Chapter 13 : Linear Plasmids in Bacteria: Common Origins, Uncommon Ends

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Linear Plasmids in Bacteria: Common Origins, Uncommon Ends, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap13-2.gif


This chapter reviews the structure and replication of bacterial linear plasmids. Examples are given of the varying structures of the termini (telomeres) of linear plasmids from representative bacteria, and proposed mechanisms for telomere replication and resolution are described. Although the focus is on linear plasmids, most of what is described in the chapter also applies to linear bacterial chromosomes. The first bacterial linear plasmid was described in 1979 from the antibiotic-producing soil microbe . A few species with linear plasmids or chromosomes have also been found in the alpha, beta, and gamma divisions of the genus . In bacteria with polyploid stages, such as the mycelium of , linear DNA may segregate with fewer mishaps than circular DNA. Alternatively, one could argue that conversion of a circular replicon to a linear form was an inadvertent but neutral event. Linear plasmids have also been identified in the actinomycetes , , , , , and the proteobacteria and . Linear plasmids generally retain the same features and mechanisms for replication initiation as their circular counterparts. Recent experiments demonstrate that replication initiates from an internal origin and continues around the hairpin telomeres, resulting in a circular dimer. The segregation systems of all linear plasmids characterized to date, regardless of telomere structure, appear to be analogous to those of circular plasmids.

Citation: Stewart P, Rosa P, Tilly K. 2004. Linear Plasmids in Bacteria: Common Origins, Uncommon Ends, p 291-301. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch13
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Distribution of linear DNA among phylogenetically diverse bacteria. The tree was derived from 16S rDNA sequences by Hugenholrz ( ) and modified with permission. Phyla are shown as wedges, with their widths representing the known degree of divergence within that phylum. Phyla with cultivated members are shown in black, whereas those known only from environmental sequences (named by a member within the group) are shown in white. Groups with known linear DNA are shown on the right, with the form of the DNA (when known or presumed) indicated. Bars with loops on either end indicate linear DNA with hairpin ends, and bars with stars on either end indicate protein-capped ends. Species in which the sole identified linear species is a phage genome have the phage name in parentheses after the species name. Linear DNA may be present but not yet detected in other groups of bacteria. References arc in the text. Scale bar = 0.1 changes per nucleotide.

Citation: Stewart P, Rosa P, Tilly K. 2004. Linear Plasmids in Bacteria: Common Origins, Uncommon Ends, p 291-301. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Model for replication of linear plasmids with covalently closed hairpin ends. Replication initiates from an internal origin and proceeds bidirectionally, producing a circular dimer intermediate with joined telomeric sequences producing inverted repeats (arrows). The replicated telomere sequence serves as a recognition site for the telomere resolvase (insert symbol) , which cleaves both DNA strands and then joins opposite strands together to create two linear plasmids with covalently closed hairpin telomeres. This model has been more fully described by Casjens ( ).

Citation: Stewart P, Rosa P, Tilly K. 2004. Linear Plasmids in Bacteria: Common Origins, Uncommon Ends, p 291-301. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Model for replication of linear plasmids with protein-capped ends. Bidirectional replication from an internal origin results in a gap at the 5 end of the newly synthesized strand when the RNA primer is removed. Two general models for filling the gaps are depicted and are based on models for the replication of the linear chromosome of spp. Inverted repeat sequences of the single-stranded 3′ overhang fold together to form stem-loop structures. (A) The terminal protein (?) recognizes the complex secondary structure of the 3 DNA strand and serves as a protein primer for DNA polymerase to initiate replication and fill the gap. B. The folded 3 terminus forms the double-stranded primer necessary for DNA polymerase to initiate replication and fill the gap. Subsequently, the terminal protein binds and nicks the DNA near the beginning of the inverted repeat regions. DNA polymerase then proceeds in a 5 to 3 direction from the original template strand and fills the remaining gap. Variations on these models have been proposed and are reviewed by Chaconas and Chen ( ).

