle.

Citation: Molin S, Tolker-Nielsen T, Kirkelund Hansen S. 2004. Microbial Interactions in Mixed-Species Biofilms, p 206-222. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Carbon flow in the mixed-species toluene-degrading consortium. TCA refers to the citric acid cycle.

Citation: Molin S, Tolker-Nielsen T, Kirkelund Hansen S. 2004. Microbial Interactions in Mixed-Species Biofilms, p 206-222. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817718.chap12
1. Abril, M.-A.,, C. Michan,, K. N. Timmis,, and J. L. Ramos. 1989. Regulator and enzyme specificities of the TOL plasmid-encoded upper pathway for degradation of aromatic hydrocarbons and expansion of the substrate range of the pathway. J. Bacteriol. 171: 6782 6790.
2. Andersen, J. B.,, C. Sternberg,, L. K. Poulsen,, S. P. Bjorn,, M. Givskov,, and S. Molin. 1998. New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64: 2240 2246.
3. Arras, T.,, J. Schirawski,, and G. Unden. 1998. Availability of oxygen as a substrate in the cytoplasm of bacteria under aerobic and micro-aerobic conditions. J. Bacteriol. 180: 2133 2136.
4. Bradley, D. E.,, and P. A. Williams. 1982. The TOL plasmid is naturally derepressed for transfer. J. Gen. Microbiol. 128: 3019 3024.
5. Christensen, B. B.,, C. Sternberg,, J. B. Andersen,, L. Eberl,, S. Møller,, M. Givskov,, and S. Molin. 1998. Establishment of new genetic traits in a microbial biofilm community. Appl. Environ. Microbiol. 64: 2247 2255.
6. Christensen, B. B.,, C. Sternberg,, J. B. Andersen, , R. J. Palmer, Jr.,, A. T. Nielsen, , M. Givskov, , and S. Molin. 1999. Molecular tools for the study of biofilm physiology. Methods Enzymol. 310: 20 42.
7. Christensen, B. B.,, J. A. J. Haagensen,, A. Heydorn,, and S. Molin. 2002. Metabolic commensalism and competition in a two-species microbial consortium. Appl. Environ. Microbiol. 68: 2495 2502.
8. Costerton J. W., , K.-J. Cheng, , G. G. Geesey, , T. I. Ladd, , J. C. Nickel, , M. Dasgupta, , and T. J. Marrie. 1987. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435 464.
9. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
10. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
11. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-tocell signals in the development of a bacterial biofilm. Science 280: 295 298.
12. Greated, A.,, L. Lambertsen,, P. A. Williams,, and C. M. Thomas. 2002. Complete sequence of the IncP-9 TOL plasmid pWW0 from Pseudomonas putida. Environ. Microbiol. 4: 856 871.
13. Harmsen, H. J. M.,, A. D. L. Akkermans,, A. J. M. Stams,, and W. M. de Vos. 1996a. Population dynamics of proprionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Appl. Environ. Microbiol. 62: 2163 2168.
14. Harmsen, H. J. M.,, H. M. P. Kengen,, A. D. L. Akkermans,, A. J. M. Stams,, and W. M. de Vos. 1996b. Detection and localization of syntrophic proprionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNAbased oligonucleotide probes. Appl. Environ. Microbiol. 62: 1656 1663.
15. Herrero, M. V.,, V. de Lorenzo,, and K. N. Timmis. 1990. Transposon vectors containing non-antibiotic resistance selection markers for clonign and stable chromosomal insertion of foreign genes in gram-negative bacteria. J. Bacteriol. 172: 6557 6567.
16. Heydorn, A.,, B. Ersbøll,, J. Kato,, M. Hentzer,, M. Parsek,, T. Tolker-Nielsen,, M. Givskov,, and S. Molin. 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signalling, and stationary-phase sigma factor expression. Appl. Environ. Microbiol. 68: 2008 2017.
17. Heydorn, A.,, A. T. Nielsen,, M. Hentzer,, C. Sternberg,, M. Givskov,, B. K. Ersbøll,, and S. Molin. 2000 Quantification of biofilm structures by the novel computer program COMSTAT. Microbiology 146: 2395 2407.
