Chapter 6 : Human Oral Bacterial Biofilms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Human Oral Bacterial Biofilms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817718/9781555818944_Chap06-2.gif


This chapter focuses on microbial colonization of enamel and cementum, the exposed hard surfaces of the oral cavity. A study demonstrated that about 50% of the oral microbiota remains to be characterized, a small percentage relative to that in other natural environments (99% to 99.9%). Furthermore, previously undescribed phylotypes revealed in this study using molecular methods were to a large extent closely related to other commonly isolated and cultured oral bacteria, and the molecular analysis of isolates from the relatively simple culture-based approach in this study resulted in a roughly 20% yield of previously undescribed phylotypes. It was estimated that the total number of phylotypes in the oral cavity would lie between 500 and 600 and that, when all phylotypes recognized in this study are taken into account, 85% of these are now known. Determining precisely how these mutations in participant species fit into the developmental processes of forming the larger multispecies communities remains a challenge to all researchers. The chapter also focuses on the progress made in identifying genes that may be important to the genetically regulated developmental pathway that defines oral biofilms. Studies of multiple-species communities present a particular problem of identifying the individual species, many of which are morphologically similar, after they are mixed within the community.

Citation: Kolenbrander P, Palmer, Jr. R. 2004. Human Oral Bacterial Biofilms, p 85-117. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Diagrammatic representation of bacterial colonization patterns on teeth in health and in severe periodontal disease. (A) Macroscopic comparison of colonization on healthy tooth with that on periodontally diseased tooth as revealed by osmium staining. Tissue-attachment area is not part of the plaque biomass. Plaque-free zone is immediately coronal to the tissueattachment site. After . (B) Diagram of colonization within periodontal pocket cross section as revealed by immunolabeling. Pocket is divided into nine regions (dotted lines). Organism abbreviations: An, ; Pg, ; Cr, ; Ec, ; Td, ; Fn, ; PnPi, /; Aa, Boldface indicates heavy colonization relative to other sites. Drawing after . Data compiled from Christersson et al., 1987; Kigure et al., 1995; Noiri et al., 1997, 2001; Noiri and Ebisu, 2000.

Citation: Kolenbrander P, Palmer, Jr. R. 2004. Human Oral Bacterial Biofilms, p 85-117. In Ghannoum M, O'Toole G (ed), Microbial Biofilms. ASM Press, Washington, DC. doi: 10.1128/9781555817718.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Aguirre, A.,, M. J. Levine,, R. E. Cohen,, and L. A. Tabak. 1987. Immunochemical quantitation of alpha-amylase and secretory IgA in parotid saliva from people of various ages. Arch. Oral Biol. 32: 297 301.
2. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143 169.
3. Andersen, R. N.,, N. Ganeshkumar,, and P. E. Kolenbrander. 1998. Helicobacter pylori adheres selectively to Fusobacterium spp. Oral Microbiol. Immunol. 13: 51 54.
4. Anderson, S. A.,, C. H. Sissons,, M. J. Coleman,, and L. Wong. 2002. Application of carbon source utilization patterns to measure the metabolic similarity of complex dental plaque biofilm microcosms. Appl. Environ. Microbiol. 68: 5779 5783.
5. Aspiras, M. B.,, K. M. Kazmerzak,, P. E. Kolenbrander,, R. McNab,, N. Hardegen,, and H. F. Jenkinson. 2000. Expression of green fluorescent protein in Streptococcus gordonii DL1 and its use as a species-specific marker in coadhesion with Streptococcus oralis 34 in saliva-conditioned biofilms in vitro. Appl. Environ. Microbiol. 66: 4074 4083.
6. Auschill, T. M.,, N. B. Arweiler,, M. Brecx,, E. Reich,, A. Sculean,, and L. Netuschil. 2002. The effect of dental restorative materials on dental biofilm. Eur. J. Oral Sci. 110: 48 53.
7. Auschill, T. M.,, N. B. Arweiler,, L. Netuschil,, M. Brecx,, E. Reich,, A. Sculean,, and N. B. Artweiler. 2001. Spatial distribution of vital and dead microorganisms in dental biofilms. Arch. Oral Biol. 46: 471 476.
8. Bassler, B. L.,, E. P. Greenberg,, and A. M. Stevens. 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol. 179: 4043 4045.
9. Bassler, B. L.,, M. Wright,, R. E. Showalter,, and M. R. Silverman. 1993. Intercellular signalling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9: 773 786.
10. Becker, M. R.,, B. J. Paster,, E. J. Leys,, M. L. Moeschberger,, S. G. Kenyon,, J. L. Galvin,, S. K. Boches,, F. E. Dewhirst,, and A. L. Griffen. 2002. Molecular analysis of bacterial species associated with childhood caries. J. Clin. Microbiol. 40: 1001 1009.
11. Bhagwat, S. P.,, J. Nary,, and R. A. Burne. 2001. Effects of mutating putative two-component systems on biofilm formation by Streptococcus mutans UA159. FEMS Microbiol. Lett. 205: 225 230.
12. Blehert, D. S.,, R. J. Palmer, Jr.,, J. B. Xavier,, J. S. Almeida,, and P. E. Kolenbrander. 2003. Autoinducer 2 production by Streptococcus gordonii DL1 and the biofilm phenotype of a luxS mutant are influenced by nutritional conditions. J. Bacteriol. 185: 4851 4860.
13. Bos, R.,, H. C. van der Mei,, and H. J. Busscher. 1995. A quantitative method to study co-adhesion of microorganisms in a parallel plate flow chamber. II. Analysis of the kinetics of co-adhesion. J. Microbiol. Methods 23: 169 182.
14. Bos, R.,, H. C. van der Mei,, and H. J. Busscher. 1996. Co-adhesion of oral microbial pairs under flow in the presence of saliva and lactose. J. Dent. Res. 75: 809 815.
15. Bowden, G. H.,, and I. R. Hamilton. 1987. Environmental pH as a factor in the competition between strains of the oral streptococci Streptococcus mutans, S. sanguis, and “ S. mitior” growing in continuous culture. Can. J. Microbiol. 33: 824 827.
16. Bradshaw, D. J.,, K. A. Homer,, P. D. Marsh,, and D. Beighton. 1994. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140: 3407 3412.