Citation: Stewart P, Rosa P, Tilly K. 2004. Linear Plasmids in Bacteria: Common Origins, Uncommon Ends, p 291-301. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Bao, K.,, and S. N. Cohen. 2001. Terminal proteins essential for the replication of linear plasmids and chromosomes in Streptomyces. Genes Dev. 15: 1518 1527.
2. Barbour, A. G.,, C. J. Carter,, V. Bundoc,, and J. Hinnebusch. 1996. The nucleotide sequence of a linear plasmid of Borrelia burgdorferi reveals similarities to those of circular plasmids of other prokaryotes. J. Bacteriol. 175: 6635 6639.
3. Barbour, A. G.,, and C. F. Garon. 1987. Linear plasmids of the bacterium Borrelia burgdorferi have covalently closed ends. Science 237: 409 411.
4. Brown, S. E.,, D. L. Knudson,, and C. A. Ishimaru. 2002. Linear plasmid in the genome of Clavibacter micbiganensis subsp. sepedonicus. J. Bacteriol. 184: 2841 2844.
5. Casjens, S., 1999. Evolution of the linear DNA replicons of the Borrelia spirochetes. Curr. Opin. Microbiol. 2: 529 534.
6. Casjens, S.,, and W. M. Huang. 1993. Linear chromosomal physical and genetic map of Borrelia burgdorferi, the Lyme disease agent, Mol. Microbiol. 8: 967 980.
7. Casjens, S.,, M. Murphy,, M. DeLange,, L. Sampson,, R. van Vugt,, and W. M. Huang. 1997. Telomeres o f the linear chromosomes of Lyme disease spirochetes: nucleotide sequence and possible exchange with linear plasmid telomeres. Mol. Microbiol. 26: 581 596.
8. Casjens, S.,, N. Palmer,, R. van Vugt,, W. M. Huang,, B. Stevenson,, P. Rosa,, R. Lathigra,, G. Sutton,, J. Peterson,, R. J. Dodson,, D. Haft,, E. Hickey,, M. Gwinn,, O. White,, and C. Eraser. 2000. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol. Microbiol. 35: 490 516.
9. Chaconas, G.,, and C. W. Chen,. Linear chromosomes in bacteria: no longer going around in circles. In N. P. Higgins (ed.), The Bacterial Chromosome, in press. ASM Press, Washington, D.C..
10. Chaconas, G.,, P. E. Stewart,, K. Tilly,, J. L, Bono, and P. Rosa. 2001. Telomere resolution in the Lyme disease spirochete. EMBO J. 20: 3229 3237.
11. Chang, P.,, E. Kim,, and S. N. Cohen. 1996. Streptomyces linear plasmids that contain a phage-like, centrally located, replication origin. Mol. Microbiol. 22: 789 800.
12. Chang, P. -C.,, and S. N. Cohen. 1994. Bidirectional replication from an internal origin in a linear Streptomyces plasmid. Science 265: 952 954.
13. Crespi, M.,, E. Messens,, A. B. Caplan,, M. van Montagu,, and J. Desomer. 1992. Fasciation induction by the phytopathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. 11: 795 804.
14. Dabrock, B.,, M. Kesseler,, B. Averhoff,, and G. Gottschalk. 1994. Identification and characterization of a transmissible linear plasmid from Rhodococcus erythropolis BD2 that encodes isopropylbenzene and trichloroethene catabolism. Appl. Environ. Microbiol. 60: 853 860.
15. Davidson, B. E.,, J . MacDougall,, and I. Saint Girons. 1992. Physical map of the linear chromosome of the bacterium Borrelia burgdorferi 212, a causative agent of Lyme disease, and localization of rRNA genes. J. Bacteriol. 174: 3766 3774.
