Chapter 3 : Plasmid Replication Control by Antisense RNAs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Plasmid Replication Control by Antisense RNAs, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817732/9781555812652_Chap03-2.gif


This chapter reviews antisense-RNA-mediated regulation of plasmid replication. Antisense-RNA control in plasmid replication works through a negative control circuit: Antisense RNAs are constitutively synthesized and metabolically unstable. Antisense-RNA-mediated transcriptional attenuation is another mechanism, which has, so far, only been detected in plasmids of gram-positive bacteria (18 family and pT181 family). For antisense-RNA-controlled plasmids that replicate by the theta mechanism, the data on origin characterization and replication mechanism are briefly summarized in this chapter. A three-dimensional model of the N-terminal 63 amino acids (aa) of CopR was constructed, and amino acids involved in DNA binding and dimerization were localized: Arg29 and Arg34 within the HTH-motif are involved in specific recognition of the operator-DNA. Recently, the author showed experimentally that replication control mechanism principally functions in , albeit with a much lower efficiency than in or . The interaction between two highly structured antisense and sense RNAs, initiating by defined loop-loop contacts as shown for plasmid R1, is a recurrent one and valid for most cases of plasmid replication control. The degradation pathway of CopA has been studied in detail. A mechanism that involves RNA-RNA interactions in a manner that interferes with translation was also suggested for pC194 and pUBHO, two other RCR-type plasmids. The chapter talks about inhibition of primer formation and pseudoknot formation.

Citation: Brantl S. 2004. Plasmid Replication Control by Antisense RNAs, p 47-62. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch3
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Mechanisms of antisense-RNA-mediated plasmid copy-number control. Antisense RNAs are drawn in black, sense RNAs in gray. ORFs encoding essential replication initiator proteins are shown as hatched boxes, and ORFs encoding transcriptional repressor proteins are shown as checked boxes. Promoters are symbolized by black triangles and replication origins by black ovals. + indicates positive interaction, - indicates repression. Small black arrows symbolize the interaction between sense and antisense RNAs. (A) Transcriptional attenuation: plasmid pIP501. (Upper part) Working model on regulation of plP501 replication. The minimal replicon with the and genes is shown, separated by the 329-nt-long leader region (white). CopR represses transcription from the promoter pll and, at the same time, indirectly increases transcription initiation from the antisense promoter pill. The antisense RNA causes premature termination of (sense) RNA transcription at the attenuator (Lower part) Mechanism of transcriptional attenuation. For details, see text. Complementary sequence elements are designated A, B, a, and b. (B) Translatioi.nl inhibition. (Upper part) Inhibition of leader peptide translation: plasmid RI. Translation of the leader peptide (black box) is required for efficient translation. The CopB protein represses transcription from the but not from the promoter. Ribosomes are symbolized in black. (Lower part) Direct inhibition of translation: plasmid pMV158. The antisense RNA is complementary to the SD sequence and, therefore, directly inhibits ribosomc binding. The CopG protein represses transcription from the and from the promoter. (C) Inhibition of primer maturation: plasmid ColEl. (Upper part) Schematic representation of the minimal replicon. {Lower part) Mechanism of inhibition of primer maturation. Cross-hatched circle, RNA polymerase; black, newly synthesized DNA strand. For details, see text. (D) Inhibition of pseudoknot formation: plasmid ColIb-P9. (Upper part) The minimal replicon with the (leader peptide) (black box) and genes is shown. White, leader region of mRNA, (Lower part) Genes for and arc translationally coupled. On the mRNA, the SD sequence is exposed, whereas structure HI sequesters both the SD sequence (gray rectangle) and the 5′-rCGCC-3′ sequence (thick black line) and, thereby, translation. Inc (indicated by a bracket), region complementary to the antisense RNA; closed circle, start codon; open circle, codon. Unfolding of structure II by the ribosome stalling at the repY stop codon results in formation of a pseudoknot by base-pairing between the 5′-rGGCCG-3′ and 5′-CGCC-3′ (thick black line in the loop of structure 1) sequences distantly separated, and allows the ribosome to access the RBS. Binding of Inc RNA to the loop of structure 1 directly inhibits formation of the pseudoknot and the subsequent IncRNA-repZ-mRNA duplex formation inhibits rt?/;Y translation.

Citation: Brantl S. 2004. Plasmid Replication Control by Antisense RNAs, p 47-62. In Funnell B, Phillips G (ed), Plasmid Biology. ASM Press, Washington, DC. doi: 10.1128/9781555817732.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Alonso, J. C , and R. M. Tailor. 1987. Initiation of plasmid pC194 replication and its control in Bacillus subtilis. Mol. Gen. Genet. 210: 476 484.
2. Altuvia, S.,, D. Weinstein-Fischer,, A. Zhang, L, Postow, and G. Storz. 1997. A small, stable RNA induced by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90: 43 53.
3. Argaman, L.,, R. Herschberg,, J . Vogel,, G. Bejerano,, E. G. H. Wagner,, H. Margalit,, and S. Altuvia. 2001. Novel small RNA-encoding genes in the intergenic regions of Escherichia coli. Curr. Biol 11: 941 950.