17. Bradshaw, D. J.,, P. D. Marsh,, C. Allison,, and K. M. Schilling. 1996. Effect of oxygen, inoculum composition and flow rate on development of mixed-culture oral biofilms. Microbiology 142: 623 629.
18. Bradshaw, D. J.,, P. D. Marsh,, G. K. Watson,, and C. Allison. 1998. Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect. Immun. 66: 4729 4732.
19. Brinig, M. M.,, P. W. Lepp,, C. C. Ouverney,, G. C. Armitage,, and D. A. Relman. 2003. Prevalence of bacteria of division TM7 in human subgingival plaque and their association with disease. Appl. Environ. Microbiol. 69: 1687 1694.
20. Burgess, N. A.,, D. F. Kirke,, P. Williams,, K. Winzer,, K. R. Hardie,, N. L. Meyers,, J. Aduse- Opoku,, M. A. Curtis,, and M. Camara. 2002. LuxS-dependent quorum sensing in Porphyromonas gingivalis modulates protease and haemagglutinin activities but is not essential for virulence. Microbiology 148: 763 772.
21. Buswell, C. M.,, Y. M. Herlihy,, P. D. Marsh,, C. W. Keevil,, and S. A. Leach. 1997. Coaggregation amongst aquatic biofilm bacteria. J. Appl. Microbiol. 83: 477 484.
22. Chen, X.,, S. Schauder,, N. Potier,, A. Van Dorsselaer,, I. Pelczer,, B. L. Bassler,, and F. M. Hughson. 2002. Structural identification of a bacterial quorum-sensing signal containing boron. Nature 415: 545 549 .
23. Christersson, L. A.,, B. Albini,, J. J. Zambon,, U. M. Wikesjo,, and R. J. Genco. 1987. Tissue localization of Actinobacillus actinomycetemcomitans in human periodontitis. I. Light, immunofluorescence and electron microscopic studies. J. Periodontol. 58: 529 539.
24. Chung, W. O.,, D. R. Demuth,, and R. J. Lamont. 2000. Identification of a Porphyromonas gingivalis receptor for the Streptococcus gordonii SspB protein. Infect. Immun. 68: 6758 6762.
25. Chung, W. O.,, Y. Park,, R. J. Lamont,, R. Mc- Nab,, B. Barbieri,, and D. R. Demuth. 2001. Signaling system in Porphyromonas gingivalis based on a LuxS protein. J. Bacteriol. 183: 3903 3909.
26. Cisar, J. O.,, S. H. Curl,, P. E. Kolenbrander,, and A. E. Vatter. 1983. Specific absence of type 2 fimbriae on a coaggregation-defective mutant of Actinomyces viscosus T14V. Infect. Immun. 40: 759 765.
27. Cisar, J. O.,, P. E. Kolenbrander,, and F. C. McIntire. 1979. Specificity of coaggregation reactions between human oral streptococci and strains of Actinomyces viscosus or Actinomyces naeslundii. Infect. Immun. 24: 742 752.
28. Cisar, J. O.,, A. L. Sandberg,, C. Abeygunawardana,, G. P. Reddy,, and C. A. Bush. 1995. Lectin recognition of host-like saccharide motifs in streptococcal cell wall polysaccharides. Glycobiology 5: 655 662.
29. Cisar, J. O.,, A. L. Sandberg,, G. P. Reddy,, C. Abeygunawardana,, and C. A. Bush. 1997. Structural and antigenic types of cell wall polysaccharides from viridans group streptococci with receptors for oral actinomyces and streptococcal lectins. Infect. Immun. 65: 5035 5041.
30. Clemans, D. L.,, P. E. Kolenbrander,, D. V. Debabov,, Q. Zhang,, R. D. Lunsford,, H. Sakone,, C. J. Whittaker,, M. P. Heaton,, and F. C. Neuhaus. 1999. Insertional inactivation of genes responsible for the D-alanylation of lipoteichoic acid in Streptococcus gordonii DL1 (Challis) affects intrageneric coaggregations. Infect. Immun. 67: 2464 2474.
31. Coombe, R. A.,, A. Tatevossian,, and J. W. T. Wimpenny,. 1984. Factors affecting the growth of thin film bacterial films in vitro, p. 193 205. In J. M. ten Cate,, S. A. Leach,, and J. Arends (ed.), Bacterial Adhesion and Preventive Dentistry. IRL Press, Oxford, United Kingdom.
32. Cvitkovitch, D. G.,, J. A. Gutierrez,, J. Behari,, P. J. Youngman,, J. E. Wetz,, P. J. Crowley,, J. D. Hillman,, L. J. Brady,, and A. S. Bleiweis. 2000. Tn 917-lac mutagenesis of Streptococcus mutans to identify environmentally regulated genes. FEMS Microbiol. Lett. 182: 149 154.
33. da Silveira, M. G.,, M. V. San Romao,, M. C. Loureiro-Dias,, F. M. Rombouts,, and T. Abee. 2002. Flow cytometric assessment of membrane integrity of ethanol-stressed Oenococcus oeni cells. Appl. Environ. Microbiol. 68: 6087 6093.
34. Demuth, D. R.,, Y. Duan,, W. Brooks,, A. R. Holmes,, R. McNab,, and H. F. Jenkinson. 1996. Tandem genes encode cell-surface polypeptides SspA and SspB which mediate adhesion of the oral bacterium Streptococcus gordonii to human and bacterial receptors. Mol. Microbiol. 20: 403 413.
35. Donkersloot, J. A.,, J. O. Cisar,, M. E. Wax,, R. J. Harr,, and B. M. Chassy. 1985. Expression of Actinomyces viscosus antigens in Escherichia coli: cloning of a structural gene ( fimA) for type 2 fimbriae. J. Bacteriol. 162: 1075 1078.
36. , L. D.,, and P. E. Kolenbrander. 2000. Identification of saliva-regulated genes of Streptococcus gordonii DL1 by differential display using random arbitrarily primed PCR. Infect. Immun. 68: 4834 4837.
37. Dzink, J. L.,, S. S. Socransky,, and A. D. Haffajee. 1988. The predominant cultivable microbiota of active and inactive lesions of destructive periodontal diseases. J. Clin. Periodontol. 15: 316 323.
38. Dzink, J. L.,, A. C. Tanner,, A. D. Haffajee,, and S. S. Socransky. 1985. Gram negative species associated with active destructive periodontal lesions. J. Clin. Periodontol. 12: 648 659.
