Chapter 2 : Multicellularity and Biofilms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Multicellularity and Biofilms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap02-2.gif


The authors argue that multicellularity is chiefly characterized by extensive intercellular interactions that lead to coordination of the cells’ activities. They also argue that the evidence collected on biofilms thus far only partially supports the assertion that biofilms are multicellular organisms. In addition to extensive intercellular interactions, the classical examples of bacterial multicellularity also feature coordination of the activities of constituent cells. The chapter focuses on multicellularity of biofilms. Intercellular signaling is likely involved in establishing the division of labor, because quorum-sensing signals are known to be required for efficient sporulation. This division of labor could benefit the biofilm as a whole, because one can speculate that fruiting bodies play a role in spore dispersal, a function proposed for myxococcal fruiting bodies and the aerial hyphae of streptomycetes. In this way biofilms can be said to show all the features characteristic of multicellularity: intercellular interactions that lead to a coordination of cell activities that benefits the community. Perhaps the most daunting challenge in studies relating to bacterial multicellularity will be to determine whether an observed coordination of cell activities actually benefits the biofilm community as a whole. In large part, this is because biofilms typically lack an obvious function. A potential solution to this problem is suggested by the observation that terminal differentiation is a feature common to several of the examples of bacterial multicellularity discussed in this chapter (e.g., heterocysts, aerial hyphae, and myxobacterial fruiting bodies).

Citation: Branda S, Kolter R. 2004. Multicellularity and Biofilms, p 20-29. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch2
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Adams, D. G., 2000. Cyanobacterial phylogeny and development: questions and challenges, p. 51 81. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, D.C.
2. Andersen, J. B.,, A. Heydorn,, M. Hentzer,, L. Eberl,, O. Geisenberger,, B. B. Christensen,, S. Molin,, and M. Givskov. 2001. gfp-based N-acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl. Environ. Microbiol. 67: 575 585.
3. Arnold, J. W.,, and L. J. Shimkets. 1988. Cell surface properties correlated with cohesion in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 170: 5771 5777.
4. Bassler, B. L. 1999. How bacteria talk to each other: regulation of gene expression by quorum sensing. Curr. Opin. Microbiol. 2: 582 587.
5. Behmlander, R. M.,, and M. Dworkin. 1994. Biochemical and structural analyses of the extracellular matrix fibrils of Myxococcus xanthus. J. Bacteriol. 176: 6295 6303.
6. Branda, S. S.,, J. E. Gonzalez-Pastor,, S. Ben-Yehuda,, R. Losick,, and R. Kolter. 2001. Fruiting body formation by Bacillus subtilis. Proc. Natl. Acad. Sci. USA 98: 11621 11626.
7. Burchard, R. P. 1982. Trail following by gliding bacteria. J. Bacteriol. 152: 495 501.
8. Burkholder, W. F.,, and A. D. Grossman,. 2000. Regulation of the initiation of endospore formation in Bacillus subtilis, p. 151 166. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, D.C.
9. Champness, W., 2000. Actinomycete development, antibiotic production, and phylogeny: questions and challenges, p. 11 31. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, D.C.
10. Charlton, T. S.,, R. de Nys,, A. Netting,, N. Kumar,, M. Hentzer,, M. Givskov,, and S. Kjelleberg. 2000. A novel and sensitive method for the quantification of N-3-oxoacyl homoserine lactones using gas chromatography-mass spectrometry: application to a model bacterial biofilm. Environ. Microbiol. 2: 530 541.
11. Chater, K. F., 2000. Developmental decisions during sporulation in the aerial mycelium in Streptomyces, p. 33 48. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, D.C.
12. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin-Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
13. Costerton, J. W.,, P. S. Stewart,, and E. P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284: 1318 1322.
14. Crespie, B. J. 2001. The evolution of social behavior in microorganisms. Trends Ecol. Evol. 16: 178 183.
15. Davey, M. E.,, and G. A. O’Toole. 2000. Microbial biofilms: from ecology to molecular genetics. Microbiol. Mol. Biol. Rev. 64: 847 867.
16. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295 298.
17. De Beer, D.,, P. Stoodley,, and Z. Lewandowski. 1994. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43: 1131 1138.
18. De Kievit, T. R.,, R. Gillis,, S. Marx,, C. Brown,, and B. H. Iglewski. 2001. Quorum-sensing genes in Pseudomonas aeruginosa biofilms: their role and expression patterns. Appl. Environ. Microbiol. 67: 1865 1873.
19. Dobson, W. J.,, H. D. McCurdy,, and T. H. MacRae. 1979. The function of fimbrae in Myxococcus xanthus. II. The role of fimbrae in cell-cell interactions. Can. J. Microbiol. 25: 1359 1372.
20. Dworkin, M. 1999. Fibrils as extracellular appendages of bacteria: their role in contact-mediated cell-cell interactions in Myxococcus xanthus. Bioessays 20: 590 595.
21. Dworkin, M., 2000. Introduction to the myxobacteria, p. 221 242. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, D.C.
22. Fenchel, T. 2002. Microbial behavior in a heterogeneous world. Science 296: 1068 1071.
23. Frank, S. A. 1998. Foundations of Social Evolution. Princeton University Press, Princeton, N.J.
24. Hentzer, M.,, K. Riedel,, T. B. Rasmussen,, A. Heydorn,, J. B. Anderson,, M. R. Parsek,, S. A. Rice,, L. Eberl,, S. Molin,, N. Hoiby,, S. Kjelleberg,, and M. Givskov. 2002. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148: 87 102.
25. Huber, B.,, K. Riedel,, M. Hentzer,, A. Heydorn,, A. Gotschlich,, M. Givskov,, S. Molin,, and L. Eberl. 2001. The cep quorum-sensing system of Burkholderia cepacia H111 controls biofilm formation and swarming motility. Microbiology 147: 2517 2528.
26. Jelsbak, L.,, and L. Sogaard-Andersen. 2000. Pattern formation: fruiting body morphogenesis in Myxococcus xanthus. Curr. Opin. Microbiol. 3: 637 642.
27. Kaiser, D. 1979. Social gliding is correlated with the presence of pili in Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 76: 5952 5956.
28. Kaiser, D., 2000. Cell-interactive sensing of the environment, p. 263 275. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, D.C.
29. Kim, S. K.,, and D. Kaiser. 1991. C-factor has distinct aggregation and sporulation thresholds during Myxococcus development. J. Bacteriol. 173: 1722 1728.
30. Kjelleberg, S.,, and S. Molin. 2002. Is there a role for quorum sensing signals in bacterial biofilms? Curr. Opin. Microbiol. 5: 254 258.
31. Kolenbrander, P. E. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 54: 413 437.
32. Kruse, T.,, S. Lobendanz,, N. M. S. Berthelsen,, and L. Sogaard-Andersen. 2001. C-signal: a cell surface-associated morphogen that induces and co-ordinates multicellular fruiting body morphogenesis and sporulation in Myxococcus xanthus. Mol.Microbiol. 40: 156 168.
33. Lewis, K. 2000. Programmed death in bacteria. Microbiol. Mol. Biol. Rev. 64: 503 514.
34. Li, S.,, B.-U. Lee,, and L. J. Shimkets. 1992. csgA expression entrains Myxococcus xanthus development. Genes Dev. 6: 401 410.
35. Li, Y.,, H. Sun,, X. Ma,, A. Lu,, R. Lux,, D. Zusman,, and W. Shi. 2003. Extracellular polysaccharides mediate pilus retraction during social motility of Myxococcus xanthus. Proc. Natl. Acad. Sci. USA 100: 5443 5448.
36. Li, Y.-H.,, N. Tang,, M. B. Aspiras,, P. C. Y. Lau,, J. H. Lee,, R. P. Ellen,, and D. G. Cvitkovitch. 2002. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184: 2699 2708.