4. Asano, K.,, A. Kato,, H. Moriwaki,, C. Hama,, K. Shiba,, and K. Mizobuchi. 1991. Positive and negative regulations of plasmid ColIb-P9-repZ gene expression at the translational level. J. Biol. Chem. 266: 3774 3781.
5. Asano, K.,, and K. Mizobuchi. 1998. Copy number control of Inclα plasmid Collb-P9 by competition between pseudoknot formation and antisense RNA binding at a specific RNA site. EMBO J. 17: 5201 5213.
6. Asano, K.,, and K. Mizobuchi. 1998. An RNA pseudoknot as the molecular switch for translation of the repZ gene encoding the replication initiator of Inclα plasmid Col1b-P9. J. Biol. Chem. 273: 11815 11825.
7. Asano, K.,, and K. Mizobuchi. 2000. Structural analysis of late intermediate complex formed between plasmid Col1b-P9 Inc RNA and its target RNA. How does a single antisense RNA repress translation of two genes at different rates? J. Biol Chem. 275: 1269 1274.
8. Asano, K.,, H. Moriwaki,, and K. Mizobuchi. 1991. An induced mRNA secondary structure enhances repZ translation in plasmid Col1b-P9. J. Biol Chem. 266: 24549 24556.
9. Asano, K.,, T. Niimi,, S. Yokoyama,, and K. Mizobuchi. 1998. Structural basis for binding of the plasmid Col1b-P9 antisense Inc RNA to its target RNA with the 5′-rUUGGCG-3′ motif in the loop sequence. J. Biol. Chem. 273: 11826 1183.
10. Athanasopoulos, V.,, J . Praszkier,, and A. J . Pittard. 1999. Analysis of elements involved in pseudoknot-dependent expression and regulation of the repA gene of an IncL/M plasmid. J. Bacteriol 181: 1811 1819.
11. Atlung, T.,, B. B. Christensen,, and F. G. Hansen. 1999. Role of the Rom protein in copy number control of plasmid pBR322 at different growth rates in Escherichia coli K-12. Plasmid 41: 110 119.
12.Banner. D. W., M. Kokkinidis, and D. Tscrnoglou. 1987. Structure of the ColEl rop protein at 1.7 Å resolution, J. Mol. Biol. 5: 657675.
13. Bidncnko, V.,, S. D. Ehrlich,, and L. Janniere. 1998. In vivo relations between pAMβl -encoded type I topoisomerase and plasmid replication. Mol. Microbiol. 28: 1005 1016.
14. Blomberg, P. H. M. Engdahl, C Malmgren, P. Romby, and E. G. H. Wagner. 1994. Replication control of plasmid Rl: disruption of an inhibitory RNA structure that sequesters the repA ribosome-binding site permits tap-independent RepA synthesis. Mol. Microbiol. 12: 49 60.
15. Blomberg, P.,, K. Nordstrom,, and E. G. H. Wagner. 1992. Replication control of plasmid Rl: RepA synthesis is regulated by CopA RNA through inhibition of leader peptide translation. EMBO J. 11: 2675 2683.
16. Blomberg, P.,, E. G. H. Wagner,, and K. Nordström. 1990. Replication control of plasmid Rl:the duplex between the antisense RNA, CopA, and its target, CopT, is processed specifically in vivo and in vitro by RNase III. EMBO J. 9: 2331 2340.
17. Brady, G.,, J . Frey,, H. Danbara,, and K. N. Timmis. 1983. Replication control mutations of plasmid R6-5 and their effects on interactions of the RNA-I control element with its target. J. Bacteriol. 154: 429 436.
18. Brantl, S. 1994. The copR gene product of plasmid plP50l acts as a transcriptional repressor at the essential repR promoter. Mol. Microbiol. 14: 473 483.
19. Brantl, S.,, and D. Bchnkc. 1992. Copy number control of the streptococcal plasmid pIP50l occurs at three levels. Nucleic Acids Res. 20: 395 400.
20. Brantl, S.,, and D. Behnkc. 1992. The amount of the RepR protein determines the copy number of plasmid pIP501 in B. subtilis. J. Bacteriol. 174: 5475 5478.
21. Brantl, S.,, and D. Behnke. 1992. Characterization of the minimal origin required for replication of the streptococcal plasmid pIP501 in Bacillus subtilis. Mol. Microbiol. 6: 3501 3510.
22. Brantl, S.,, D. Behnke,, and J . C. Alonso. 1990. Molecular analysis of the replication region of the conjugative Streptococcus agalactiae plasmid pIP501 in Bacillus subtilis. Comparison with plasmids pAMβ1 and pSM19035. Nucleic Acids Res. 18: 4783 1790.
23. Brantl, S.,, E. Birch-Hirschfeld,, and D. Behnke. 1993. RepR protein expression on plasmid pIP501 is controlled by an antisense RNA-mediated transcription attenuation mechanism. J. Bacteriol. 175: 4052 4061.