39. Egland, P. G.,, L. D. Du,, and P. E. Kolenbrander. 2001. Identification of independent Streptococcus gordonii SspA and SspB functions in coaggregation with Actinomyces naeslundii. Infect. Immun. 69: 7512 7516.
40. Fine, D. H.,, D. Furgang,, and M. L. Barnett. 2001. Comparative antimicrobial activities of antiseptic mouthrinses against isogenic planktonic and biofilm forms of Actinobacillus actinomycetemcomitans. J. Clin. Periodontol. 38: 697 700.
41. Fletcher, M. 1977. The effects of culture concentration and age, time, and temperature on bacterial attachment to polystyrene. Can. J. Microbiol. 23: 1 6.
42. Fong, K. P.,, W. O. Chung,, R. J. Lamont,, and D. R. Demuth. 2001. Intra- and interspecies regulation of gene expression by Actinobacillus actinomycetemcomitans LuxS. Infect. Immun. 69: 7625 7634.
43. Fong, K. P.,, L. Gao,, and D. R. Demuth. 2003. luxS and arcB control aerobic growth of Actinobacillus actinomycetemcomitans under iron limitation. Infect. Immun. 71: 298 308.
44. Frias, J.,, E. Olle,, and M. Alsina. 2001. Periodontal pathogens produce quorum sensing signal molecules. Infect. Immun. 69: 3431 3434.
45. Friedman, M. T.,, P. M. Barber,, N. J. Mordan,, and H. N. Newman. 1992. The “plaque-free zone” in health and disease: a scanning electron microscope study. J. Periodontol. 63: 890 896.
46. Froeliger, E. H.,, and P. Fives-Taylor. 2001. Streptococcus parasanguis fimbria-associated adhesin Fapl is required for biofilm formation. Infect. Immun. 69: 2512 2519.
47. Fry, J. C. 1990. Direct methods and biomass estimation. Methods Microbiol. 22: 41 85.
48. Ganeshkumar, N.,, C. V. Hughes,, and E. I. Weiss,. 1998. Co-aggregation in dental plaque formation, p. 125 143. In H. J. Busscher, and L. V. Evans (ed.), Oral Biofilms and Plaque Control. Harwood Academic Publishers, Amsterdam, The Netherlands.
49. Gibbons, R. J. 1984. Adherent interactions which may affect microbial ecology in the mouth. J. Dent. Res. 63: 378 385.
50. Gibbons, R. J.,, and D. I. Hay. 1988. Human salivary acidic proline-rich proteins and statherin promote the attachment of Actinomyces viscosus LY7 to apatitic surfaces. Infect. Immun. 56: 439 445.
51. Gibbons, R. J.,, D. I. Hay,, W. C. Childs, III,, and G. Davis. 1990. Role of cryptic receptors (cryptitopes) in bacterial adhesion to oral surfaces. Arch. Oral Biol. 35(Suppl.): 107S 114S.
52. Gibbons, R. J.,, D. I. Hay,, J. O. Cisar,, and W. B. Clark. 1988. Adsorbed salivary prolinerich protein 1 and statherin: receptors for type 1 fimbriae of Actinomyces viscosus T14V-J1 on apatitic surfaces. Infect. Immun. 56: 2990 2993.
53. Gilmore, K. S.,, P. Srinivas,, D. R. Akins,, K. L. Hatter,, and M. S. Gilmore. 2003. Growth, development, and gene expression in a persistent Streptococcus gordonii biofilm. Infect. Immun. 71: 4759 4766.
54. Grimaudo, N. J.,, and W. E. Nesbitt. 1997. Coaggregation of Candida albicans with oral Fusobacterium species. Oral Microbiol. Immunol. 12: 168 173.
55. Grimaudo, N. J.,, W. Nesbitt,, and W. Clark. 1996. Coaggregation of Candida albicans with oral Actinomyces species. Oral Microbiol. Immunol. 11: 59 61.
56. Guggenheim, B.,, W. Giertsen,, P. Schupbach,, and S. Shapiro. 2001. Validation of an in vitro biofilm model of supragingival plaque. J. Dent. Res. 80: 363 370.
57. Guggenheim, M.,, S. Shapiro,, R. Gmur,, and B. Guggenheim. 2001. Spatial arrangements and associative behavior of species in an in vitro oral biofilm model. Appl. Environ. Microbiol. 67: 1343 1350.
58. Hamilton, I. R.,, and N. D. Buckley. 1991. Adaptation by Streptococcus mutans to acid tolerance. Oral Microbiol. Immunol. 6: 65 71.
59. Hannig, M. 1999. Ultrastructural investigation of pellicle morphogenesis at two different intraoral sites during a 24-h period. Clin. Oral Investig. 3: 88 95.
60. Hansen, M. C.,, R. J. Palmer, Jr.,, C. Udsen,, D. C. White,, and S. Molin. 2001. Assessment of GFP fluorescence in cells of Streptococcus gordonii under conditions of low pH and low oxygen concentration. Microbiology 147: 1383 1391.
61. Hardie, J. M.,, and G. H. Bowden,. 1976. The microbial flora of dental plaque: bacterial succession and isolation considerations, p. 63 98. In H. M. Stiles,, W. J. Loesche, and T. C. O’Brien (ed.), Proceedings: Microbial Aspects of Dental Caries. Special Supplements to Microbiology Abstracts, Information Retrieval, Washington, D.C.
62. Håvarstein, L. S.,, P. Gaustad,, I. F. Nes,, and D. A. Morrison. 1996. Identification of the streptococcal competence-pheromone receptor. Mol. Microbiol. 21: 863 869.
63. Hoflack, L.,, and M. K. Yeung. 2001. Actinomyces naeslundii fimbrial protein Orf977 shows similarity to a streptococcal adhesin. Oral Microbiol. Immunol. 16: 319 320.
64. Holmes, A. R.,, P. K. Gopal,, and H. F. Jenkinson. 1995. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococcus gordonii. Infect. Immun. 63: 1827 1834.
65. Holmes, A. R.,, R. McNab,, and H. F. Jenkinson. 1996. Candida albicans binding to the oral bacterium Streptococcus gordonii involves multiple adhesin-receptor interactions. Infect. Immun. 64: 4680 4685.
66. Hsu, S. D.,, J. O. Cisar,, A. L. Sandberg,, and M. Kilian. 1994. Adhesive properties of viridans streptococcal species. Microb. Ecol. Health Dis. 7: 125 137.
