Chapter 36 : Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap36-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap36-2.gif


Fouling on the surfaces of ships or other submerged structures results in corrosion, a decrease in hydrodynamic efficiency, transport of introduced pests, and many other problems worldwide. Fouling generally occurs in a predictable sequence, with colonization by bacteria and biofilm formation happening in hours to days followed by colonization of higher organisms such as barnacles, tube worms, and algae. Other than repeated cleaning of surfaces, by far the most common commercial approach to fouling control is to coat surfaces with antifouling paints that slowly release toxic compounds to the surface, deterring initial colonization of the surface by fouling organisms or killing newly settled foulers. Two major alternatives to heavy metal-based paints have been proposed. The first, which are commercially available, are the so-called "nonstick" or foul-release coatings. The second major class of alternatives to heavy metal-based paints are organic compounds, either synthetic or naturally derived. The later category includes the so-called natural antifoulants. The focus on natural antifoulants to date has primarily been on marine invertebrates and algae. This chapter addresses methodological limitations in the research of marine microbial defenses and the progress that is being made in this research field. The genus is common in the marine environment and is often isolated from living surfaces, as demonstrated by both traditional culturing methods and culture-independent techniques such as denaturing gradient gel electrophoresis. The chapter suggests that marine host organisms that lack their own chemical defense mechanisms may be colonized by antifouling-producing bacteria, such as species.

Citation: Holmstrom C, Kjellberg S, Steinberg P. 2004. Bioprospecting Novel Antifoulants and Anti-Biofilm Agents from Microbes, p 405-412. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch36
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Armstrong, E.,, K. G. Boyd,, A. Piscane, C. J. Peppiatt, and J. G. Burgess. 2000. Marine microbial natural products in antifouiing coatings. Biofouling 16: 215 224.
2. Armstrong, E.,, L. Yan,, K. G. Boyd,, P. C. Wright,, and J. G. Burgess. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37 40.
3. Ball, K. D.,, and J. T. Trevors. 2002. Bacterial genomics: the use of DNA microarrays and bacterial artificial chromosomes. J. Microbiol. Methods 49: 275 284.
4. Beja, O.,, M. T. Suzuki,, E. V. Koonin,, L. Aravind,, A. Hadd,, L. P. Nguyen,, R. Villacorta,, M. Amjadi, C. Carrignes, S. B. Jovanovich, R. A. Feldman, and E. F. DeLong. 2000. Construction and analysis of bacterial artificial chromosome libraries from a marine microbial assemblage. Environ. Microbiol. 2: 516 529.
5. Boyd, K. G.,, D. R. Adams,, J. G. Burgess. 1999. Antibacterial and repellent activities of marine bacteria associated with algal surfaces. Biofouling 14: 227 236.
6. Brady, R. F. 2000. Clean hulls without poisons: devising and testing nontoxic marine coatings. Tech. Articles 72: 45 56.
7. Bruns, A.,, H. Cypionka,, and J. Overmann. 2002. Cyclic AMP and acyl homoserine lactones increase the cultivation efficiency of heterotrophic bacteria from Central baltic sea. Appl. Environ. Microbiol. 68: 3978 3987.
8. Burgess, J. G.,, E. M. Jordan,, M. Bregu,, A. Mearns-Spragg,, and K. G. Boyd. 1999. Microbial antagonism: a neglected avenue of natural products research. J. Biotechnol. 70: 27 32.
9. Clare, A. S. 1996. Marine natural product antifoulants: status and potential. Biofouling 9: 211 229.
10. Connon, S. A.,, and S. J. Giovannoni. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68: 3878 3885.
11. Dahllöf, I. 2002. Molecular community analysis of microbial diversity. Curr. Opin. Biotechnol. 13: 213 217.
12. Dahllöf, I.,, H. Baillie,, and S. Kjelleberg. 2000. rpoβ-based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies hetergeneity. Appl. Environ. Microbiol. 66: 3376 3380.
13. Daims, H.,, J. L. Nielsen,, P. H. Nielsen,, K. H. Schleifer,, and M. Wagner. 2001. In situ characterisation of Nitrospira-like nitrite-oxidising bacteria active in wastewater treatment plants. Appl. Environ. Microbiol. 67: 5273 5284.
14. de Nys, R.,, and P. Steinberg. 2002. Linking marine biology and biotechnology. Curr. Opin. Biotechnol. 13: 244 248.