24. Brantl, S.,, B. Nuez,, and D. Behnkc. 1992. In vitro and in vivo analysis of transcription within the replication region of plasmid pIP501. Mol. Gen. Genet. 234: 105 112.
25. Brantl, S.,, and E. G. H. Wagner. 1994. Antisense-RNA-mediated transcriptional attenuation occurs faster than stable antisense/target RNA pairing: an in vitro study of plasmid pIP501. EMBO J. 13: 3599 3607.
26. Brantl, S.,, and E. G. H. Wagner. 1996. An unusually longlived antisense RNA in plasmid copy number control: in vivo RNAs encoded by the streptococcal plasmid pIP501. J. Mol. Biol. 255: 275 288.
27.Brantl, S. and E. G. H. Wagner. 1997. Dual function of the copR gene product of plasmid plP501. J. Bacteriol. 179: 70167024.
28. Brantl, S.,, and E. G. H. Wagner. 2000. Antisense RNA-mediated transcriptional attenuation: an in vitro study of plasmid pT181. Mol. Microbiol. 35: 1469 1482.
29. Brantl, S.,, and E. G,, H. Wagner. 2002. An antisense RNA-mediated transcription attenuation mechanism functions in Escherichia coli. J. Bacteriol. 184: 2740 2747.
30. Brendcl, V.,, and A. S. Perelson. 1993. Quantitative model of ColEl plasmid copy number control. J. Mol. Biol. 229: 860 872.
31. Brenner, M.,, and J . Tomizawa. 1991. Quantitation of ColEl-encoded replication elements. Proc. Natl. Acad. Sci. USA. 88: 405 409.
32.Bruand, C , and S. D. Ehrlich. 1998. Transcription-driven DNA replication of plasmid pAMβ1 in Bacillus subtilis. Mol. Microbiol. 30: 135145.
33. Bruand, C.,, S. D. Ehrlich, and L Janniere. 1991. Unidirectional theta replication of the structurally stable Enterococcus faecalis plasmid pAMβ1. EMBO J. 10: 2171 2177.
34.Bruand, C , S. D. Ehrlich, and L. Janniere. 1995. Primosome assembly site in Bacillus subtilis. EMBOJ. 14: 26422650.
35.Bruand, C , M. Farache, S. McGovern, S. D. Ehrlich, and P. Polard. 2001. DnaB, DnaD and DnaI proteins are components of the Bacillus subtilis replication restart primosome. Mol. Microbiol. 42: 245255.
36.Bruand, C , E. Le Chatelier, S. D. Ehrlich, and L. Janniere. 1993. A fourth class of theta replicating plasmids. The pAMβl family from gram-positive bacteria. Proc. Natl. Acad. Sci. USA 90: 1166811672.
37. Castagnoli, L.,, M. Scarpa,, M. Kokkinidis,, D. W. Banner,, D. Tsernoglou,, and G. Cesareni. 1989. Genetic and strucutral analysis of the ColEl Rop (Rom) protein. EMBO J. 8: 621 629.
38. Ceglowski, P.,, and J . C Alonso. 1994. Gene organziation of the Streptococcus pyogenes plasmid pDBlOl: sequence analysis of the orfŋ-copS region. Gene 145: 33 39.
39. Ceglowski, P.,, R. Lurz,, and J . C. Alonso. 1993. Functional analysis of pSM 19035 derived replicons in Bacillus subtilis. FEMS Microbiol. Lett. 109: 145 150.
40. Cesareni, G.,, M. A. Muesing,, and B. Polisky. 1982. Control of ColEl DNA replication. The rop gene product negatively affects transcription from the replication primer promoter. Proc. Nat. Acad. Sci. USA 79: 6313 6317.
41. del Solar, G.,, P. Acebo,, and M. Espinosa. 1995. Replication control of plasmid pLS1: efficient regulation of plasmid copy number is exerted by the combined action of two plasmid components, CopG and RNAII. Mol. Microbiol. 18: 913 924.
42. del Solar, G.,, P. Acebo,, and M. Espinosa. 1997. Replication control of plasmid pLSl: the antisense RNA II and the compact mail region are involved in translational regulation of the initiator RepB synthesis. Mol. Microbiol. 23: 95 108.
43. del Solar, G.,, and M. Espinosa. 1992. The copy number of plasmid pLSl is regulated by two trans-acting plasmid products: the antisense RNA II and the repressor protein, RepA. Mol. Microbiol. 6: 83 94.
44. del Solar, G.,, and M. Espinosa. 2000. Plasmid copy number control: an ever-growing story. Mol. Microbiol. 37: 492 500.
45. del Solar, G.,, J . Perez-Martin,, and M. Espinosa. 1990. Plasmid pLSl-encoded RepA protein regulates transcription from repAB promoter by binding to a DNA sequence containing a 13 base pair symmetric element. J. Biol. Chem. 265: 12569 12575.
46. Dervyn, E.,, C. Suski,, R. Daniel,, J . Chapuis,, J. Errington,, L. Jannière,, and S. D. Ehrlich. 2001. Two essential DNA polymerases at the bacterial replication fork. Science 294: 1716 1719.