67. Hughes, C. V.,, R. N. Andersen,, and P. E. Kolenbrander. 1992. Characterization of Veillonella atypica PK1910 adhesin-mediated coaggregation with oral Streptococcus spp. Infect. Immun. 60: 1178 1186.
68. Hultgren, S. J.,, F. Lindberg,, G. Magnusson,, J. Kihlberg,, J. M. Tennent,, and S. Normark. 1989. The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl. Acad. Sci. USA 86: 4357 4361.
69. Jabra-Rizk, M. A.,, W. A. Falkler, Jr.,, W. G. Merz,, J. I. Kelley,, A. A. M. A. Baqui,, and T. F. Meiller. 1999. Coaggregation of Candida dubliniensis with Fusobacterium nucleatum. J. Clin. Microbiol. 37: 1464 1468.
70. Jakubovics, N. S.,, A. W. Smith,, and H. F. Jenkinson. 2000. Expression of the virulencerelated Sca (Mn2+) permease in Streptococcus gordonii is regulated by a diphtheria toxin metalorepressorlike protein ScaR. Mol. Microbiol. 38: 140 153.
71. Jenkinson, H. F.,, and R. J. Lamont. 1997. Streptococcal adhesion and colonization. Crit. Rev. Oral Biol. Med. 8: 175 200.
72. Jenkinson, H. F.,, S. D. Terry,, R. McNab,, and G. W. Tannock. 1993. Inactivation of the gene encoding surface protein SspA in Streptococcus gordonii DL1 affects cell interactions with human salivary agglutinin and oral actinomyces. Infect. Immun. 61: 3199 3208.
73. Jones, C. H.,, J. S. Pinkner,, R. Roth,, J. Heuser,, A. V. Nicholes,, S. N. Abraham,, and S. J. Hultgren. 1995. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae. Proc. Natl. Acad. Sci. USA 92: 2081 2085.
74. Kachlany, S. C.,, P. J. Planet,, M. K. Bhattacharjee,, E. Kollia,, R. DeSalle,, D. H. Fine,, and D. H. Figurski. 2000. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J. Bacteriol. 182: 6169 6176.
75. Kaplan, J. B.,, and D. H. Fine. 2002. Biofilm dispersal of Neisseria subflava and other phylogenetically diverse oral bacteria. Appl. Environ. Microbiol. 68: 4943 4950.
76. Kaplan, J. B.,, M. F. Meyenhofer,, and D. H. Fine. 2003. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans. J. Bacteriol. 185: 1399 1404.
77. Kigure, T.,, A. Saito,, K. Seida,, S. Yamada,, K. Ishihara,, and K. Okuda. 1995. Distribution of Porphyromonas gingivalis and Treponema denticola in human subgingival plaque at different periodontal pocket depths examined by immunohistochemical methods. J. Periodontal Res. 30: 332 341.
78. Kinniment, S. L.,, J. W. Wimpenny,, D. Adams,, and P. D. Marsh. 1996. Development of a steady-state oral microbial biofilm community using the constant-depth film fermenter. Microbiology 142: 631 638.
79. Klier, C. M.,, P. E. Kolenbrander,, A. G. Roble,, M. L. Marco,, S. Cross,, and P. S. Handley. 1997. Identification of a 95 kDa putative adhesin from Actinomyces serovar WVA963 strain PK1259 that is distinct from type 2 fimbrial subunits. Microbiology 143: 835 846.
80. Klier, C. M.,, A. G. Roble,, and P. E. Kolenbrander. 1998. Actinomyces serovar WVA963 coaggregation-defective mutant strain PK2407 secretes lactose-sensitive adhesin that binds to coaggregation partner Streptococcus oralis 34. Oral Microbiol. Immunol. 13: 337 340.
81. Kolenbrander, P. E. 1988. Intergeneric coaggregation among human oral bacteria and ecology of dental plaque. Annu. Rev. Microbiol. 42: 627 656.
82. Kolenbrander, P. E. 2000. Oral microbial communities: biofilms, interactions, and genetic systems. Annu. Rev. Microbiol. 54: 413 437.
83. Kolenbrander, P. E.,, and R. N. Andersen. 1989. Inhibition of coaggregation between Fusobacterium nucleatum and Porphyromonas (Bacteroides) gingivalis by lactose and related sugars. Infect. Immun. 57: 3204 3209.
84. Kolenbrander, P. E.,, and R. N. Andersen. 1990. Characterization of Streptococcus gordonii (S. sanguis) PK488 adhesin-mediated coaggregation with Actinomyces naeslundii PK606. Infect. Immun. 58: 3064 3072.
85. Kolenbrander, P. E.,, R. N. Andersen,, R. A. Baker,, and H. F. Jenkinson. 1998. The adhesion-associated sca operon in Streptococcus gordonii encodes an inducible high-affinity ABC transporter for Mn2+ uptake. J. Bacteriol. 180: 290 295 .
86. Kolenbrander, P. E.,, R. N. Andersen,, D. S. Blehert,, P. G. Egland,, J. S. Foster,, and R. J. Palmer, Jr. 2002. Communication among oral bacteria. Microbiol. Mol. Biol. Rev. 66: 486 505.
87. Kolenbrander, P. E.,, R. N. Andersen,, and L. V. Moore. 1989. Coaggregation of Fusobacterium nucleatum, Selenomonas flueggei, Selenomonas infelix, Selenomonas noxia, and Selenomonas sputigena with strains from 11 genera of oral bacteria. Infect. Immun. 57: 3194 3203.
88. Kolenbrander, P. E.,, R. N. Andersen,, and L. V. Moore. 1990. Intrageneric coaggregation among strains of human oral bacteria: potential role in primary colonization of the tooth surface. Appl. Environ. Microbiol. 56: 3890 3894.
89. Kolenbrander, P. E.,, and J. London. 1993. Adhere today, here tomorrow: oral bacterial adherence. J. Bacteriol. 175: 3247 3252.
90. Kroes, I.,, P. W. Lepp,, and D. A. Relman. 1999. Bacterial diversity within the human subgingival crevice. Proc. Natl. Acad. Sci. USA 96: 14547 14552.
91. Kroos, L.,, A. Kuspa,, and D. Kaiser. 1986. A global analysis of developmentally regulated genes in Myxococcus xanthus. Dev. Biol. 117: 252 266.