15. Dobretsov, S.,, and P. Y. Qian. 2002. Effect of bacteria associated with the green alga Viva reticulata on marine micro- and macro-fouling. Biofouling 18: 217 228.
16. Egan, S.,, T. Thomas,, C. Holmström,, and S. Kjelleberg. 2000. Phylogenetic relationship and antifouiing activity of bacterial epiphytes from the marine alga Viva lactuca. Environ. Microbiol. 2: 343 347.
17. Egan, S.,, C. Holmström,, and S. Kjelleberg. 2001a. Pseudoalteromomas ulvae sp., nov a bacterium with antifouiing activities isolated from the surface of a marine alga. Int. J. Syst. Bacteriol. 51: 1499 1504.
18. Egan, S.,, S. James, C. Holmström, and S. Kjelleberg. 2001b. Inhibition of algal spore germination by the marine bacterium Pseudoalteromonas tunicata. FEMS Microbiol. Ecol. 35: 67 73.
19. Egan, S.,, S. James, C. Holmström, and S. Kjelleberg. 2002a. Correlation between pigmentation and antifouiing compounds produced by Pseudoalteromonas tunicata. Environ. Microbiol. 4: 433 442.
20. Egan, S.,, S. James,, and S. Kjelleberg. 2002b. Identification and characterization of a putative transcriptional regulator controlling the expression of fouling inhibitors in Pseudoalteromonas tunicata. Appl. Environ. Microbiol. 68: 372 378.
21. Franks, A. 1998. An investigation into the antifungal properties of Pseudoalteromonas tunicata. Honours thesis, University of New South Wales, Sydney, Australia.>
22. Gatenholm, P., C, Holmström, J. S. Maki, and S. Kjelleberg. 1995. Toward biological antifouiing surface coatings: marine bacteria immobilized in hydrogel coatings. Biofouling 8: 293 301.
23. Gauthier, M. J. 1976. Morphological, physiological, and biochemical characteristics of some violet-pigmented bacteria isolated from seawater. Can. J. Microbiol. 22: 138 149.
24. Gauthier, M. J. 1979. Alteromonas rubra sp.nov., a new marine antibiotic-producing bacterium. Int. J. Syst. Bacteriol. 26: 459 466.
25. Gauthier, M. J.,, and V. A. Breittmayer. 1992. The genera Alteromonas and Marinomonas, the prokaryotes, p. 3046 3070. In A. Balows (éd.), A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, vol. HI. Springer, Berlin, Germany.
26. Gauthier, M. J.,, and G. N. Flatau. 1976. Antibacterial activity of marine violet-pigmented Alteromonas with special reference to the production of brominated compounds. Can. J. Microbiol. 22: 1612 1619.
27. Gil-Turnes, M. S.,, M. E. Hay,, and W. Fenical. 1989. Symbiotic marine bacteria defend crustacean embryos from a pathogenic fungus. Science 240: 116 118.
28. Hadfield, M. G., C. Unabia, C. M. Smith, and T. M. Michael. 1994. Settlement Preferences of the Vbiquitous Fouler Hydraides elegans. A. A. Balkema, Rotterdam, The Netherlands.
29. Harder, T.,, and P. Y. Qian. 2000. Waterborne compounds from the green seaweed Viva reticulata as inhibitive ones for larval attachment and metamorphosis in the polychaete Hydroides elegans. Biofouling 16: 205 214.
30. Hentschel, J. R.,, and P. A. Cook. 1990. The development of a marine fouling community in relation to the primary film of microorganisms. Biofouling 2: 1 11.
31. Hentschel, U.,, M. Schmid,, M. Wagner,, L. Fieseler,, C. Gernert,, and J. Hacker. 2001. Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the mediterranean sponges Aplysina aerophoba and Aplysina cavernícola. FEMS Microbiol. Ecol. 35: 305 312.
32. Holmes, A. J.,, N. A. Tujnia,, M. Holley,, A. Contos,, J. M. James,, B. Rogers,, and M. R. Gillings. 2001. Phylogenetic structure of unusual aquatic microbial formations in Nullarbor caves, Australia. Environ. Microbiol. 3: 256 264.
33. Holmström, C., and S. Kjelleberg. 2000. Bacterial interactions with marine fouling organisms, p. 101117. In L. V. Evans (éd.), Biofilms: Recent Advances in Their Study and Control Overseas Publishing Associates (UK) Ltd., Amsterdam, The Netherlands.
34. Holmström, C., D. Rittschof, and S. Kjelleberg. 1992. Inhibition of settlement by larvae of Balanus amphitrite and Ciona intestinalis by a surface-colonizing marine bacterium. Appl. Environ. Microbiol. 58: 21112115.