18. Jeffrey, W. H.,, S. M. Cuskey,, P. J. Chapman,, S. Resnick,, and R. H. Olsen. 1992. Characterization of Pseudomonas putida mutants unable to catabolize benzoate: cloning and characterization of Pseudomonas genes involved in benzoate catabolism and isolation of a chromosomal DNA fragment able to substitute for xylS in activation of the TOL lower pathway promoter. J. Bacteriol. 174: 4986 4996.
19. Koch, B.,, L. E. Jensen,, and O. Nybroe. 2001. A panel of Tn7-based vectors for insertion of the gfp marker gene or for delivery of cloned DNA into Gram-negative bacteria at a neutral chromosomal site. J. Microbiol. Methods 45: 187 195.
20. Lawrence, J.R.,, D. R. Korber,, B. D. Hoyle,, J. W. Costerton,, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173: 6558 6567.
21. Møller, S.,, A. R. Pedersen,, L. K. Poulsen,, E. Arvin,, and S. Molin. 1996. Activity and three-dimensional distribution of toluene degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 62: 4632 4640.
22. Møller, S.,, C. Sternberg,, J. B. Andersen,, B. B. Christensen,, and S. Molin. 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64: 721 732.
23. Nakazawa, T. 2002. Travels of a Pseudomonas, from Japan around the world. Environ. Microbiol. 4: 782 786.
24. Nelson, K. E.,, C. Weinel,, I. T. Paulsen,, R. J. Dodson,, H. Hilbert,, V. A. Martins dos Santos,, D. E. Fouts,, S. R. Gill,, M. Pop,, M. Holmes,, L. Brinkac,, M. Beanan,, R. T. deBoy,, S. Daugherty,, J. Kolonay,, R. Madupu,, W. Nelson,, J. Peterson,, H. Khouri,, I. Hance,, P. Chris Lee,, E. Holtzapple,, D. Scanlan,, K. Tran,, A. Moazzez,, T. Utterback,, M. Rizzo,, K. Lee,, D. Kosack,, D. Moest,, H. Wedler,, J. Lauber,, D. Stjepandic,, J. Hoheisel,, M. Straetz,, S. Heim,, C. Kiewitz,, J. Eisen,, K. N. Timmis,, A. Dusterhoft,, B. Tummler,, and C. M. Fraser. 2002. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ. Microbiol. 4: 799 808.
25. Nielsen, A. T.,, T. Tolker-Nielsen,, K. B. Barken,, and S. Molin. 2000. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2: 59 68.
26. O’Toole, G. A.,, and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS-365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol. Microbiol. 28: 449 461.
27. O’Toole, G. A.,, H. B. Kaplan,, and R. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49 79.
28. Sauer, K.,, and A. K. Camper. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183: 6579 6589.
29. Smets, B. F.,, B. E. Rittmann,, and D. A. Stahl. 1993. The specific growth rate of Pseudomonas putida PAW1 influences the conjugal transfer rate of the TOL plasmid. Appl. Environ. Microbiol. 59: 3430 3437.
30. Sternberg, C.,, B. B. Christensen,, T. Johansen,, A. T. Nielsen,, J. B. Andersen,, M. Givskov,, and S. Molin. 1999. Distribution of bacterial growth activity in flow-chamber biofilms. Appl. Environ. Microbiol. 65: 4108 4117.
31. Stoodley, P.,, K. Sauer,, D. G. Davies,, and J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187 209.
32. Tolker-Nielsen, T.,, and S. Molin. 2000. Spatial organization of microbial biofilm communities. Microb. Ecol. 40: 75 84.
33. Top, E. M.,, D. Springael,, and N. Boon. 2002. Catabolic mobile genetic elements and their potential use in bio-augmentation of polluted soils and waters. FEMS Microbiol. Ecol. 42: 199 208.
34. Williams, P. A., and Murray K. 1974. Metabolism of benzoate and the methyl benzoates by Pseudomonas putida (arvilla) mt-2: evidence for the existence of a TOL plasmid. J. Bacteriol. 120: 416 423.
35. Wolfaardt, G. M.,, J. R. Lawrence,, R. D. Robarats,, and D. E. Caldwell. 1994. Multicellular organization in a degradative biofilm community Appl. Environ. Microbiol. 60: 434 446.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error