1887

Chapter 13 : Earth's Icy Biosphere

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Earth's Icy Biosphere, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap13-2.gif

Abstract:

Studies of Earthly ice-bound microbes are relevant to the evolution and persistence of life on extraterrestrial bodies. Great diversity of icy environments make up Earth's cold biosphere. This chapter describes research conducted in laboratories on the newly discovered life associated with permanent Antarctic lake ice, glaciers and ice sheets (polar and temperate), and sub-glacial Antarctic lakes. Molecular-based approaches to microbial ecology yield data that measure the natural evolutionary relationships between microorganisms. The chapter illustrates the phylogenetic relatedness, based on 16S rDNA identity, between bacteria recovered in the laboratories and by others from Antarctica and permanently cold nonpolar locales. As indicated, these psychrophilic and psychrotrophic isolates originate from locations ranging from aquatic and marine ecosystems to terrestrial soils and glacial ice, with little in common between these environments except that all are permanently cold or frozen. Such information, coupled with a dedicated effort to further investigate microbial diversity within the planet's frozen realms, will provide the perspective necessary to understand the evolution and ecological impacts of microbial ecosystems residing within Earth's icy biosphere.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13

Key Concept Ranking

Microbial Ecology
0.48506024
Bacteria and Archaea
0.48414502
Scanning Electron Microscopy
0.4105541
Scanning Electron Microscope
0.4105541
0.48506024
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Lake Bonney 16S rDNA summary comparing lake ice sequences with water column sequences. The ice sample was collected about 2 m beneath the surface of the 4-m-thick permanent ice cover; the 4.5- and 13-m samples were from the east lobe, and the 25-m sample was from the west lobe of Lake Bonney. See Priscu et al (1997) for hydrographie characteristics of the water column of these lake basins and Priscu et al. (1998) for details of the ice column. GP, gram positive.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Scanning electron microscope (SEM) images of microbial assemblages collected 2 m beneath the surface of the east lobe Lake Bonney ice cover, (a) and (b) represent low- and high-magnification images of cyanobacterial filaments attached to lithogenic material; (c) a single cyanobacterial filament attached to a surface, (d) small unknown organic filaments attached to a surface. Images were obtained by cryogenic SEM (JEOL-6100 SEM with an Oxford Instruments cryogenic preparation stage) on particles captured by 0.2-µm filtration of melted ice.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

The cryoconite hole environment in the McMurdo Dry Valleys. In summer, sediment collects on glacial surfaces, and exposure to solar irradiation produces (a) melt pools within the ice, which may subsequently freeze on the surface (b) and completely freeze during the winter. The cryoconite hole illustrated in (c) was located on the Canada glacier and was completely frozen when sampled in January 2001. (d) A comparison of cores retrieved from the cryoconite hole (left) with a core from the adjacent glacial ice. Note the dense layer of sediment and organic material present within the bottom 5 cm of the cryoconite hole core.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Global locations of existing glacial ice sheets and caps (denoted by shading). At each geographical location, the nearest terrestrial or marine ecosystem that would most likely contribute the majority of airborne particles are very different.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Incorporation of [H]thymidine into trichloroacetic acid (TCA)-precipitable material and the number of CFU mL for the glacial isolate sp. Trans 1 after 9 months at -15°C. Cells in logarithmic growth were suspended in distilled water with 1 µCi of [H]thymidine, frozen rapidly at -70°C, and incubated at -15°C for an extended period. Under these circumstances, cells were able to conduct a low level of macromolecular synthesis, but this activity was not sufficient for reproductive growth. For more details, see Christner 2002.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Phylogenetic analysis of bacteria obtained in microbiological surveys of permanently cold and frozen environments. Isolates from cold habitats are shown in bold, followed by the source environment and geographical location. The 16S rDNA sequences corresponding to nucleotides 27-1492 of the 16S rDNA were aligned based on secondary structure and used to construct this neighbor-joining tree. The scale bar represents 0.1 fixed substitutions per nucleotide position. GP, gram positive.

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817770.chap13
1. Abyzov, S. S., 1993. Microorganisms in the Antarctic ice, p. 265 295. In E. I. Friedmann (éd.), Antarctic Microbiology. Wiley-Liss, Inc., New York, N.Y..
2. Abyzov, S. S.,, I. N. Mitskevich,, and M. N. Poglazova. 1998. Microflora of the deep glacier horizons of central Antarctica. Microbiology (Moscow) 67: 66 73.
3. Adams, E. E.,, J. C. Priscu,, C. H. Fritsen,, S. R. Smith,, and S. L. Brackman,. 1998. Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: bubble formation and metamorphism. In J. Priscu (éd.), Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Ant. Res. Ser. 72: 281 296.