35. Holmström, C., S. James, S. Egan, and S. Kjelleberg. 1996. Inhibition of common fouling organisms by pigmented marine bacterial isolates. Biofouling 10: 251259.
36. Holmström, C., S. James, B. A. Nellan, D. C. White, and S. Kjelleberg. 1998. Pseudoalteromonas tunicata sp. nov., a bacterium that produces antifouling agents. Int. J. Syst. Bacteriol. 48: 12051212.
37. Holmström, C., P. Steinberg, V. Christov, and S. Kjelleberg. 2000. Bacteria immobilized into hydrogels: a novel concept to prevent development of biofouling communities. Biofouling 15: 109117.
38. Holmström, C., S. Egan, A. Franks, S. McCload, and S. Kjelleberg. 2002. Antifouling activity expressed by Pseudoalteramonas species. FEMS Microbiol. Ecol. 41: 4758.
39. Ivanova, E. P.,, E. A. Kiprianova,, V. V. Mikhailov,, G. F. Levanova,, A. D. Garagulya,, N. M. Gorschkova,, M. V. Vysotskii,, D. V. Nicolau,, N. Yumoto,, T. Taguchi,, and S. Yoshikawa. 1998a. Phenotypic diversity of Pseudoaltermonas citrea from different marine habitats and emendation of the description. Int. J. Syst. Bacteriol. 48: 247 256.
40. Ivanova, E. P.,, D. V. Nicolau,, N. Yumoto,, T. Taguchi,, K. Okamoto,, Y. Tatsu,, and S. Yoshikawa. 1998b. Impact of conditions of cultivation and adsorption on antimicrobial activity of marine bacteria. Mar. Biol. 130: 545 551.
41. James, S.,, C. Holmström,, and S. Kjelleberg. 1996. Purification and characterisation of a novel antibacterial protein from the marine bacterium D2. Appl. Environ. Microbiol. 62: 2783 2788.
42. Kjelleberg, S.,, and P. Steinberg,. 2002. Defenses against bacterial colonisation of marine plants, p. 157 172. In S. E. Lindow,, E. I. Hecht-Poinar,, and V. J. Elliott (éd.), Phyllosphere Microbiology. APS Press, St Paul, Minn.
43. Kushmaro, A.,, E. Banin,, Y. Loya,, F. Stackebrandt,, and E. Rosenberg. 2001. Vibrio shilio sp. nov., the causative agent of bleaching of the coral Oculina patagónica. Int. J. Syst. Bacteriol. 51: 1383 1388.
44. Lau, S. C. K., K. K. W. Mak, F. Chen, and P.-I. Qian. 2002. Bioactivity of bacterial strains isolated from marine biofilms in Hong Kong waters for the induction of larval settlement in the marine polychaete Hydroides elegans. Mar. Ecol. Prog. Ser. 226: 301 610.
45. Lee, N.,, P. H. Nielson,, K. H. Andreasen,, S. Juretschko,, J. L. Nielsen,, K. H. Schleifer,, and M. Wagner. 1999. Combination of fluerscent in situ hybridization and microautoradiography—a new tool for structure-fiction analyses in microbial ecology. Appl. Environ. Microbiol. 65: 1289 1297.
46. Lemos, M. L.,, A. E. Toranzo,, and J. L. Barja. 1985. Antibiotic activity of epiphytic bacteria isolated from intertidal seaweeds. Microb. Ecol. 11: 149 163.
47. Lin, Z.,, K. Kumagai,, K. Baba,, J. J. Mekalanos,, and M. Nischibuchi. 1993. Vibrio parabaemolyticus has a homolog of the Vibrio cholerae toxRS operon that mediates environmentally induced regulation of the termostable direct hemolysis gene. J. Bacteriol. 175: 3844 3855.
48. Littler, M. M.,, and D. S. Littler. 1995. Impact of CLOD pathogen on Pacific coral reefs. Science 267: 1356 1360.
49. Loosdrecht, M. C. M. v., J. Lyklema, J. Norde, and A. J. B. Zehnder. 1989. Bacterial adhesion: a physicochemical approach. Microb. Ecol. 17: 1 15.
50. Maki, J. S., 1999. The influence of marine microbes on biofouling, p. 147 171. In M. Fingerman,, R. Nagabhushanam,, and M. F. Thompson (éd.), Biofilms, Bioadhesion, Corrosion and Biofouling, vol. 3. Science Publishers, Inc. New Delhi, India.