47. Eguchi, Y.,, T. Itoh,, and J. Tomizawa. 1991. Antisense RNA, Annu. Rev. Biochem. 60: 631 652.
48. Eguchi, Y.,, and J . Tomizawa. 1990. Complex formed by complementary RNA stem-loops and its stabilization by a protein: function of ColEl Rom protein. Cell 60: 199 209.
49. Eguchi, Y.,, and J . Tomizawa. 1991. Complexes formed by complementary RNA stem-loops. Their formations, structures and interaction with ColEl Rom protein. J. Mol. Biol. 220: 831 842.
50.Franch, T,, and K, Gerdes. 2000. U-turns and regulatory RNAs. Curr. Opin. Microbiol 3: 159164.
51. Franch, T.,, M. Petersen,, E. G. H. Wagner,, J . P. Jacobsen,, and K. Gerdes. 1999. Antisense RNA regulation in prokaryotes: rapid RNA/RNA interaction facilitated by a general Uturn loop structure. J. Mol. Biol. 294: 1115 1125.
52. Gennaro, M. L.,, S. Iordanescu,, and R. P. Novick. 1989. Functional organization of the plasmid pTl 81 replication origin. J. Mol. Biol. 205: 355 362.
53. Giraldo, R.,, and R. Diaz. 1992. Differential binding of wildtype and a mutant RepA protein to oriR sequence suggests a model for the initiation of plasmid Rl replication. J. Mol. Biol. 228: 787 802.
54. Giskov, M.,, and S. Molin. 1984. Copy mutants of plasmid R1: effects of base pair substitutions in the copA gene on the replication control system. Mol. Gen. Genet. 194: 286 292.
55. Gomis-Rüth, F. X . , M. Sola, P. Accbo, A. Parraga, A. Guasch, R. Eritja, A. Gonzalez, M. Espinosa, G. del Solar, and M. Coll. 1998. The structure of plasmid encoded transcriptional repressor CopG unliganded and bound to its operator. EMBO J. 17: 7404 7415.
56.Hama, C , T. Takizawa, H. Moriwaki, and K. Mizobuchi. 1990. Role of leader peptide synthesis in repZ gene expression of the Col1b-P9 plasmid. J. Biol. Chem. 265: 1066610673.
57. Hama,, C. T. Takizawa,, H. Moriwaki,, Y. Urasaki,, and K. Mizobuchi. 1990. Organization of the replication control region of plasmid Col1b-P9. J. Bacteriol. 172: 1983 1991.
58.He, L,, F. Söderbom, E. G. H. Wagner, U. Binnie, N. Binns, and M. Masters. 1993. PcnB is required for the rapid degradation of RNAI, the antisense RNA that controls the copy number of ColEl-related plasmids. Mol. Microbiol. 9: 11311142.
59. . Heidrich, N., and S. Brantl. 2003. Antisense-RNA mediated transcriptional attenuation: importance of a U-turn loop structure in the target RNA of plasmid plP50l for efficient inhibition by the antisense RNA. J. Mol. Biol. 333: 917929.
59. Hjalt, T. A. H.,, and E. G. H. Wagner. 1992. The effect of loop size in antisense and target RNAs on the efficiency of antisense RNA control. Nucleic Acids Res. 20: 6723 6732.
60. Hjalt, T. A. H. and E G. H. Wagner. 1995. Bulged-out nucletides in an antisense RNA are required for rapid target RNA binding in vitro and inhibition in vivo. Nucleic Acids Res. 23: 580 587.
61. Hoz, A.,, B., S,. Hoz,, A.,, B.,, S. Ayora,, I. Sitkiewicz,, S. Fernandez,, R. Pankiewicz,, J. C. Alonso,, and P. Ceglowski. 2000. Plasmid copy-number control and better-than random segregation genes of pSM 19035 share a common regulator. Proc. Natl. Acad. Sci. USA 97: 728 733.
62. Itoh, T.,, and J. Tomizawa. 1978. Initiation of replication of plasmid ColEl DNA by RNA polymerase, ribonuclease H and DNA polymerase I. Cold Spring Harbor Symp. Quant. Biol. 43: 409 418.
63.Itoh, T,, and J , Tomizawa. 1980. Formation of an RNA primer for initatiation of replication of ColEl DNA by ribonuclease H. Proc. Natl. Acad. Sci. USA 77: 24502454.
64. Itoh, T.,, and J. Tomizawa. 1982. Purification of ribonuclease H as a factor required for initiation of in vitro ColEl DNA replication. Nucleic Acids. Res. 10: 5949 5965.
65. Jannière, L.,, V. Bidnenko,, S. McGovern,, S., S,, D. Ehrlich,, and M. -A, Petit. 1997. Replication terminus for DNA polymerase I during initiation of pAMβ1 replication: role of the plasmid encoded resolution system. Mol. Microbiol. 23: 525 535.