4. Bada, J. L.,, X. S. Wang,, H. N. Poinar,, S. Paabo,, and G. O. Poinar. 1994. Amino acid racemization in amber-entombed insects: implications for DNA preservation. Geochim. Cosmochim. Acta 58: 3131 3135.
5. Balkwill, D. L.,, R. H. Reeves,, G. R. Drake,, J. Y. Reeves,, F. H. Crocker,, M. B. King,, and D. R. Boone. 1997. Phylogentic characterization of bacteria in the subsurface microbial culture collection. FEMS Microbiol. Rev. 20: 201 216.
6. Baiter, M. 1999. Did life begin in hot water? Science 280: 31.
7. Bell, R. E.,, M. Studinger,, A. A. Tikku,, G. K., C. Clarke,, M. M. Gutner,, and C. Meertens. 2002. Origin and fate of Lake Vostok water refrozen to the base of the East Antarctic ice sheet. Nature 416: 307 310.
8. Benson, D. A.,, I. Karsch-Mizrachi,, D. J. Lipman,, J. Ostell,, B. A. Rapp,, and D. L. Wheeler. 2000. GenBank. Nucl. Acids Res. 28: 15 18.
9. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63: 3068 3078.
10. Boynton, W. V.,, W. C. Feldman,, S. W. Squyres,, T. H. Prettyman,, J. Bruckner,, L. G. Evans,, R. C. Reedy,, R. Starr,, J. R. Arnold,, D. M. Drake,, P. A. J. Englert,, A. E. Metzger,, I. Mitrofanov,, J. I. Trombka,, C. d'Uston,, H. Wanke,, O. Gasnault,, D. K. Hamara,, D. M. Janes,, R. L. Marcialis,, S. Maurico,, I. Mikheeva,, G. J. Taylor,, R. Tokar,, and C. Shinohara. 2002. Distribution of hydrogen in the near surface of Mars: evidence for subsurface ice deposits. Science 297: 81 85.
11. Bulat, S. A.,, I. A. Alekhina,, M. Blot,, J.-R. Petit,, D. Waggenbach,, V. Y. Lipenkov,, D. Raynaud,, and V. V. Lukin. 2002. Thermophiles microbe signature in Lake Vostok, Antarctica. American Geophysical Union Spring 2002 Meeting. Washington, D.C..
12. Bunt, J. S. 1964. Primary productivity under sea ice in Antarctic waters. 2. Influence of light and other factors on photosynthetic activities of Antarctic marine microalgae. Antarct. Res. 1: 27 31.
13. Carpenter, E. J.,, S. Lin,, and D. G. Capone. 2000. Bacterial activity in South Pole snow. Appl. Environ. Microbiol. 66: 4514 4517.
14. Castello, J. D.,, S. O. Rogers,, W. T. Starmer,, C. M. Catranis,, L. Ma,, G. D. Bachand,, Y. Zhao,, and J. E. Smith. 1999. Detection of tomato mosaic tobamovirus RNA in ancient glacial ice. Polar Biol. 22: 207 212.
15. Chen, F.,, J. Lu,, B. Binder,, Y. Liu,, and R. Hodson. 2001. Application of digital image analysis and flow cytometry to enumerate marine viruses stained with SYBR Gold. Appl. Environ. Microbiol. 67: 539 545.
16. Christner, B. C. 2002. Incorporation of DNA and protein precursors into macromolecules by bacteria at -15°C. Appl. Environ. Microbiol. 68: 6435 6438.
17. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, V. Zagorodnov,, K. Sandman,, and J. N. Reeve. 2000. Recovery and identification of viable bacteria immured in glacial ice. Icarus 144: 479 485.
18. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2001. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice. Environ. Microbiol. 3: 570 577.
19. Christner, B. C.,, E. Mosley-Thompson,, L. G. Thompson,, and J. N. Reeve. 2003a. Recovery of bacteria from ancient ice. Environ. Microbiol. 5: 433 436.
20. Christner, B. C.,, B. H., Kvitko,, and J. N. Reeve. 2003b. Molecular identification of bacteria and eukarya inhabiting an Antarctic cryoconite hole. Extremophiles 7: 177 183.
21. Chyba, C. F. 2000. Energy for microbial life on Europa. Nature 403: 381 382.
22. Chyba, C. F.,, and K. P. Hand. 2001. Life without photosynthesis. Science 292: 2026 2027.
23. Chyba, C. F.,, and C. B. Phillips. 2001. Possible ecosystems and the search for life on Europa. Proc. Natl. Acad. Sci. USA 98: 801 804.
24. Clifford, S. M.,, D. Crisp,, D. A. Fisher,, K. E. Herkenhoff,, S. E. Smrekar,, P. C. Thomas,, D. D. Wynn Williams,, R. W. Zurek,, J. R. Barnes,, B. G. Bills,, E. W. Blake, et al. 2000. The state and future of Mars polar science and exploration. Icarus 144: 210 242.