37. Loo, C. Y.,, D. A. Corliss,, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182: 1374 1382.
38. Lynch, M. J.,, S. Swift,, D. F. Kirke,, C. W. Keevil,, C. E. R. Dodd,, and P. Williams. 2002. The regulation of biofilm development by quorum sensing in Aeromonas hydrophila. Environ. Microbiol. 4: 18 28.
39. MacNeil, S. D.,, F. Clara,, and P. L. Hartzell. 1994. Genes required for both gliding motility and development in Myxococcus xanthus. Mol. Microbiol. 14: 785 795.
40. Mattick, J. S. 2002. Type IV pili and twitching motility. Annu. Rev. Microbiol. 56: 289 314.
41. McLean, R. J. C.,, M. Whiteley,, D. J. Stickler,, and C. Fuqua. 1997. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 154: 259 263.
42. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook,, and R. J. Lamont. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185: 274 278.
43. Méndez, C.,, A. F. Braña,, M. B. Manzanal,, and C. Hardisson. 1985. Role of substrate mycelium in colony development in Streptomyces. Can. J. Microbiol. 31: 446 450.
44. Merritt, J.,, F. Qi,, S. D. Goodman,, M. H. Anderson,, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71: 1972 1979.
45. Merz, A.,, M. Sheetz,, and M. So. 2000. Pilus retraction powers bacterial twitching motility. Nature 407: 98 102.
46. Michod, R. E.,, and D. Roze. 2001. Cooperation and conflict in the evolution of multicellularity. Heredity 86: 1 7.
47. Moller, S.,, C. Sternberg,, J. B. Andersen,, B. B. Christensen,, J. L. Ramos,, M. Givskov,, and S. Molin. 1998. In situ gene expression in mixed-culture biofilms: evidence of metabolic interactions between community members. Appl. Environ. Microbiol. 64: 721 732.
48. Nielsen, A. T.,, T. Tolker-Nielsen,, K. B. Barken,, and S. Molin. 2000. Role of commensal relationships on the spatial structure of a surface-attached microbial consortium. Environ. Microbiol. 2: 59 68.
49. Nodwell, J. R.,, and R. Losick. 1998. Purification of an extracellular signaling molecule involved in production of aerial mycelium by Streptomyces coelicolor. J. Bacteriol. 180: 1334 1337.
50. O’Toole, G.,, H. B. Kaplan,, and R. Kolter. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54: 49 79.
51. O’Toole, G. A.,, and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295 304.
52. Pierson, E. A.,, D. W. Wood,, J. A. Cannon,, F. M. Blachere,, and L. S. Pierson III. 1998. Interpopulation signaling via N-acyl-homoserine lactones among bacteria in the wheat rhizosphere. Mol. Plant-Microbe Interact. 11: 1078 1084.
53. Pratten, J.,, S. J. Foster,, P. F. Chan,, M. Wilson,, and S. P. Nair. 2001. Staphylococcus aureus accessory regulators: expression within biofilms and effect on adhesion. Microb. Infect. 3: 633 637.
54. Prouty, A. M.,, W. H. Schwesinger,, and J. S. Gunn. 2002. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect. Immun. 70: 2640 2649.
55. Riedel, K.,, M. Hentzer,, O. Geisenberger,, B. Huber,, A. Steidle,, H. Wu,, N. Hoiby,, M. Givskov,, S. Molin,, and L. Eberl. 2001. N-Acylhomoserine- lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147: 3249 3262.
56. Rosenbluh, A.,, and M. Eisenbach. 1992. Effect of mechanical removal of pili on gliding motility of Myxococcus xanthus. J. Bacteriol. 174: 5406 5413.
57. Sauer, K.,, A. K. Camper,, G. D. Ehrlich,, J. W. Costerton,, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140 1154.
58. Shapiro, J. A. 1998. Thinking about bacterial populations as multicellular organisms. Annu. Rev. Microbiol. 52: 81 104.
59. Shapiro, J. A.,, and M. Dworkin. 1997. Bacteria as Multicellular Organisms. Oxford University Press, New York, N.Y.
60. Shimkets, L. J. 1990. Social and developmental biology of the myxobacteria. Microbiol. Rev. 54: 473 501.
61. Shimkets, L. J. 1999. Intercellular signaling during fruiting-body development of Myxococcus xanthus. Annu. Rev. Microbiol. 53: 525 549.