16. Deneke, J.,, G. Zicgclin,, R. Lurz,, and E. Lanka. 2002. Phage NI5 telomere resolution. Target requirements for recognition and processing by the protelomerase. J. Biol. Chem. 277: 10410 10419.
17. Deneke, J.,, G. Ziegelin,, R. Lurz,, and E. Lanka. 2000. The protelomerase of temperate Escherichia coli phage N15 has cleaving-joining activity. Proc. Natl. Acad. Sci. USA 97: 7721 7726.
18. Dunn, J. J.,, S. R. Buchstein,, L.-L. Butler,, S. Fisenne,, D. S. Polin,, B. N. Lade,, and B. J . Luft. 1994. Complete nucleotide sequence of a circular plasmid from the Lyme disease spirochete, Borrelia burgdorferi. J. Bacteriol. 176: 2706 2717.
19. Eggers, C. H.,, M. J. Caimano,, M. L. Clawson,, W. G. Miller,, D. S. Samuels,, and J. D. Radolf. 2002. Identification of loci critical for replication and compatibility of a Borrelia burgdorferi cp32 plasmid and use of a cp32-based shuttle vector for expression of fluorescent reporters in the Lyme disease spirochaete. Mol. Microbiol. 43: 281 295.
20. Ferdows, M. S.,, and A. G. Barbour. 1989. Megabase-sized linear DNA in the bacterium Borrelia burgdorferi, the Lyme disease agent. Proc. Natl. Acad. Sci. USA 86: 5969 5973.
21. Figurski, D. H.,, R. F. Pohlman,, D. H. Bechhofer,, A. S. Prince,, and C. A. Kelton. 1982. Broad host range plasmid RK2 encodes multiple kit genes potentially lethal to Escherichia coli host cells. Proc. Natl. Acad. Sci. USA 79: 1935 1939.
22. Fraser, C. M.,, S. Casjens,, W. M. Huang,, G. G. Sutton,. R. Clayton,, R. Lathigra,, O. White,, K. A. Ketchum,, R. Dodson,, E. K. Hickey,, M. Gwinn,, B. Dougherty,, J.-F. Tomb,, R. D. Fleischmann,, D. Richardson,, J. Peterson,, A. R. Kerlavage,, J. Quackenbush,, S. Salzberg,, M. Hanson,, R. van Vugt,, N. Palmer,, M. D. Adams,, J. Gocayne,, J. Weidmann,, T. Utterback,, L. Watthey,, L. McDonald,, P. Artiach,, C. Bowman,, S. Garland,, C. Fujii,, M. D. Cotton,, K. Horst,, K. Roberts,, B. Hatch,, H. O. Smith,, and J. C. Venter. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580 586.
23. Goodner, B.,, G. Hinkle,, S. Gattung,, N. Miller,, M. Blanchard,, B. Qurollo,, B. S. Goldman,, Y. Cao,, M. Askenazi,, C. Hailing,, L. Mullin,, K. Houmiel,, J. Gordon,, M. Vaudin,, O. lartchouk,, A. Epp,, F. Liu,, C. Wollam,, M. Allinger,, D. Doughty,, C. Scott,, C. Lappas,, B. Markelz,, C. Flanagan,, C. Crowell,, J. Gurson,, C. Lomo,, C. Sear,, G. Strub,, C. Cielo,, and S. Slater. 2001. Genome sequence of the plant pathogen and biotechnology agent Agrobacterium tumefaciens C58. Science 294: 2323 2328.
24. Goshi, K.,, T. Uchida,, A. Lezhava,, M. Yamasaki,, K. Hiratsu,, H. Shinkawa,, and H. Kinashi. 2002. Cloning and analysis of the telomere and terminal inverted repeat of the linear chromosome of Streptomyces griseus. J . Bacteriol 184: 3411 3415.
25. Grigoriev, P. S.,, and M. B. Lobocka. 2001. Determinants of segregational stability of the linear plasmid-prophage N15 of Escherichia coli. Mol. Microbiol. 42: 355 368.