25. Dancer, S. J.,, P. Shears,, and D. J. Platt. 1997. Isolation and characterization of coliforms from glacial ice and water in Canada's high Arctic. J. Appl. Microbiol. 82: 597 609.
26. DeLong, E. F.,, K. Y. Wu,, B. B. Prezelin,, and R. V. M. Jovine. 1994. High abundance of Archaea in Antarctic marine picoplankton. Nature 371: 695 697.
27. De Smet, W. H.,, and E. A. Van Rompu. 1994. Rotifera and tardigrada from some cryoconite holes on a Spitsbergen (Svalbard) glacier. Belg. J. Zool. 124: 27 37.
28. Doolittle, W. F. 1999. Phylogenetic classification and the universal tree. Science 284: 2124 2128.
29. Doran, P. T.,, J. C. Priscu,, W. B. Lyons,, J. E. Walsh,, A. G. Fountain,, D. M. McKnight,, D. L. Moorhead,, R. A. Virginia,, D. H. Wall,, G. D. Clow,, C. H. Fritsen,, C. P. McKay,, and A. N. Parsons. 2002a. Antarctic climate cooling and terrestrial ecosystem response. Nature 415: 517 520.
30. Doran, P. T.,, C. P. McKay,, G. D. Clow,, G. L. Dana,, A. G. Fountain,, T. Nylen,, and W. B. Lyons. 2002b. Valley floor climate observations from the McMurdo Dry Valleys, Antarctica, 1986-2000. J. Geophys. Res. 107( D24, 4772): 1 12.
31. Eschenmoser, A. 1999. Chemical etiology of nucleic acid structure. Science 284: 2118 2124.
32. Franzmann, P. D.,, Y. Liu,, D. L. Balkwill,, H. C. Aldrich,, E. ConwaydeMarcario,, and D. R. Boone. 1997. Methanogenium frigidum sp. nov., a psychrophilic, H 2-using methanogen from Ace Lake, Antarctica. Int. J. Syst. Bacteriol. 47: 1068 1072.
33. Fritsen, C. H.,, and J. C. Priscu. 1998. Cyanobacterial assemblages in permanently ice covers on Antarctic lakes: distribution, growth rate, and temperature response of photosynthesis. J. Phycol. 34: 587 597.
34. Fritsen, C. H.,, E. E. Adams,, C. M. McKay,, and J. C. Priscu,. 1998. Permanent ice covers of the McMurdo Dry Valley Lakes, Antarctica: liquid water content. In J. C. Priscu (éd.), Ecosystem Dynamics in a Polar Desert: The McMurdo Dry Valleys, Antarctica. Antarct. Res. Ser. 72: 269 280.
35. Fulthorpe, R. R.,, A. N. Rhodes,, and J. M. Tiedje. 1998. High levels of endemicity of 3-chlorobenzoate-degrading soil bacteria. Appl. Environ. Microbiol. 64: 1620 1627.
36. Fuzzi, G.,, P. Mandrioli,, and A. Perfetto. 1997. Fog droplets—an atmospheric source of secondary biological aerosol particles. Atmos. Environ. 31: 287 290.
37. Gaidos, E. J.,, and F. Nimmo. 2000. Tectonics and water on Europa. Nature 405: 637.
38. Gaidos, E. J.,, K. H. Nealson,, and J. L. Kirschvink. 1999. Life in ice-covered oceans. Science 284: 1631 1633.
39. Galtier, N.,, N. Tourasse,, and M. Gouy. 1999. A non-hyperthermophilic common ancestor to extant life forms. Science 283: 220 222.
40. Garcia-Pichel, F.,, L. Prufert-Bebout,, and G. Muyzer. 1996. Phenotypic and phylogenetic analyses show Microcoleus chthonoplastes to be a cosmopolitan cyanobacterium. Appl. Environ. Microbiol. 62: 3284 3291.
41. Gerdel, R. W.,, and F. Drouet. 1960. The cryoconite of the Thule Area, Greenland. Trans. Am. Microsc. Soc. 79: 256 272.
42. Giorgio, C. D.,, A. Krempff,, H. Guiraud,, P. Binder,, C. Tiret,, and G. Dumenil. 1996. Atmospheric pollution by airborne microorganisms in the city of Marseilles. Atmos. Environ. 30: 155 160.
43. Gordon, D. A.,, B. Lanoil,, S. Giovannoni,, and J. C. Priscu. 1996. Cyanobacterial communities associated with mineral particles in Antarctic lake ice. Antarct. J. US 31: 224 225.
44. Gordon, D. A.,, J. C. Priscu,, and S. Giovannoni. 2000. Distribution and phylogeny of bacterial communities associated with mineral particles in Antarctic lake ice. Microb. Ecol. 39: 197 202.
45. Greenberg, R.,, P. Geissler,, B. R. Tufts,, and G. V. Hoppa. 2000. Habitability of Europa's crust: the role of tidal-tectonic processes. J. Geophys. Res. 105: 17551 17562.