92. Lai, C. H.,, M. A. Listgarten,, and B. Rosan. 1975. Immunoelectron microscopic identification and localization of Streptococcus sanguis with peroxidase- labeled antibody: localization of Streptococcus sanguis in intact dental plaque. Infect. Immun. 11: 200 210.
93. Lamont, R. J.,, A. El-Sabaeny,, Y. Park,, G. S. Cook,, J. W. Costerton,, and D. R. Demuth. 2002. Role of the Streptococcus gordonii SspB protein in the development of Porphyromonas gingivalis biofilms on streptococcal substrates. Microbiology 148: 1627 1636.
94. Lawrence, J. R.,, D. R. Korber,, B. D. Hoyle,, J. W. Costerton,, and D. E. Caldwell. 1991. Optical sectioning of microbial biofilms. J. Bacteriol. 173: 6558 6567.
95. Lemos, J. A.,, and R. A. Burne. 2002. Regulation and physiological significance of ClpC and ClpP in Streptococcus mutans. J. Bacteriol. 184: 6357 6366.
96. Li, T.,, I. Johansson,, D. I. Hay,, and N. Stromberg. 1999. Strains of Actinomyces naeslundii and Actinomyces viscosus exhibit structurally variant fimbrial subunit proteins and bind to different peptide motifs in salivary proteins. Infect. Immun. 67: 2053 2059.
97. Li, T.,, M. K. Khah,, S. Slavnic,, I. Johansson,, and N. Stromberg. 2001. Different type 1 fimbrial genes and tropisms of commensal and potentially pathogenic Actinomyces spp. with different salivary acidic proline-rich protein and statherin ligand specificities. Infect. Immun. 69: 7224 7233.
98. Li, Y. H.,, Y. Y. Chen,, and R. A. Burne. 2000. Regulation of urease gene expression by Streptococcus salivarius growing in biofilms. Environ. Microbiol. 2: 169 177.
99. Li, Y. H.,, M. N. Hanna,, G. Svensater,, R. P. Ellen,, and D. G. Cvitkovitch. 2001a. Cell density modulates acid adaptation in Streptococcus mutans: implications for survival in biofilms. J. Bacteriol. 183: 6875 6884.
100. Li, Y. H.,, P. C. Lau,, J. H. Lee,, R. P. Ellen,, and D. G. Cvitkovitch. 2001b. Natural genetic transformation of Streptococcus mutans growing in biofilms. J. Bacteriol. 183: 897 908.
101. Li, Y. H.,, P. C. Lau,, N. Tang,, G. Svensater,, R. P. Ellen,, and D. G. Cvitkovitch. 2002a. Novel two-component regulatory system involved in biofilm formation and acid resistance in Streptococcus mutans. J. Bacteriol. 184: 6333 6342.
102. Li, Y. H.,, N. Tang,, M. B. Aspiras,, P. C. Lau,, J. H. Lee,, R. P. Ellen,, and D. G. Cvitkovitch. 2002b. A quorum-sensing signaling system essential for genetic competence in Streptococcus mutans is involved in biofilm formation. J. Bacteriol. 184: 2699 2708.
103. Lie, T. 1977a. Early dental plaque morphogenesis. A scanning electron microscope study using the hydroxyapatite splint model and a low-sucrose diet. J. Periodontal Res. 12: 73 89.
104. Lie, T. 1977b. Scanning and transmission electron microscope study of pellicle morphogenesis. Scand. J. Dent. Res. 85: 217 231.
105. Listgarten, M. A. 1976. Structure of the microbial flora associated with periodontal health and disease in man. A light and electron microscopic study. J. Periodontol. 47: 1 18.
106. Listgarten, M, A. 2000. The structure of dental plaque. Periodontology 5: 52 65.
107. Listgarten, M. A.,, H. E. Mayo,, and R. Tremblay. 1975. Development of dental plaque on epoxy resin crowns in man. A light and electron microscopic study. J. Periodontol. 46: 10 26.
108. Loo, C. Y.,, D. A. Corliss,, and N. Ganeshkumar. 2000. Streptococcus gordonii biofilm formation: identification of genes that code for biofilm phenotypes. J. Bacteriol. 182: 1374 1382.
109. Loo, C. Y.,, K. Mitrakul,, I. B. Voss,, C. V. Hughes,, and N. Ganeshkumar. 2003. Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. J. Bacteriol. 185: 2887 2900.
110. Lunsford, R. D. 1998. Streptococcal transformation: essential features and applications of a natural gene exchange system. Plasmid 39: 10 20.
111. Lunsford, R. D.,, and J. London. 1996. Natural genetic transformation in Streptococcus gordonii: comX imparts spontaneous competence on strain Wicky. J. Bacteriol. 178: 5831 5835.
112. Mager, D. L.,, L. A. Ximenez-Fyvie,, A. D. Haffajee,, and S. S. Socransky. 2003. Distribution of selected bacterial species on intraoral surfaces. J. Clin. Periodontol. 30: 644 654.
113. Mah, T. F.,, and G. A. O’Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9: 34 39.
114. Manch-Citron, J. N.,, J. Allen,, J. M. Moos,, and J. London. 1992. The gene encoding a Prevotella loescheii lectin-like adhesin contains an interrupted sequence which causes a frameshift. J. Bacteriol. 174: 7328 7336.
115. Marsh, P. D. 2003. Are dental diseases examples of ecological catastrophes? Microbiology 149: 279 294.
116. McIntire, F. C.,, A. E. Vatter,, J. Baros,, and J. Arnold. 1978. Mechanism of coaggregation between Actinomyces viscosus T14V and Streptococcus sanguis 34. Infect. Immun. 21: 978 988.
117. McKee, A. S.,, A. S. McDermid,, D. C. Ellwood,, and P. D. Marsh. 1985. The establishment of reproducible, complex communities of oral bacteria in the chemostat using defined inocula. J. Appl. Bacteriol. 59: 263 275.
118. McNab, R.,, H. Forbes,, P. S. Handley,, D. M. Loach,, G. W. Tannock,, and H. F. Jenkinson. 1999. Cell wall-anchored CshA polypeptide (259 kilodaltons) in Streptococcus gordonii forms surface fibrils that confer hydrophobic and adhesive properties. J. Bacteriol. 181: 3087 3095.
119. McNab, R.,, S. K. Ford,, A. El-Sabaeny,, B. Barbieri,, G. S. Cook,, and R. J. Lamont. 2003. LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185: 274 284.