26. Hayakawa, T.,, T. Tanaka,, K. Sakaguchi,, N. Otakc,, and H. Yonchara. 1979. A linear plasmid-like DNA in Streptomyces sp. producing tankacidin group antibiotics. J . Gen. Appl. Microbiol. 25: 255 260.
27. Hinnebusch, J., , and A. G. Barbour. 1991. Linear plasmids of Borrelia burgdorferi have a telomeric structure and sequence similar to those of a eukaryotic virus. J. Bacteriol. 173: 7233 7239.
28. Hinnebusch, J.,, S. Bergstrom,, and A. G. Barbour. 1990. Cloning and sequence analysis of linear plasmid telomeres of the bacterium Borrelia burgdorferi. Mol. Microbiol. 4: 811 820.
29. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic era. Genome Biol. 3:reviews 0003.1-0003.8.
30. Kalkus, J.,, M. Reh,, and H. G. Schlegel. 1990. Hydrogen autotrophy of Nocardia opaca strains is encoded by linear megaplasmids. J. Gen. Microbiol 136: 1145 1151.
31. Kinashi, H.,, M. Shimaji,, and A. Sakai. 1987. Giant linear plasmids in Streptomyces which code for antibiotic biosynthesis genes. Nature 328: 454 456.
32. Kobryn, K.,, and G. Chaconas. 2001. The circle is broken: telomere resolution in linear replicons. Curr. Opin. Microbiol. 4: 558 564.
33. Kobryn, K.,, and G. Chaconas. 2002. ResT, a telomere resolvase encoded by the Lyme disease spirochete. Mol Cell. 9: 195 201.
34. Kosono, S.,, M. Maeda,, F. Fuji,, H. Arai,, and T. Kudo. 1997. Three of the seven bphC genes of Rhodococcus erythropolis TA421, isolated from a termite ecosystem, are located on an indigenous plasmid associated with biphenyl degradation. Appl Environ. Microbiol. 63: 3282 3285.
35. Krum, J. G.,, and S. A. Ensign. 2001. Evidence that a linear megaplasmid encodes enzymes of aliphatic alkene and epoxide metabolism and coenzyme M (2-mercaptocthanesulfonate) biosynthesis in Xantbobacter strain Py2. J. Bacteriol 183: 2172 2177.
36. Labandeira-Rey, M.,, and J. T. Skare. 2001. Decreased infectivity in Borrelia burgdorferi strain B31 is associated with loss of linear plasmid 25 or 28-1. Infect. Immun. 69: 446 455.
37. le Dantec, C.,, N. Winter,, B. Gicquel,, V. Vincent,, and M. Picardeau. 2001. Genomic sequence and transcriptional analysis of a 23-kilobase mycobacterial linear plasmid: evidence for horizontal transfer and identification of plasmid maintenance systems. J. Bacteriol 183: 2157 2164.
38. Malinin, A. J.,, A. A. Vostrov,, V. N, Rybchin, and A. N. Svarchevsky. 1992. Structure of the linear plasmid N15 ends. Mol Genet. 5- 6: 19 22.
39. Marconi, R. T.,, S. Casjens,, U. G. Munderloh,, and D. S. Samuels. 1996. Analysis of linear plasmid dimers in Borrelia burgdorferi sensu lato isolates: implications concerning the potential mechanism of linear plasmid replication. J acteriol 178: 3357 3361.
40. Masai, E.,, K. Sugiyama,, N. Iwashtta,, S. Shimizu,, J. E. Hauschild,, T. Hatta,, K. Kimbara,, K. Yano,, and M. Fukuda. 1997. The bphDEF meta-cleavage pathway genes involved in biphenyl/polychlorinated biphenyl degradation are located on a linear plasmid and separated from the initial bphACB genes in Rhodococcus sp. strain RHA1. Gene 187: 141 149,
41. Pandza, K.,, G. Pfalzer,, J . Cullum,, and D. Hranueli. 1997. Physical mapping shows that the unstable oxytetracycline gene cluster of Streptomyces rimosus lies close to one end of the linear chromosome. Microbiology 143: 1493 1501.