46. Grøngaard, A.,, P. J. A. Pugh,, and S. J. Mclnnes. 1999. Tardigrades, and other cryoconite biota, on the Greenland ice sheet. Zool. Anz. (Germany) 238: 211 214.
47. Grue, A. M.,, C. H. Fritsen,, and J. C. Priscu. 1996. Nitrogen fixation within permanent ice covers on lakes in the McMurdo Dry Valleys, Antarctica. Antarct. J. US 2: 218 220.
48. Hoffman, P. F.,, and D. P. Schrag. 2000. Snowball Earth. Sci. Am. 282: 68 75.
49. Hoffman, P. F.,, A. J. Kaufman,, G. P. Halverson,, and D. P. Schrag. 1998. A neoproterozoic snowball Earth. Science 281: 1342 1346.
50. Hollibaugh, J. T.,, N. Bano,, and H. W. Ducklow. 2002. Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria. Appl. Environ. Microbiol. 68: 1478 1484.
51. Huber, R.,, H. Huber,, and K. O. Stetter. 2000. Towards the ecology of hyperthermophiles: biotopes, new isolation strategies and novel metabolic properties. FEMS Microbiol. Rev. 24: 615 623.
52. Hughes, T. J. 1998. Ice Sheets. Oxford University Press Inc., New York, N.Y. 1992.
53. Jouzel, J.,, J. R. Petit,, R. Souchez,, N. I. Barkov,, V. Y. Lifenkov,, D. Raymond,, M. Stievenard,, N. I. Vassiliev,, V. Verbeke,, and F. Vimeux. 1999. More than 200 meters of lake ice above sub-glacial Lake Vostok, Antarctica. Science 286: 2138 2141.
54. Junge, K.,, F. Imhoff,, T. Staley,, and J. W. Deming. 2002. Phylogenetic diversity of numerically important Arctic sea-ice bacteria cultured at subzero temperatures. Microb. Ecol. 43: 315 328.
55. Kapitsa, A. P.,, J. K. Ridley,, G. deQ Robin,, M. J. Siegert,, and I. A. Zotikov. 1996. A large deep freshwater lake beneath the ice of central East Antarctica. Nature 381: 684 686.
56. Karl, D. M.,, D. F. Bird,, K. Björkman,, T. Houlihan,, R. Shackelford,, and L. Tupas. 1999. Microorganisms in the accreted ice of Lake Vostok, Antarctica. Science 286: 2144 2147.
57. Kepner, R. L.,, R. A. Wharton, Jr.,, and C. A. Suttle. 1998. Viruses in Antarctic lakes. Limnol. Oceanogr. 43: 1754 1761.
58. Kirschvink, J. L., 1992. Late Proterozoic low-latitude global glaciation: the Snowball Earth, p. 51 52. In J. W. Schopt,, C. Klein,, and D. Des Maris (ed.), The Proterozoic Biosphere: A Multidisciplinary Study. Cambridge University Press, Cambridge, United Kingdom.
59. Kirschvink, J. L.,, E. J. Gaidos,, L. E. Bertani,, N. J. Beukes,, J. Gutzmer,, L. N. Maepa,, and R. E. Steinberger. 2000. Paleoproterozoic snowball Earth: extreme climatic and geochemical global change and its biological consequences. Proc. Natl. Acad. Sci. USA 97: 1400 1405.
60. Kivelson, M. G.,, K. K. Khurana,, C. T. Russell,, M. Volwerk,, R. J. Walker,, and C. Zimmer. 2000. Galileo magnetometer measurements: a stronger case for a subsurface ocean at Europa. Science 289: 1340 1343.
61. Knoll, A. H. 1994. Proterozoic and early Cambrian protists: evidence for accelerating evolutionary tempo. Proc. Natl. Acad. Sci. USA 91: 6743 6750.
62. Kohshima, S. 1989. Glaciological importance of microorganisms in the surface mud-like material and dirt layer particles of the Chongce Ice Cap and Gozha Glacier, West Kunlun Mountains, China. Bull. Glacier Res. (Japan) 7: 59 65.
63. Lawrence, J. G.,, and H. Ochman. 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95: 9413 9417.
64. Lighthart, B.,, and B. T. Shaffer. 1995. Airborne bacteria in the atmospheric surface layer: temporal distribution above a grass seed field. Appl. Environ. Microbiol. 61: 1492 1496.
65. Lindahl, T. 1993. Instability and decay of the primary structure of DNA. Nature 362: 709 715.
66. Lipenkov, V. Y.,, and N. I. Barkov. 1998. Internal structure of the Antarctic ice sheet as revealed by deep core drilling at Vostok station, p. 31 35. In Lake Vostok Study: Scientific Objectives and Technological Requirements. Abstracts of an International Workshop (24 to 26 March 1998). Arctic and Antarctic Research Institute, St. Petersburg, Russia.