66. Kolb, F. A.,, H. M. Engdahl,, J. G. Slagter-Jäger,, B. Ehrcsmann,, C. Ehresmann,, E. Westhof,, E. G. H. Wagner,, and P. Romby. 2000. Progression of a loop-loop complex to a four-way junction is crucial for the activity of a regulatory antisense RNA. EMBO J. 19: 5905 5915.
67. Kolb, F. A.,, C. Malmgren, E, Westhof, C. Ehresmann, B. Ehresmann, E. G. H. Wagner, and P. Romby. 2000. An unusual structure formed by antisense-target RNA binding involves an extended kissing complex with a four-way junction and a side-by-side helical alignment. RNA 6: 311 324.
68.Kolb, F, A,, E. Westhof, B. Ehresmann, C. Ehresmann, E. G. H. Wagner, P. Romby. 2001. Four-way junctions in antisense RNA-mRNA complexes involved in plasmid replication control: a common theme? J. Mol. Biol. 8: 309: 605614.
69. Krabbe, M.,, J. Zabielski,, R. Bernander,, and K. Nordström. 1997. Inactivation of the replication-termination system affects the replication mode and causes unstable maintenance of plasmid Rl. Mol. Microbiol. 24: 723 735.
70. Kuhn, K.,, K. Steinmetzer,, and S. Brantl. 2000. Transcriptional repressor CopR: the structured acidic C terminus is important for protein stability. J. Mol. Biol. 300: 1021 1031.
71. Kuhn, K.,, K. Steinmetzer,, and S. Brantl. 2001. Transcriptional repressor CopR: dissection of stabilizing motifs within the C terminus. Microbiology 14: 3387 3392.
72. Kumar, C. C , and R. P. Novick. 1985. Plasmid pT181 replication is regulated by two countertranscripts. Proc. Natl. Acad. Sci. USA 82: 638 642,
73. Kwak, J.-H.,, J . Kim,, M.-Y. Kim,, and E.-C. Choi. 1998. Purification and characterization of Cop, a protein involved in the copy number control of plasmid pE194. Arch. Pharm. Res. 3: 291 297.
74. Kwak, J.-H.,, and B. Weisblum. 1994. Regulation of plasmid pEl94 replication: control of cop-repF operon by Cop and of repF translation by countcrtranscript RNA. J. Bacteriol. 176: 5044 5051.
75. Lacatena, R. M.,, and G. Ccsareni. 1981. Base pairing of RNA I with its complementary sequence in the primer precursor inhibits ColEl replication. Nature 294: 623 626.
76. Lacatena, R. M.,, and G. Cesareni, 1983. Interaction between RNA I and the primer precursor in the regulation of ColEl replication. J. Mol. Biol 170: 635 650.
77.Le Chatelier, E. S. D. Ehrlich, and L. Janniere. 1993. Biochemical and genetic analysis of the unidirectional theta replication of the S. agalactiae plasmid pIP501. Plasmid 29: 5056.
78. Le Chatelier, E.,, S. D. Ehrlich,, and L. Janniere. 1994. The pAMβ1 CopF repressor regulates plasmid copy number by controlling transcription of the repE gene. Mol. Microbiol. 14: 463 471.
79. Le Chatelier, E.,, S. IX Ehrlich,, and L. Janniere 1996. Countertranscript-driven attenuation system of the pAMpi repE gene. Mol. Microbiol. 20: 1099 1112.
80. Le Chatelier, E.,, and L. Janniere,, S. D. Ehrlich,, and C. Canccill. 2001. The RepE initiator is a double-stranded and single-stranded DNA-binding protein that forms an atypical open complex at the onset of replication of plasmid pAMβl from gram-positive bacteria. J. Biol. Chem. 276: 10234 10246.
81. Lee, A. J.,, and D. M. Crothers. 1998. The solution structure of an RNA loop-loop complex: the ColEl inverted loop sequence. Structure 6: 993 1005.
82. Light, J.,, and S. Molin. 1982. The sites of action of the two copy number control functions of plasmid Rl. Mol Gen. Genet. 187: 486 493.
83. Light, J . , E. Riise, and S, Molin. 1985. Transcription and its regulation in the basic replicon region of plasmid Rl. Mol. Gen. Genet. 198: 503 508.
84. Lin-Chao, S.t W. T. Chen, and T. T. Wong. 1992. High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNAII. Mol. Microbiol. 6: 3385 3393.
85. Lin-Chao, S.,, and S. N. Cohen. 1991. The rate of processing and degradation of antisense RNA I regulates the replication of ColEl-type plasmids in vivo. Cell 65: 1233 1242.
86. Ma, D.,, and J. L. Campbell. 1988. The effect of dnaA protein and n′ sites on the replication of plasmid ColEl. J. BioL Chem. 263: 15008 15015.
87.Malmgren, C , H. M. Engdahl, P. Romby, and E. G. H. Wagner. 1996. An antisense/target RNA duplex or a strong intramolecular RNA structure 5′ of a translation initiation signal blocks ribosome binding: the case of plasmid R1. RNA 2: 10221032.