42. Picardeau, M.,, C. le Dantec,, and V. Vincent. 2000. Analysis of the internal replication region of a mycobacterial linear plasmid. Microbiology 146: 305 313.
43. Picardeau, M.,, J. R. Lobry,, and B. J. Hinnebusch. 2000. Analyzing DNA strand compositional asymmetry to identify candidate replication origins of Borrelia burgdorferi linear and circular plasmids. Genome Res. 10: 1594 1604.
44. Picardeau, M.,, J . R. Lobry,, and B. J . Hinnebusch. 1999. Physical mapping of an origin of bidirectional replication at the centre of the Borrelia burgdorferi linear chromosome. Mol. Microbiol. 32: 437 445.
45. Picardeau, M.,, and V. Vincent. 1998. Mycobacterial linear plasmids have an invertron-like structure related to other linear replicons in actinomycetes. Microbiology 144: 1981 1988.
46. Pisabarro, A.,, A. Correia,, and J. F. Martin. 1998. Pulsed-Field gel electrophoresis analysis of the genome of Rhodococcus fascians: genome size and linear and circular replicon composition in virulent and avirulcnt strains. Curr. Microbiol. 36: 302 308.
47. Polo, S.,, O. Gucrini,, M. Sosio,, and G. Deho. 1998. Identification of two linear plasmids in the actinomycete Planobispora rosea. Microbiology 144: 2819 2825.
48. Purser, J . E.,, and S.J. Norris. 2000. Correlation between plasmid content and infectivity in Borrelia burgdorferi. Proc. Natl. Acad. Sci. USA 97: 13865 13870.
49. Ravel, J.,, E. M. H. Wellington,, and R. T. Hill. 2000. Interspecific transfer of Streptomyces giant linear plasmids in sterile amended soil microcosms. Appl. Environ. Microbiol 66: 529 534.
50. Ravin, N.,, and D. Lane. 1999. Partition of the linear plasmid N15: interactions of N15 partition functions with the sop locus of the F plasmid. J. Bacteriol. 181: 6898 6906.
51. Ravin, N. V.,, T. S. Strakhova,, and V. V. Kuprianov. 2001. The protclomerase of the phage-plasmid N15 is responsible for its maintenance in linear form. J. Mol. Biol. 312: 899 906.
52. Ravin, V.,, N. Ravin,, S. Casjens,, M. E. Ford,, G. F. Hatfall,, and R. W. Hendrix. 2000. Genomic sequence and analysis of the atypical temperate bacteriophage N15. J. Mol Biol. 299: 53 73.
53. Redenbach, M.,, M. Bibb,, B. Gust,, B. Seitz,, and A. Spychaj. 1999. The linear plasmid SCP1 of Streptomyces coelicolor A3(2)possesses a centrally located replication origin and shows significant homology to the transposon Tn481l. Plasmid 42: 174 185.
54. Rybchin, V. N.,, and A. N. Svarchevsky. 1999. The plasmid prophage N15: a linear DNA with covalently closed ends. Mol. Microbiol. 33: 895 903.
55. Sakaguchi, K. 1990. Invertrons, a class of structurally and functionally related genetic elements that includes linear DNA plasmids, transposable elements, and genomes of adeno-type viruses. Microbiol. Rev. 54: 66 74.
56. Salas, M. 1991. Protein-priming of DNA replication. Annu. Rev. Biochem. 60: 39 71.
57. Shiffman, D.,, and S. N. Cohen. 1992. Reconstruction of a Streptomyces linear replicon from separately cloned DNA fragments: existence of a cryptic origin of circular replication within the linear plasmid. Proc. Natl. Acad. Sci. USA 89: 6129 6133.