67. Lipenkov, V. Y.,, and V. A. Istomin. 2001. On the stability of air clathrate-hydrate crystals in subglacial Lake Vostok. Mater. Glyatsiol. Issled. [Data Glaciol. Stud.] 91: 138 149.
68. Lipenkov, V. Y.,, N. I. Barkov,, and A. N. Salamatin. 2000. Istoriya klimata i oledeneniya Antarktidy po rezul'tatam izucheniya ledanogo kerna so stantsii Vostok [The history of climate and glaciation of Antarctica from results of the ice core study at Vostok Station]. Probl. Arktiki Antarkt. [Probl. Arctic Antarct.] 72: 197 236.
69. Lisle, J. T.,, and J. C. Priscu. The occurrence of lysogenic bacteria and microbial aggregates in the lakes of the McMurdo Dry Valleys, Antarctica. Microb. Ecol., in press.
70. Mader, H. 1992a. Observations of the water-vein system in polycrystalline ice. J. Glaciol. 38: 333 347.
71. Mader, H. 1992b. The thermal behaviour of the water-vein system in polycrystalline ice. J. Glaciol. 38: 359 374.
72. Malin, M. C.,, and M. H. Carr. 1999. Groundwater formation of Martian valleys. Nature 397: 589 591.
73. Margulis, L.,, and D. Sagan. 1997. Micro-Cosmos: Four Billion Years of Microbial Evolution, p. 304. University of California Press, Berkeley, Calif..
74. Marshall, W. A.,, and M. O. Chalmers. 1997. Airborne dispersal of Antarctic algae and cyanobacteria. Ecography 20: 585 594.
75. McKay, C. P., 2001. The deep biosphere: lessons for planetary exploration, p. 315 327. In J. K. Fredrickson, and M. Fletcher (éd.), Subsurface Microbiology and Biogeochemistry, Wiley-Liss Inc., New York, N.Y..
76. McKay, C. P.,, K. P. Hand,, P. T. Dolan,, D. T. Anderson,, and J. C. Priscu. Clathrate formation and the fate of noble and biologically useful gases in Lake Vostok, Antarctica. Geophys. Res. Lett., in press.
77. McKay, C. P.,, and C. R. Stoker. 1989. The early environment and its evolution on Mars: implications for life. Rev. Geophys. 27: 189 214.
78. McKay, D. S.,, E. K. Gibson,, K. L. Thomas-Keptra,, H. Vali,, S. Romanek,, S. J. Clemett,, X. D. F. Chillier,, C. R. Maechling,, and N. Zare. 1996. Search for past life on Mars: possible relic biogenic activity in martian meteorite ALH84001. Science 273: 924 930.
79. Mueller, D. R.,, W. F. Vincent,, W. H. Pollard,, and C. H. Fritsen,. 2001. Glacial cryoconite ecosystems: a bipolar comparison of algal communities and habitats, p. 173 197. In J. Eister,, J. Seckbach,, W. F. Vincent,, and O. Lhotsky (ed.), Algae and Extreme Environments; Ecology and Physiology. Proceedings of the International Conference, 11 to 16 September 2000, Trebon, Czech Republic. J. Cramer, Berlin, Germany.
80. Naish, T. R.,, K. J. Woolfe,, P. J. Barrett,, G. S. Wilson,, C. Atkins,, S. M. Bohaty,, C. J. Bücker,, M. Claps,, F. J. Davey,, G. B. Dunbar,, A. G. Dunn,, C. R. Fielding,, F. Florindo,, M. J. Hannah,, D. M. Harwood,, S. A. Henrys,, L. A. Krissek,, M. Lavelle,, J. van der Meer,, W. C. Mclntosh,, F. Niessen,, S. Passchier,, R. D. Powell,, A. P. Roberts,, L. Sagnotti,, R. P. Scherer,, C. P. Strong,, F. Talarico,, K. L. Verosub,, G. Villa,, D. K. Watkins,, P. N. Webb,, and T. Wonik 2001. Orbitally induced oscillations in the East Antarctic ice sheet at the Oligocene/Miocene boundary. Nature 413: 719 723.
81. Nelson, K. E.,, R. A. Clayton,, S. R. Gill,, M. L. Gwinn,, R. J. Dodson,, D. H. Haft,, E. K. Hickey,, J. D. Peterson,, W. C. Nelson,, K. A. Ketchum,, L. McDonald,, T. R. Utterback,, J. A. Malek,, K. D. Linher,, M. M. Garrett,, A. M. Stewart,, M. D. Cotton,, M. S. Pratt,, C. A. Phillips,, D. Richardson,, J. Heidelberg,, G. G. Sutton,, R. D. Fleischmann,, J. A. Eisen,, O. White,, S. L. Salzberg,, H. O. Smith,, J. C. Venter,, and C. M. Fraser. 1999. Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritime. Nature 399: 323 328.