88.Malmgren, C , E. G. H. Wagner, C. Ehres mami, B. Ehresmann, and P. Romby. 1997. Antisense RNA control of plasmid Rl replication. The dominant product of the antisense RNA-mRNA binding is not a full RNA duplex. J. Biol. Chem. 272: 1250812512.
89. Manch-Citron, J . N.,, M. L. Gennaro,, S. Majumder,, and R. P. Novick. 1986. RepC is rate limiting for pT18l plasmid replication. Plasmid 16: 108 115.
90. Marino, J. P.,, R. S.J. Gregorian,, G. Csankovszki,, and D. M. Crothers. 1995. Bent helix formation between RNA hairpins with complementary loops. Science 268: 1448 1454.
91. Marsin, S.,, S. McGovern,, S. D. Ehrlich,, C. Bruand,, and P. Polard. 2001. Early steps of Bacillus subtilis primosome assembly. J. Biol Chem. 276: 45818 45825.
92. Masai, H.,, and K. Arai,. 1988. Rl plasmid replication in vitro. RepA and dnaA-dependent initiation at oriR, p. 113 121. In R. E. Moses, and K. C. Summers (ed.), DNA Replication and Mutagenesis. ASM Press, Washington, D.C.
93. Masukata, H.,, and J . Tomizawa. 1984. Effects of point mutations on formation and structure of the RNA primer for ColEl DNA replication. Cell 36: 513 522,
94. Masukata, H.,, and J . Tomizawa. 1986. Control of primer formation for ColEl plasmid replication: conformational change of the primer transcript. Cell 44: 125 136.
95. Masukata, H.,, and J . Tomizawa. 1990. A mechanism of formation of a persistent hybrid between elongating RNA and template DNA. Cell 62: 331 338.
96. Muesing, M.,, J . Tamm,, H. M. Shepard,, and B. Polisky. 1981. A single base-pair alteration is responsible for the DNA overproduction phenotype of a plasmid-copy-number mutant. Cell 24: 235 242.
97. Murayama, K.,, P. Orth,, A. B. del la Hoz,, J . C. Alonso,, and W. Saenger. 2001. Crystal Structure of to transcriptional repressor encoded by Streptococcus pyogenes plasmid pSM 19035 at 1.5 A resolution. J. Mol. Biol. 314: 789 796.
98. Nordstrom, K.,, S. Molin, and J, Light. 1984. Control of replication of bacterial plasmids: genetics, molecular biology, and physiology of the plasmid Rl system. Plasmid 12: 71 90.
99. Novick, R. P.,, S. lordanescu,, S. J . Projan,, J . Kornblum, and L Edelman. 1989. pTI81 plasmid replication is regulated by a countertranscript-driven transcriptional attenuator. Cell 59: 395 404.
100. Ortega-Jimenez, S.,, R. Giraldo-Suarez,, M. E. Fcrnandez- Tresgueres,, A. Berzal-Herranz,, and R. Diaz-Orejas. 1992. DnaA dependent replication of plasmid Rl occurs in the presence of point mutations that disrupt the dnaA box of oriR. Nucleic Acids Res. 20: 2547 2551.
101. Paulson, J . , K. Nordström, and M. Ehrenberg. 1998. Requirements for rapid plasmid ColEl copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates. Plasmid 39: 215 234.
102.Persson, C , E. G. H. Wagner, and K, Nordström. 1988. Control of replication of plasmid Rl: kinetics of in vitro interaction beween the antisense RNA, CopA, and its target, CopT. EMBO J. 7: 327903288.
103.Persson, C , E. G. H. Wagner, and K. Nordström. 1990. Control of replication of plasmid Rl: structures and sequences of the antisense RNA, CopA, required for its binding to the target RNA, CopT. EMBO J. . 9: 37673775.
104.Persson, C , E. G. H. Wagner, and K. Nordstrom. 1990. Control of replication of plasmid R I: formation of an initial transcicm complex is rate-limiting for antisense RNA-target RNA pairing. EMBO J. 9: 37773785,
105. Polard, P.,, S. Marsin,, S. McGovern,, M. Velten,, D. B. Wigley,, S. IX Ehrlich,, and C. Bruand. 2002. Restart of DNA replication in gram-positive bacteria: functional characterisation of the Bacillus subtilis PriA initiator. Nucleic Acids Res. 30: 1593 1605.
106. Polisky, B.,, J . Tamm,, and T. Fitzwater. 1985. Construction of ColEl RNA I mutants and analysis of their function in vivo. Basic Life Sci. 30: 321 333.
107. Polisky, B.,, X . Y. Zhang,, and T. Fitzwater. 1990. Mutations affecting primer RNA interaction with the replication repressor RNA I in plasmid ColEl: potential RNA folding pathway mutants. EMBO J. 9: 295 304.
108. Pouwels, P. H.,, N. van Luijk,, R. J . Leeer, and M, Posno. 1994. Control of replication of the Lactobacillus pentosus plasmid p353-2: evidence for a mechanism involving transcriptional attenuation of the gene coding for the replication protein. Mol. Gen. Genet. 242: 614 622.