120. McNab, R.,, A. R. Holmes,, J. M. Clarke,, G. W. Tannock,, and H. F. Jenkinson. 1996. Cell surface polypeptide CshA mediates binding of Streptococcus gordonii to other oral bacteria and to immobilized fibronectin. Infect. Immun. 64: 4204 4210.
121. McNab, R.,, and H. F. Jenkinson. 1992. Gene disruption identifies a 290 kDa cell-surface polypeptide conferring hydrophobicity and coaggregation properties in Streptococcus gordonii. Mol. Microbiol. 6: 2939 2949.
122. McNab, R.,, H. F. Jenkinson,, D. M. Loach,, and G. W. Tannock. 1994. Cell-surface-associated polypeptides CshA and CshB of high molecular mass are colonization determinants in the oral bacterium Streptococcus gordonii. Mol. Microbiol. 14: 743 754.
123. Merritt, J.,, F. Qi,, S. D. Goodman,, M. H. Anderson,, and W. Shi. 2003. Mutation of luxS affects biofilm formation in Streptococcus mutans. Infect. Immun. 71: 1972 1979.
124. Millsap, K. W.,, R. Bos,, H. J. Busscher,, and H. C. van der Mei. 1999. Surface aggregation of Candida albicans on glass in the absence and presence of adhering Streptococcus gordonii in a parallelplate flow chamber: A surface thermodynamical analysis based on acid-base interactions. J. Colloid Interface Sci. 212: 495 502.
125. Moore, L. V.,, W. E. Moore,, E. P. Cato,, R. M. Smibert,, J. A. Burmeister,, A. M. Best,, and R. R. Ranney. 1987. Bacteriology of human gingivitis. J. Dent. Res. 66: 989 995.
126. Moore, W. E.,, L. V. Holdeman,, E. P. Cato,, R. M. Smibert,, J. A. Burmeister,, K. G. Palcanis,, and R. R. Ranney. 1985. Comparative bacteriology of juvenile periodontitis. Infect. Immun. 48: 507 519.
127. Moore, W. E.,, L. V. Holdeman,, E. P. Cato,, R. M. Smibert,, J. A. Burmeister,, and R. R. Ranney. 1983. Bacteriology of moderate (chronic) periodontitis in mature adult humans. Infect. Immun. 42: 510 515.
128. Moore, W. E.,, L. V. Holdeman,, R. M. Smibert,, D. E. Hash,, J. A. Burmeister,, and R. R. Ranney. 1982. Bacteriology of severe periodontitis in young adult humans. Infect. Immun. 38: 1137 1148.
129. Moore, W. E.,, L. H. Moore,, R. R. Ranney,, R. M. Smibert,, J. A. Burmeister,, and H. A. Schenkein. 1991. The microflora of periodontal sites showing active destructive progression. J. Clin. Periodontol. 18: 729 739.
130. Moore, W. E. C.,, and L. V. H. Moore. 1994. The bacteria of periodontal diseases. Periodontology 2000 5: 66 77.
131. Murray, P. A.,, M. J. Levine,, L. A. Tabak,, and M. S. Reddy. 1982. Specificity of salivarybacterial interactions. II. Evidence for a lectin on Streptococcus sanguis with specificity for a NeuAc alpha 2, 3Gal beta 1, 3GalNAc sequence. Biochem. Biophys. Res. Commun. 106: 390 396.
132. Netuschil, L.,, E. Reich,, G. Unteregger,, A. Sculean,, and M. Brecx. 1998. A pilot study of confocal laser scanning microscopy for the assessment of undisturbed dental plaque vitality and topography. Arch. Oral Biol. 43: 277 285.
133. Noiri, Y.,, and S. Ebisu. 2000. Identification of periodontal disease-associated bacteria in the “plaque-free zone.” J. Periodontol. 71: 1319 1326.
134. Noiri, Y.,, L. Li,, and S. Ebisu. 2001. The localization of periodontal-disease-associated bacteria in human periodontal pockets. J. Dent. Res. 80: 1930 1934.
135. Noiri, Y.,, K. Ozaki,, H. Nakae,, T. Matsuo,, and S. Ebisu. 1997. An immunohistochemical study on the localization of Porphyromonas gingivalis, Campylobacter rectus and Actinomyces viscosus in human periodontal pockets. J. Periodontal Res. 32: 598 607.
136. Nyvad, B.,, and O. Fejerskov. 1987a. Scanning electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95: 287 296.
137. Nyvad, B.,, and O. Fejerskov. 1987b. Transmission electron microscopy of early microbial colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95: 297 307.
138. Nyvad, B.,, and M. Kilian. 1987. Microbiology of the early colonization of human enamel and root surfaces in vivo. Scand. J. Dent. Res. 95: 369 380.
139. Nyvad, B.,, and M. Kilian. 1990. Comparison of the initial streptococcal microflora on dental enamel in caries-active and in caries-inactive individuals. Caries Res. 24: 267 272.
140. Orstavik, D.,, and F. W. Kraus. 1973. The acquired pellicle: immunofluorescent demonstration of specific proteins. J. Oral Pathol. 2: 68 76.
141. Orstavik, D.,, and F. W. Kraus. 1974. The acquired pellicle: enzyme and antibody activities. Scand. J. Dent. Res. 82: 202 205.
142. O’Toole, G. A.,, and R. Kolter. 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signaling pathways: a genetic analysis. Mol. Microbiol. 28: 449 461.
143. Pace, N. R. 1997. A molecular view of microbial diversity and the biosphere. Science 276: 734 740.
144. Palmer, R. J., Jr.,, S. M. Gordon,, J. O. Cisar,, and P. E. Kolenbrander. 2003. Coaggregationmediated interactions of streptococci and actinomyces detected in initial human dental plaque. J. Bacteriol. 185: 3400 3409.
145. Palmer, R. J., Jr.,, K. Kazmerzak,, M. C. Hansen,, and P. E. Kolenbrander. 2001. Mutualism versus independence: strategies of mixed-species oral biofilms in vitro using saliva as the sole nutrient source. Infect Immun. 69: 5794 5804.
146. Paster, B. J.,, S. K. Boches,, J. L. Galvin,, R. E. Ericson,, C. N. Lau,, V. A. Levanos,, A. Sahasrabudhe,, and F. E. Dewhirst. 2001. Bacterial diversity in human subgingival plaque. J. Bacteriol. 183: 3770 3783.