62. Skerker, J. M.,, and H. C. Berg. 2001. Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA 98: 6901 6904.
63. Spormann, A. M. 1999. Gliding motility in bacteria: insights from studies of Myxococcus xanthus. Microbiol. Mol. Biol. Rev. 63: 621 641.
64. Steidle, A.,, K. Sigl,, R. Schuhegger,, A. Ihring,, M. Schmid,, S. Gantner,, M. Stoffels,, K. Riedel,, M. Givskov,, A. Hartmann,, C. Langebartels,, and L. Eberl. 2001. Visualization of N-acylhomoserine lactone-mediated cell-cell communication between bacteria colonizing the tomato rhizosphere. Appl. Environ. Microbiol. 67: 5761 5770.
65. Stickler, D. J.,, N. S. Morris,, R. J. C. McLean,, and C. Fuqua. 1998. Biofilms on indwelling urethral catheters produce quorum sensing signal molecules in situ and in vitro. Appl. Environ. Microbiol. 64: 3486 3490.
66. Sun, H.,, Z. Yang,, and W. Shi. 1999. Effect of cellular filamentation on adventurous and social gliding motility of Myxococcus xanthus. Proc. Natl. Acad. Sci.USA 96: 15178 15183.
67. Sutherland, I. W. 2001. Exopolysaccharides in biofilms, flocs, and related structures. Water Sci. Technol. 43: 77 86.
68. Takano, E.,, R. Chakraburtty,, T. Nihira,, Y. Yamada,, and M. J. Bibb. 2001. A complex role for the gamma-butyrolactone SCB1 in regulating antibiotic production in Streptomyces coelicolor A3(2). Mol. Microbiol. 41: 1015 1028.
69. Takano, E.,, T. Nihira,, Y. Hara,, J. J. Jones,, C. J. Gershater,, Y. Yamada,, and M. J. Bibb. 2000. Purification and structural determination of SCB1, a gamma-butyrolactone that elicits antibiotic production in Streptomyces coelicolor A3(2). J. Biol. Chem. 275: 11010 11016.
70. Velicier, G. J. 2003. Social strife in the microbial world. Trends Microbiol. 11: 330 337.
71. Vroom, J. M.,, K. J. De Grauw,, H. C. Gerritsen,, D. J. Bradshaw,, P. D. Marsh,, G. K. Watson,, J. J. Birmingham,, and C. Allison. 1999. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65: 3502 3511.
72. Webb, J. S.,, L. S. Thompson,, S. James,, T. S. Charlton,, T. Tolker-Nielsen,, B. Koch,, M. Givskov,, and S. Kjelleberg. 2003. Cell death in Pseudomonas aeruginosa biofilm development. J. Bacteriol. 185: 4585 4592.
73. Wimpenny, J.,, W. Manz,, and U. Szewzyk. 2000. Heterogeneity in biofilms. FEMS Microbiol. Rev. 24: 661 671.
74. Wolfaardt, G. M.,, J. R. Lawrence,, R. D. Robarts,, and D. E. Caldwell. 1994. Multicellular organization in a degradative biofilm community. Appl. Environ. Microbiol. 60: 434 446.
75. Wolk, C. P., 2000. Heterocyst formation in Anabaena, p. 83 104. In Y. V. Brun, and L. J. Shimkets (ed.), Prokaryotic Development. ASM Press, Washington, D.C.
76. Wu, S. S.,, and D. Kaiser. 1995. Genetic and functional evidence that Type IV pili are required for social gliding motility in Myxococcus xanthus. Mol. Microbiol. 18: 547 558.
77. Yoon, H.-S.,, and J. W. Golden. 1998. Heterocyst pattern formation controlled by a diffusible peptide. Science 282: 935 938.
78. Yoon, H.-S.,, and J. W. Golden. 2001. PatS and products of nitrogen fixation control heterocyst pattern. J. Bacteriol. 183: 2605 2613.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error