82. Olson, J. B.,, T. F. Steppe,, R. W. Litaker,, and H. W. Paerl. 1998. N 2-fixing microbial consortia associated with the ice cover of Lake Bonney, Antarctica. Microb. Ecol. 36: 231 238.
83. Orton, G. S.,, J. R. Spencer,, L. D. Travis,, T. Z. Martin,, and L. K. Tamppari. 1996. Galileo photopolarimeter-radiometer observations of Jupiter and the Galilean satellites. Science 274: 389 391.
84. Paerl, H. W.,, and J. L. Pinckney. 1996. Ice aggregates as a microbial habitat in Lake Bonney, dry valley lakes, Antarctica: nutrient-rich micro-ozones in an oligotrophic ecosystem. Antarct. J. US 31: 220 222.
85. Paerl, H. W.,, and J. C. Priscu. 1998. Microbial phototrophic, heterotrophic, and diazotrophic activities associated with aggregates in the permanent ice cover of Lake Bonney, Antarctica. Microb. Ecol. 36: 221 230.
86. Page, R. R. M.,, and E. C. Holmes. 1998. Molecular Evolution: A Phylogenetic Approach, p. 352. Blackwell Science, Oxford, United Kingdom.
87. Patterson, W. S. B. 1994. The Physics of Glaciers,, 3rd ed. Elsevier Science Inc., Tarrytown, N.Y..
88. Pederson, K. 1997. Microbial life in deep granitic rock. FEMS Microbiol. Rev. 20: 399 414.
89. Pennisi, E. 1998. Genome data shake tree of life. Science 280: 672 674.
90. Pennisi, E. 1999. Is it time to uproot the tree of life? Science 284: 1305 1307.
91. Petit, J.-R.,, J. Jouzel,, D. Raynaud,, N. I. Barkov,, J. M. Barnola,, I. Basile,, M. Benders,, J. Chappellaz,, M. Davis,, G. Delaygue,, M. Dolmotte,, V. M. Dotlyakov,, M. Legrand,, V. Y. Lipendoc,, C. Lorius,, L. Pepin,, C. Ritz,, F. Saltzman,, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429 436.
92. Petit, J.-R.,, C. Ritz,, P. Jean Baptiste,, R. Souchez,, V. Y. Lipenkov,, and A. Salamatin. 2002. Hot spots in Lake Vostok? American Geophysical Union Spring 2002 Meeting. Washington, D.C..
93. Pinckney, J. L.,, and H. W. Paerl. 1996. Lake ice algal phototroph community composition and growth rates, Lake Bonney, Dry Valley Lakes, Antarctica. Antarct. J. US 31: 215 216.
94. Poinar, H. N.,, M. Hoss,, J. L. Bada,, and S. Paabo. 1996. Amino acid racemization and the preservation of ancient DNA. Science 272: 864 866.
95. Price, B. P. 2000. A habitat for psychrophiles in deep Antarctic ice. Proc. Natl. Acad. Sci. USA 97: 1247 1251.
96. Priscu, J. C. 1997. The biogeochemistry of nitrous oxide in permanently ice-covered lakes of the McMurdo Dry Valleys, Antarctica. Glob. Change Biol. 3: 301 305.
97. Priscu, J. C.,, M. T. Downes,, and C. P. McKay. 1996. Extreme super-saturation of nitrous oxide in a permanently ice-covered Antarctic Lake. Limnol. Oceanogr. 41: 1544 1551.
98. Priscu, J. C.,, C. H. Fritsen,, E. E. Adams,, S. J. Giovannoni,, H. W. Paerl,, C. P. McKay,, P. T. Doran,, D. A. Gordon,, B. D. Lanoil,, and J. L. Pinckney. 1998. Perennial Antarctic lake ice: an oasis for life in a polar desert. Science 280: 2095 2098.
99. Priscu, J. C.,, C. F. Wolf,, C. D. Takacs,, C. H. Fritsen,, J. Laybourn-Parry,, E. C. Roberts,, and W. Berry Lyons. 1999a. Carbon transformations in the water column of a perennially ice-covered Antarctic Lake. Bioscience 49: 997 1008.
100. Priscu, J. C.,, E. E. Adams,, W. B. Lyons,, M. A. Voytek,, D. W. Mogk,, R. L. Brown,, C. P. McKay,, C. D. Takacs,, K. A. Welch,, C. F. Wolf,, J. D. Kirschtein,, and R. Avci. 1999b. Geomicrobiology of subglacial ice above Lake Vostok, Antarctica. Science 286: 2141 2144.