109. Praszkier, J.,, P. Bird,, S. Nikoletti,, and J . Pittard. 1989. Role of countertranscript RNA in the copy number control system of an IncB miniplasmid;. J. Bacteriol. 171: 5056 5064.
110. Praszkier, J.,, S. Murthy,, and A.J. Pittard. 2000. Effect of CIS on activity in trans of the replication initiator protein of an IncB plasmid. J.Bacteriol 182: 3972 3980.
111. Praszkier, J.,, and A.J. Pittard. 1999. Role of CIS in replication of an IncB plasmid. J. Bacteriol 181: 2765 2772.
112. Praszkier, J.,, T. Wei,, K. Siemering,, and J. Pittard. 1991. Comparative analysis of the replication regions of IncB, IncK and IncZ plasmids. J. Bacteriol 173: 2393 2397.
113. Praszkicr, J.I.W. Wison, and A . J . Pittard. 1992. Mutations affecting translation coupling between the rep genes of an IncB miniplasmid. J. Bacteriol 174: 2376 2383.
114.Predki. P. F., L. M. Nayak, M. B. C. Gottlieb, and L. Regan. 1995. Dissecting RNA-protein interactions: RNA-RNA recognition by Rop. Cell 80: 4150.
115. Projan, S.,, and R. P. Novick. 1988. Comparative analysis of five related staphylococcal plasmids. Plasmid 19: 203 221.
116. Riise, E.,, and S. Molin. 1986. Purification and characterization of the CopB replication control protein, and precise mapping of its target site in the Rl plasmid. Plasmid 15: 163 171.
117. Riise, E.,, P. Stougaard,, B. Bindslev,, K. Nordström,, and S. Molin. 1982. Molecular cloning and functional characterization of a copy number control gene ( copB) of plasmid RI. J. Bacteriol 151: 1136 1145.
118. Shiba, K.,, and K. Mizobuchi. 1990. Post transcript ion a I control of plasmid Collb-P9 repZ gene expression by a small RNA. J. Bacteriol 172: 1992 1997.
119. Shinora, M.,, and T. Itoh. 1996. Specificity determinants in interaction of the initiator (Rep) proteins with the origins in the plasmids ColE2-P9 and ColE3-CA38 identified by chimera analysis. J. Mol. Biol. 257: 290 300.
120. Sicmering, K. R.,, J. Praszkicr,, and J. A. Pittard. 1993. Interaction between the antisense and target RNAs involved in the regulation of IncB plasmid replication. J. Bacteriol 175: 2895 2906.
121. Sicmering, K. R.,, J. Praszkier,, and J . A. Pittard. 1994. Mechanism of binding of the antisense and target RNAs involved in the regulation of IncB plasmid replication. J. Bacteriol. 176: 2677 2688.
122. Sledjeski, D.,, A. Gupta,, and S. Gottesman. 1996. The small RNA, DsrA, is essential for the low temperature expression of RpoS during exponential growth in Escherichia coli. EMBO J 15: 3993 4000.
123. Söderbom, F.,, U. Binnie,, M. Masters,, and E. G. H. Wagner. 1997. Regulation of plasmid Rl replication: PenB and Rnase E expedite the decay of the antisense RNA, CopA. Mol. Microbiol. 26: 493 504.
124. Söderbom, F.,, and E. G. H. Wagner. 1998. Degradation pathway of CopA, the antisense RNA that controls replication of plasmid Rl. Microbiology 144: 1907 1917.
125. Som, T.,, and J . Tomizawa. 1983. Regulatory regions of ColEl that are involved in determination of plasmid copy number. Proc. Natl. Acad. Sci. USA 80: 3232 3236.
126. Steinmetzer, K.,, J . Behlke,, and S. Brand. 1998. Plasmid plP50I encoded transcriptional repressor CopR binds to its target DNA as a dimer. J. Mol. Biol. 283: 595 603.
127. Steinmetzer, K.,, J. Behlke,, S. Brand,, and M. Lorenz. 2002. CopR binds and bends its target DNA: a footprinting and fluorescence resonance energy transfer study. Nucleic Acids Res. 30: 2052 2060.
128. Steinmetzer, K.,, and S. Brand. 1997. Plasmid pIP501 encoded transcriptional repressor CopR binds asymmetrically at two consecutive major grooves of the DNA. J. Mol. Biol. 269: 684 693.
129. Steinmetzer, K.,, A. Hillisch,, J. Behlke,, and S. Brand. 2000. Transcriptional repressor CopR: structure model based localization of the DNA binding motif. Proteins 38: 393 406,
130. Steinmetzer, K.,, A. Hillisch,, J. Behlke,, and S. Brand. 2000. Transcriptional repressor CopR: amino acids involved in forming the dimeric interface Proteins 39: 408 416.
131. Steinmetzer, K.,, K. Kuhn,, J. Behlke,, R. Golbik,, and S. Brand. 2002. Plasmid p1P501 encoded transcriptional repressor CopR: single amino acids involved in dimerization are also important for folding of the monomer. Plasmid 47: 201 209.