58. Stewart, P.,, G. Chaconas,, and P. Rosa. 2003. Conservation of plasmid maintenance functions between linear and circular plasmids in Borrelia burgdorferi. J. Bacteriol. 185: 3202 3209.
59. Stewart, P. E.,, R. Thalken,, J. L. Bono,, and P. Rosa. 2001. Isolation of a circular plasmid region sufficient for autonomous replication and transformation of infectious Borrelia burgdorferi. Mol. Microbiol. 39: 714 721.
60. Stoppel, R. D.,, M. Meyer,, and H. G. Schlegel. 1995. The nickel resistance determinant cloned from the cntcrobaetcrmm Klebsiella oxytoca: conjugational transfer, expression, regulation and DNA homologies to various nickel-resistant bacteria. Biometals 8: 70 79.
61. Svarchevsky, A. N.,, and V. N. Rybchin. 1984. Characteristics of plasmid properties of bacteriophage N15. Mol. Gen. Microbiol. Virol. 5: 34 39. ( In Russian.).
62. Svarchevsky, A. N.,, and V. N. Rybchin. 1984. Physical mapping of plasmid N15 DNA. MoL Gen. Microbiol. Virol. 10: 16 22. (In Russian.)
63. Uhlenbeck, O. .,, P. N. Borer,, B. Dcnglcr,, and I. Tinoco, Jr. 1973. Stability of RNA hairpin loops: A 6-C m-U 6, J. Mol. Biol 73: 483 496.
64. Volff, J.-N.,, and J . Altenbuchner, 2000. A new beginning with new ends: linearisation of circular chromosomes during bacterial evolution. FEMS Microbiol. Lett. 186: 143 150.
65. Wlodarczyk, M.,, and B. Nowicka. 1988. Preliminary evidence for the linear nature of Tbiobacillus versutus pTAV2 plasmid. FEMS Microbiol. Lett. 55: 125 128.
66. Wood, D. W.,, J. C. Setubal,, R. Kaul,, D. E. Monks,, J. P. Kitajima,, V. K. Okura,, Y. Zhou,, L. Chen,, G. E. Wood,, N. F. Almeida Jr.,, L. Woo,, Y. Chen,, I. T. Paulsen,, J. A. Eisen,, P. D. Karp,, D. Bovee Sr.,, P. Chapman,, J. Clendenning,, G. Deathcrage,, W. Gillet,, C. Grant,, T. Kutyavin,, R. Levy,, M. J. Li,, E. McClelland,, A. Palmieri,, C. Raymond,, G. Rouse,, C. Saenphimmachak,, Z. Wu,, P. Romero,, D. Gordon,, S. Zhang,, H. Yoo,, Y. Tao,, P. Biddle,, M. Jung,, W. Krespan,, M. Perry,, B. Gordon-Kamm,, L. Liao,, S. Kim,, C. Hcndrick,, Z. Y. Zhao,, M. Dolan,, F. Chumlcy,, S. V. Tingey,, J. F. Tomb,, M. P. Gordon,, M. V. Olson,, and E. W. Nester. 2001. The genome of the natural genetic engineer Agrobacterium tumefaciens C58. Science 294: 2317 2323.
67. Wu, X.,, and K. L. Roy. 1993. Complete nucleotide sequence of a linear plasmid from Streptomyces ctavuligerus and characterization of its RNA transcripts, J. Bacteriol. 175: 37 52,
68. Yang, C. .,, C. H. Huang,, C. Y. Li,, Y. G. Tsay,, S. C. Lee,, and C. W. Chen. 2002. The terminal proteins of linear Streptomyces chromosomes and plasmids: a novel class of replication priming proteins. Mol. Microbiol. 43: 297 305.
69. Zückert, W. R.,, and J. Meyer. 1996. Circular and linear plasmids of Lyme disease spirochetes have extensive homology: characterization of a repeated DNA element. J. Bacteriol. 178: 2287 2298.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error