101. Priscu, J. C.,, C. H. Fritsen,, E. E. Adams,, H. W. Paerl,, J. T. Lisle,, J. E. Dore,, C. F. Wolf,, and J. Milucki,. Perennial Antarctic lake ice: a refuge for cyanobacteria in an extreme environment. In S. O. Rogers, and J. Castello (ed.), Life in Ancient Ice. Princeton University Press, Princeton, N. J., in press.
102. Psenner, R.,, B. Sattler,, A. Willie,, C. H. Fritsen,, J. C. Prisai,, M. Felip,, and J. Catalan,. 1999. Lake ice microbial communities in alpine and Antarctic lakes, p. 17 31. In P. Schinner, and R. Margesin (éd.), Adaptations of Organisms to Cold Environments. Springer-Verlag, New York.
103. Reysenbach, A. L.,, and E. Shock. 2002. Merging genomes with geochemistry in hydrothermal ecosystems. Science 296: 1077 1082.
104. Riemann, B.,, and M. Søndergaard. 1986. Carbon Dynamics in Eutrophic, Temperate Lakes. Elsevier, Amsterdam, The Netherlands. 1992.
105. Rivkina, E. M.,, E. I. Friedmann,, C. P. McKay,, and D. A. Gilichinsky. 2000. Metabolic activity of permafrost bacteria below the freezing point. Appl. Environ. Microbiol. 66: 3230 3233.
106. Sattler, B.,, H. Puxbaum,, and R. Psenner. 2001. Bacterial growth in supercooled cloud droplets. Geophys. Res. Lett. 28: 239 242.
107. Schrag, D. P.,, and P. F. Hoffman. 2001. Life, geology and snowball Earth. Nature 409: 306.
108. Siegert, M. J. 2000. Antarctic subglacial lakes. Earth-Sci. Rev. 50: 29 50.
109. Siegert, M. J.,, J. A. Dowdeswell,, M. R. Gorman,, and N. F. Mclntyre. 1996. An inventory of Antarctic subglacial lakes. Antarct. Sci. 8: 281 286.
110. Siegert, M. J.,, R. Kwok,, C. Mayer,, and B. Hubbard. 2000. Water exchange between subglacial Lake Vostok and the overlying ice sheet. Nature 403: 643 646.
111. Siegert, M. J.,, J. C. Ellis-Evans,, M. Tranter,, C. Mayer,, J.-R. Petit,, A. Salamatin,, and J. C. Priscu. 2001. Physical, chemical and biological processes in Lake Vostok and other Antarctic subglacial lakes. Nature 414: 603 609.
112. Siegert, M. J.,, M. Tranter,, J. C. Ellis-Evans,, J. C. Priscu,, and W. B. Lyons. 2003. The hydrochemistry of Lake Vostok and the potential for life in Antarctic subglacial lakes. Hydro. Process. 17: 795 814.
113. Skidmore, M. L.,, J. M. Foght,, and M. J. Sharp. 2000. Microbial life beneath a high Arctic glacier. Appl. Environ. Microbiol. 66: 3214 3220.
114. Sömme, L. 1996. Anhydrobiosis and cold tolerance in tardigrades. Eur. J. Entomol. 93: 349 357.
115. Souchez, R.,, M. Janssens,, M. Lemmens,, and B. Stauffer. 1995. Very low oxygen concentration in basal ice from Summit, Central Greenland. Geophys. Res. Lett. 22: 2001 2004.
116. Souchez, R.,, A. Bouzette,, H. B. Clausen,, S. J. Johnsen,, and J. Jouzel. 1998. A stacked mixing sequence at the base of the Dye 3 core. Geophys. Res. Lett. 25: 1943 1946.
117. Sowers, T. 2001. The N2O record spanning the penultimate déglaciation from the Vostok ice core. J. Geograph. Res. 106: 31903 31914.
118. Staley, J. T.,, and J. J. Gosink. 1999. Poles apart: biodiversity and biogeography of sea ice bacteria. Annu. Rev. Microbiol. 53: 189 215.
119. Stetter, K. O.,, R. Huber,, E. Blochl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743 745.
120. Takacs, C. D.,, J. C. Priscu,, and D. McKnight. 2001. Bacterial dissolved organic carbon demand in McMurdo Dry Valley lakes, Antarctica. Limnol. Oceanogr. 46: 1189 1194.
121. Takeuchi, N.,, S. Kohshima,, Y. Yoshimura,, K. Seko,, and K. Fujita. 2000. Characteristics of cryoconite holes on a Himalayan glacier, Yala Glacier central Nepal. Bull. Glaciol. Res. (Japan) 17: 51 59.
122. Thomas, D. N.,, and G. S. Dieckmann. 2002. Antarctic sea ice—a habitat for extremophiles. Science 295: 641 644.
123. Thomas-Keprta, K. L.,, S. J. Clemett,, D. A. Bazylinski,, J. L. Kirschvink,, D. S. McKay,, S. J. Wentworth,, H. Valli,, E. K. Gibson, Jr.,, and C. S. Romanek. 2002. Magnetofossils from ancient Mars: a robust biosignature in the martian meteorite ALH84001. Appl. Environ. Microbiol. 68: 3663 3672.