147. Pestova, E. V.,, L. S. Håvarstein,, and D. A. Morrison. 1996. Regulation of competence for genetic transformation in Streptococcus pneumoniae by an auto-induced peptide pheromone and a two-component regulatory system. Mol. Microbiol. 21: 853 862 .
148. Pratten, J.,, P. Barnett,, and M. Wilson. 1998. Composition and susceptibility to chlorhexidine of multispecies biofilms of oral bacteria. Appl. Environ. Microbiol. 64: 3515 3519.
149. Pratten, J.,, and M. Wilson. 1999. Antimicrobial susceptibility and composition of microcosm dental plaques supplemented with sucrose. Antimicrob. Agents Chemother. 43: 1595 1599.
150. Reid, G.,, J. A. McGroarty,, R. Angotti,, and R. L. Cook. 1988. Lactobacillus inhibitor production against Escherichia coli and coaggregation ability with uropathogens. Can. J. Microbiol. 34: 344 351.
151. Rickard, A. H.,, P. Gilbert,, N. J. High,, P. E. Kolenbrander,, and P. S. Handley. 2003a. Bacterial coaggregation: an integral process in the development of multi-species biofilms. Trends Microbiol. 11: 94 100.
152. Rickard, A. H.,, S. A. Leach,, C. M. Buswell,, N. J. High,, and P. S. Handley. 2000. Coaggregation between aquatic bacteria is mediated by specific-growth-phase-dependent lectin-saccharide interactions. Appl. Environ. Microbiol. 66: 431 434.
153. Rickard, A. H.,, S. A. Leach,, L. S. Hall,, C. M. Buswell,, N. J. High,, and P. S. Handley. 2002. Phylogenetic relationships and coaggregation ability of freshwater biofilm bacteria. Appl. Environ. Microbiol. 68: 3644 3650.
154. Rickard, A. H.,, A. J. McBain,, R. G. Ledder,, P. S. Handley,, and P. Gilbert. 2003b. Coaggregation between freshwater bacteria within biofilm and planktonic communities. FEMS Microbiol. Lett. 220: 133 140.
155. Ritz, H. L. 1967. Microbial population shifts in developing human dental plaque. Arch. Oral Biol. 12: 1561 1568.
156. Rogers, J. D.,, E. M. Haase,, A. E. Brown,, C. W. I. Douglas,, J. P. Gwynn,, and F. A. Scannapieco. 1998. Identification and analysis of a gene ( abpA) encoding a major amylase-binding protein in Streptococcus gordonii. Microbiology 144: 1223 1233.
157. Rogers, J. D.,, R. J. Palmer, Jr.,, P. E. Kolenbrander,, and F. A. Scannapieco. 2001. Role of Streptococcus gordonii amylase-binding protein A in adhesion to hydroxyapatite, starch metabolism, and biofilm formation. Infect. Immun. 69: 7046 7056.
158. Rosen, G.,, I. Nisimov,, M. Helcer,, and M. N. Sela. 2003. Actinobacillus actinomycetemcomitans serotype b lipopolysaccharide mediates coaggregation with Fusobacterium nucleatum. Infect. Immun. 71: 3652 3656.
159. Ryckeboer, J.,, J. Mergaert,, J. Coosemans,, K. Deprins,, and J. Swings. 2003. Microbiological aspects of biowaste during composting in a monitored compost bin. J. Appl. Microbiol. 94: 127 137.
160. Rykke, M.,, G. Smistad,, G. Rölla,, and J. Karlsen. 1995. Micelle-like structures in human saliva. Colloids Surf. B Biointerfaces 4: 33 44.
161. Rykke, M.,, A. Young,, G. Rölla,, T. Devold,, and G. Smistad. 1997. Transmission electron microscopy of human saliva. Colloids Surf. B Biointerfaces 9: 257 267.
162. Scannapieco, F. A. 1994. Saliva-bacterium interactions in oral microbial ecology. Crit. Rev. Oral Biol. Med. 5: 203 248.
163. Scannapieco, F. A.,, E. J. Bergey,, M. S. Reddy,, and M. J. Levine. 1989. Characterization of salivary α-amylase binding to Streptococcus sanguis. Infect. Immun. 57: 2853 2863.
164. Shaniztki, B.,, D. Hurwitz,, N. Smorodinsky,, N. Ganeshkumar,, and E. I. Weiss. 1997. Identification of a Fusobacterium nucleatum PK1594 galactose-binding adhesin which mediates coaggregation with periopathogenic bacteria and hemagglutination. Infect. Immun. 65: 5231 5237.
165. Sissons, C. H. 1997. Artificial dental plaque biofilm model systems. Adv. Dent. Res. 11: 110 126.
166. Sissons, C. H.,, T. W. Cutress,, M. P. Hoffman,, and J. S. Wakefield. 1991. A multi-station dental plaque microcosm (artificial mouth) for the study of plaque growth, metabolism, pH, and mineralization. J. Dent. Res. 70: 1409 1416.
167. Sissons, C. H.,, L. Wong,, and T. W. Cutress. 1995. Patterns and rates of growth of microcosm dental plaque biofilms. Oral Microbiol. Immunol. 10: 160 167.
168. Sissons, C. H.,, and S. Yakub. 2000. Suppression of urease levels in Streptococcus salivarius by cysteine, related compounds and by sulfide. Oral Microbiol. Immunol. 15: 317 324.
169. Socransky, S. S.,, A. D. Haffajee,, M. A. Cugini,, C. Smith,, and R. L. Kent, Jr. 1998. Microbial complexes in subgingival plaque. J. Clin. Periodontol. 25: 134 144.
170. Socransky, S. S.,, C. Smith,, L. Martin,, B. J. Paster,, F. E. Dewhirst,, and A. E. Levin. 1994. Checkerboard DNA-DNA hybridization. BioTechniques 17: 788 792.
171. Sunde, P. T.,, I. Olsen,, U. B. Gobel,, D. Theegarten,, S. Winter,, G. J. Debelian,, L. Tronstad,, and A. Moter. 2003. Fluorescence in situ hybridization (FISH) for direct visualization of bacteria in periapical lesions of asymptomatic root-filled teeth. Microbiology 149: 1095 1102.