132. Stougaard, P.,, J. Light,, and S. Molin. 1982. Convergent transcription interferes with expression of the copy number control gegne, copA, from plasmid Rl. EMBO J. 1: 323 328.
133. Sugiyama, T.,, and T. Itoh. 1993. Control of ColE2 DNA replication: in vitro binding of the antisense RNA to the Rep mRNA. Nucleic Acids Res. 21: 5972 5977.
134. Summers, D. 1996. The Biology of Plasmids. Blackwell Science, Oxford, United Kingdom.
135. Swinfield, T. J.,, J . D. Oultram,, D. E. Thompson,, J. K. Brehm,, and N. P. Minton. 1990. Physical characterisation of the replication region of the plasmid pAMβl. Gene 87: 79 90.
136. Takechi, S.,, and T. Itoh. 1995. Initiation of unidirectional ColE2 DNA replication by a unique priming mechanism. Nucleic Acids Res. 23: 4196 4201.
137. Takechi, S.,, H. Matsui,, and T. Itoh. 1995. Primer RNA synthesis by plasmid-specified Rep protein for initiation of ColE2 DNA replication. EMBO J. 14: 5141 5147.
138. Takechi, S.,, H. Yasueda,, and T. Itoh. 1994. Control of ColE2 plasmid replication: regulation of Rep expression by a plasmid-coded antisense RNA. Mol. Gen. Genet. 244: 49 56.
139.Tamm, J. and B. Polisky. 1983. Strucutral analysis of RNA molecules involved in plasmid copy number control. Nucleic Acids Res. 11: 63816397.
140. Tomizawa, J. 1984. Control of ColEl plasmid replication: the process of binding of RNAI to the primer transcript. Cell 38: 861 870,
141. Tomizawa, J . 1985. Control of ColEl plasmid replication: initial interaction of RNA 1 and the primer transcript is reversible. Cell 40: 527 535.
142. Tomizawa, J. 1986. Control of ColEl plasmid replication. Interaction of Rom protein with an unstable complex formed by RNA I and RNA II. Cell 47: 89 97.
143. Tomizawa, J. 1990. Control of ColEl plasmid replication. Interaction of Rom protein with an unstable complex formed by RNA 1 and RNA II. J. Mol. Biol. 212: 695 708.
144. Tomizawa, J. 1990. Control of ColEl plasmid replication. Intermediates in the binding of RNA 1 and RNA II. J. Mol. Biol. 212: 683 694.
145. Tomizawa, J.,, and T. Itoh. 1981. Inhibition of ColEl RNA primer formation by a plasmid-specified small RNA. Proc. Natl. Acad. Sci. USA 78: 1421 1425.
146. Tomizawa, J.,, and T. Som. 1984. Control of ColEl plasmid replication. Enhancement of binding of RNA I to primer transcript by the Rom protein. Cell 38: 871 878.
147. Uhlin, B. E.,, and K. Nordström. 1978. A runaway-replication mutant of plasmid Rldrd-19: temperature-dependent loss of copy number control. Mol. Gen. Genet. 165: 167 179.
148. Wagner, E. G. H.,, S. Altuvia,, and P. Romby,. 2002. Antisense RNAs in bacteria and their genetic elements, p. 361 398, In J. C. Dunlap, and C. Wu {ed.), Advances in Genetics. Academic Press, London, United Kingdom.
149. Wagner, E. G. H.,, and S. Brantl. 1998. Kissing and RNA stability in antisense control of plasmid replication. Trends Biochem. Sci. 23: 451 454.
150. Wassarman, K. M.,, F. Repoila,, C. Rosenow,, G. Storz,, and S. Gottesman. 2001. Identification of novel small RNAs using comparative genomics and microarrays. Genes Dev. 15: 1637 1651.
151. Wilson, I. W. J . Praszkier, and A. J. Pittard. 1993. Mutations affecting pseudoknot control of the replication of B group plasmids. J. Bacteriol. 175: 6476 6483.
152. Wilson, I. W.,, J . Praszkier,, and A. J. Pittard. 1994. Molecular analysis of RNAI control of repB translation in IncB plasmids. J. Bacteriol. 176: 6497 6508.
153.Wilson, L W., K. R. Siemering, J. Praszkier, and A . J . Pittard. 1997. Importance of structural differences between complementary RNA molecules to control of replication of an IncB plasmid. J. Bacteriol. 179: 742753.
154. Wong, E. M M and B. Polisky. 1985. Alternative conformations of the ColEl replication primer modulate its interaction with RNA I. Cell 42: 959 966.
155. Wu, R. P.,, X. Wang,, D. D, Womblc, and R. H. Rownd. 1992. Expression of the rep A1 gene of IncFII plasmid NRI is translationally coupled to expression of an overlapping leader peptide. J. Bacteriol. 174: 7620 7628.
156.Yasueda H., S. Takechi, T. Sugiyama, and T. Itoh. 1994 , Control of ColE2 plasmid replication: negative regulation of the expression of the plasmid-specified initiator protein, Rep, at a posttranscriptional step. Mol. Gen. Genet. 244: 4148.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error