124. Tikku, A. A.,, R. E. Bell,, and M. Studinger. 2002. Lake Concordia: a second Significant Lake Beneath the East Antarctic Ice Sheet. American Geophysical Union 2002 Spring Meeting, Washington, D.C..
125. Tobacco, I. E.,, A. Passerini,, F. Corbelli,, and M. Gorman. 1998. Determination of the surface and bed topography at Dome C, East Antarctica. J. Glaciol. 44: 185 190.
126. Turtle, E. P.,, and E. Pierazzo. 2001. Thickness of a Europan ice shell from impact crater simulations. Science 294: 1326 1328.
127. Van Dover, C. L.,, S. E. Humphris,, D. Fornari,, C. M. Cavanaugh,, R. Collier,, S. K. Goffredi,, J. Hashimoto,, M. D. Lilley,, A. L. Reysenbach,, T. M. Shank,, K. L. Von Damm,, A. Banta,, R. M. Gallant,, D. Götz,, D. Green,, J. Hall,, T. L. Harmer,, L. A. Hurtado,, P. Johnson,, Z. P. McKiness,, C. Meredith,, E. Olson,, I. L. Pan,, M. Turnipseed,, Y. Won,, C. R. Young III,, and R. C. Vrijenhoek. 2001. Biogeography and ecological setting of Indian Ocean hydrothermal vents. Science 294: 818 823.
128. Vincent, W. F.,, J. A. E. Gibson,, R. Pienitz,, and V. Villenueve. 2000. Ice shelf microbial ecosystems in the high Arctic and implications for life on snowball Earth. Naturwissenshaften 87: 137 141.
129. Vincent, W. F.,, and C. Howard-Williams. 2001. Life on snowball Earth. Science 287: 2421.
130. Vincent, W. F.,, J. A. E. Gibson,, R. Pienitz,, V. Villeneuve,, P. A. Broady,, P. B. Hamilton,, and C. Howard-Williams. 2002. Ice shelf microbial ecosystems in the High Arctic and implications for life on Snowball Earth. Naturwissenschaften 87: 137 141.
131. Wharton, R. A., Jr.,, W. C. Vinyard,, B. C. Parker,, G. M. Simmons, Jr.,, and K. G. Seaburg. 1981. Algae in cryoconite holes on Canada Glacier in southern Victoria Land, Antarctica. Phycologia 20: 208 211.
132. Wharton, R. A., Jr.,, C. P. McKay,, G. M. Simmons, Jr.,, and B. C. Parker. 1985. Cryoconite holes on glaciers. Bioscience 35: 499 503.
133. Wharton, R. A., Jr.,, R. A. Jamison,, M. Crosby,, C. P. McKay,, and J. W. Rice, Jr. 1995. Paleolakes on Mars. J. Paleolimn. 13: 267 283.
134. Whitman, W. B.,, D. C. Coleman,, and W. J. Wiebe. 1998. Prokaryotes: the unseen majority. Proc. Natl. Acad. Sci. USA 95: 6578 6583.
135. Willerslev, E.,, A. J. Hansen,, B. Christensen,, J. P. Steffensen,, and P. Arctander. 1999. Diversity of Holocene life forms in fossil glacier ice. Proc. Natl. Acad. Sci. USA 96: 8017 8021.
136. Williams, D. M.,, J. F. Kasting,, and L. A. Frakes. 1998. Low-latitude glaciation and rapid changes in the earth's obliquity explained by obliquity-oblateness feedback. Nature 396: 453 455.
137. Wilson, W. H.,, D. Lane,, D. A. Pearce,, and J. S. Ellis-Evans. 2000. Transmission electron microscope analysis of virus-like particles in freshwater lakes of Signy Island, Antarctica. Polar Biol. 23: 657 660.
138. Wing, K. T.,, and J. C. Priscu. 1993. Microbial communities in the permanent ice cap of Lake Bonney, Antarctica: relationships among chlorophyll a, gravel and nutrients. Antarct. J. US 28: 246 249.
139. Wommack, E.,, and R. Colwell. 2000. Virioplankton: viruses in aquatic ecosystems. Microbiol. Mol. Biol. Rev. 64: 69 114.
140. Zhang, X.,, T. Yao,, X. Ma,, and N. Wang. 2001. Analysis of the characteristics of microorganisms packed in the ice core of Malan Glacier, Tibet. Sci. China (Series D) 44: 165 170.

Tables

Generic image for table
Table 1

Summary of the bacterial cell number and organic carbon contribution from Antarctic subglacial lakes and the Antarctic and Greenland ice sheets

Citation: Priscu J, Christner B. 2004. Earth's Icy Biosphere, p 130-145. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error