172. Surette, M. G.,, M. B. Miller,, and B. L. Bassler. 1999. Quorum sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: a new family of genes responsible for autoinducer production. Proc. Natl. Acad. Sci. USA 96: 1639 1644.
173. Svensater, G.,, U. B. Larsson,, E. C. Greif,, D. G. Cvitkovitch,, and I. R. Hamilton. 1997. Acid tolerance response and survival by oral bacteria. Oral Microbiol. Immunol. 12: 266 273.
174. Takahashi, Y.,, K. Konishi,, J. O. Cisar,, and M. Yoshikawa. 2002a. Identification and characterization of hsa, the gene encoding the sialic acidbinding adhesin of Streptococcus gordonii DL1. Infect. Immun. 70: 1209 1218.
175. Takahashi, Y.,, S. Ruhl,, J. W. Yoon,, A. L. Sandberg,, and J. O. Cisar. 2002b. Adhesion of viridans group streptococci to sialic acid-, galactose-and N-acetylgalactosamine-containing receptors. Oral Microbiol. Immunol. 17: 257 262.
176. Thomas, W. E.,, E. Trintchina,, M. Forero,, V. Vogel,, and E. V. Sokurenko. 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109: 913 923.
177. Thurnheer, T.,, R. Gmur,, S. Shapiro,, and B. Guggenheim. 2003. Mass transport of macromolecules within an in vitro model of supragingival plaque. Appl. Environ. Microbiol. 69: 1702 1709.
178. Vandevoorde, L.,, H. Christiaens,, and W. Verstraete. 1992. Prevalence of coaggregation reactions among chicken lactobacilli. J. Appl. Bacteriol. 72: 214 219.
179. Verderame, R. A.,, C. M. Cobb,, W. J. Killoy,, and C. L. Drisko. 1989. Scanning electron microscopic examination of pocket wall epithelium and associated plaque in localized juvenile periodontitis. J. Clin. Periodontol. 16: 234 241.
180. Vrahopoulos, T. P.,, P. M. Barber,, and H. N. Newman. 1992. The apical border plaque in chronic adult periodontitis. An ultrastructural study. I. Morphology, structure, and cell content. J. Periodontol. 63: 243 252.
181. Wagner, M.,, M. Schmid,, S. Juretschko,, K. H. Trebesius,, A. Bubert,, W. Goebel,, and K. H. Schleifer. 1998. In situ detection of a virulence factor mRNA and 16S rRNA in Listeria monocytogenes. FEMS Microbiol. Lett. 160: 159 168.
182. Wang, B. Y.,, B. Chi,, and H. K. Kuramitsu. 2002. Genetic exchange between Treponema denticola and Streptococcus gordonii in biofilms. Oral Microbiol. Immunol. 17: 108 112.
183. Wecke, J.,, T. Kersten,, K. Madela,, A. Moter,, U. B. Göbel,, A. Friedmann,, and J. P. Bernimoulin. 2000. A novel technique for monitoring the development of bacterial biofilms in human periodontal pockets. FEMS Microbiol. Lett. 191: 95 101.
184. Weiss, E. I.,, J. London,, P. E. Kolenbrander,, A. R. Hand,, and R. Siraganian. 1988. Localization and enumeration of fimbria-associated adhesins of Bacteroides loescheii. J. Bacteriol. 170: 1123 1128.
185. Wen, Z. T.,, and R. A. Burne. 2002. Functional genomics approach to identifying genes required for biofilm development by Streptococcus mutans. Appl. Environ. Microbiol. 68: 1196 1203.
186. Whittaker, C. J.,, C. M. Klier,, and P. E. Kolenbrander. 1996. Mechanisms of adhesion by oral bacteria. Annu. Rev. Microbiol. 50: 513 552.
187. Wimpenny, J. W. T.,, S. L. Kinniment,, and M. A. Scourfield,. 1993. The physiology and biochemistry of biofilm, p. 51 94. In S. P. Denyer,, S. P. Gorman,, and M. Sussman (ed.), Microbial Biofilms: Formation and Control. Society for Applied Bacteriology Technical Series 30. Blackwell Scientific, Oxford, United Kingdom.
188. Wong, L.,, C. Sissons,, and C. H. Sissions. 2001. A comparison of human dental plaque microcosm biofilms grown in an undefined medium and a chemically defined artificial saliva. Arch. Oral Biol. 46: 477 486.
189. Wood, S. R.,, J. Kirkham,, P. D. Marsh,, R. C. Shore,, B. Nattress,, and C. Robinson. 2000. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J. Dent. Res. 79: 21 27.
190. Ximenez-Fyvie, L. A.,, A. D. Haffajee,, and S. S. Socransky. 2000a. Comparison of the microbiota of supra- and subgingival plaque in health and periodontitis. J. Clin. Periodontol. 27: 648 657.
191. Ximenez-Fyvie, L. A.,, A. D. Haffajee,, and S. S. Socransky. 2000b. Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis. J. Clin. Periodontol. 27: 722 732.
192. Yeung, M. K.,, J. A. Donkersloot,, J. O. Cisar,, and P. A. Ragsdale. 1998. Identification of a gene involved in assembly of Actinomyces naeslundii T14V type 2 fimbriae. Infect. Immun. 66: 1482 1491.
193. Yeung, M. K.,, and P. A. Ragsdale. 1997. Synthesis and function of Actinomyces naeslundii T14V type 1 fimbriae require the expression of additional fimbria-associated genes. Infect. Immu. 65: 2629 2639.
194. Yoshida, A.,, and H. K. Kuramitsu. 2002a. Multiple Streptococcus mutans genes are involved in biofilm formation. Appl. Environ. Microbiol. 68: 6283 6291.
195. Yoshida, A.,, and H. K. Kuramitsu. 2002b. Streptococcus mutans biofilm formation: utilization of a gtfB promoter-green fluorescent protein ( PgtfB:: gfp) construct to monitor development. Microbiology 148: 3385 3394.
196. Zaura-Arite, E.,, J. van Marle,, and J. M. ten Cate. 2001. Confocal microscopy study of undisturbed and chlorhexidine-treated dental biofilm. J. Dent. Res. 80: 1436 1440.
197. Zee, K. Y.,, L. P. Samaranayake,, and R. Attström. 1997. Scanning electron microscopy of microbial colonization of ‘rapid’ and ‘slow’ dental-plaque formers in vivo. Arch. Oral Biol. 42: 735 742.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error