51. Maki, J. S.,, D. Rittschof,, J. D. Costlow,, and R. Mitchell. 1988. Inhibition of attachment of larval barnacles, Balanus amphitrite, by bacterial surface films. Mar. Biol. 97: 199 206.
52. Maki, J. S.,, D. Rittschof,, A. S. Schmidt,, and R. Mitchell. 1989. factors controlling attachment of bryozoan larvae. A comparison of bacterial films and unfilmed surfaces. Biol. Bull. 177: 295 302.
53. Marsh, T. L. 1999. Terminal restriction fragment length polymorphism (T-RFLP): an emerging method for characterizing diversity among homologous populations of amplification products. Curr. Opin. Biotechnol. 2: 323 327.
54. Mary, A. S.,, V. S. R. Mary,, D. Rittschof,, and R. Nagabhushanam. 1993. Bacterial-barnacle interaction: potential using juncellins and antibiotica to alter structure of bacterial communities. J. Chem. Ecol. 19: 2155 2167.
55. Maximilien, R.,, R. deNys,, C. Holmström,, L. Gram,, M. Givskov,, K. Crass,, S. Kjelleberg,, and P. Steinberg. 1998. Chemical mediation of bacterial surface colonisation by secondary metabolites from the red alga Delisea pulchra. Aquat. Microb. Ecol. 15: 233 246.
56. Mearns-Spragg, A.,, M. Bregu,, K. G. Boyd,, and J. G. Burgess. 1998. Cross-species induction and enhancement of antimicrobial activity produced by epibiotic bacteria from marine algae and invertebrates after exposure to terrestrial bacteria. Lett. Appl. Microbiol. 27: 142 146.
57. Murley, Y. M.,, P. A. Carroll,, K. Skorupski,, R. K. Taylor,, and S. B. Calderwood. 1999. Differential transcription of the tcpPH operon confers biotype-specific control of the Vibrio cholerae ToxR virulence regulon. Inf. Immunol. 67: 5117 5123.
58. Muyzer, G.,, E. C. de Waal,, and A. G. Uitterlinden. 1993. Profiling of complex microbial communities by denaturing gradient gel elecrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59: 695 700.
59. Neal, A. I.,, and A. B. Yule. 1994. The interactions between Elminius modestus Darwin cyprids and biofilms of Deleya marina NCMB 1877. J. Exp. Mar. Biol. Ecol. 176: 127 139.
60. Nielsen, J. L.,, and P. H. Nielsen. 2001. Enumeration of acetate-consuming bacteria by microautoradiography under oxygen and nitrite respiring conditions in activated sludge. Water Res. 36: 421 428.
61. Paul, V. J.,, C. Unabia, M. G. Hadfield, and P. J. Scheuer. 1997. Chemical cues from the marine bacterium Bacillus sp. that induce settlement of the tube-building worm Hydroides elegans. In R. F. Brady (éd.), U.S.-Pacific Rim Workshop on Emerging Non-metallic Materials for the Marine Environment. Honolulu, Hawaii, section 3.16 3.20. U.S. Office of Naval Research, Washington, D.C.
62. Rappe, M. S.,, S. A. Connon,, K. L. Vergin,, and S. J. Giovannoni. 2002. Cultivation of the ubiquitous SARll marine bacterio-plankton clade. Nature 418: 630 633.
63. Riquelme, C, G. Hayashida, R. Araya, A. Uchida, M. Satomi, and Y. Ishida. 1996. Isolation of a native bacterial strain from the scallop Argopecten purpuratus with inhibitory effects against pathogenic vibrios. J. Shellfish Res. 15: 369374.
64. Riquelme, C, R. Araya, N. Vergara, R. Rojas, M. Guanita, and M. Candia. 1997. Potential of probiotic strains in the culture of the Chilean scallop Agropecten purpuratus. Aquaculture 154: 1726.
65. Riquelme, C. E.,, M. A. Jorquera,, A. I. Rojas,, R. E. Avendano,, and N. Reyes. 2001. Addition of inhibitor-producing bacteria to mass cultures of Agropecten purpuratus larvae. Aquaculture 192: 111 119.
66. Rittschof, D. 2001. Natural products antifoulants and coatings development, p. 543 566. In J. B. McClintock and B. J. Baker (éd.), Marine Chemistry and Ecology. Marine Science Series.. CRC Press, London, United Kingdom.
67. Ruiz, C. M.,, G. Roman,, and J . L. Sanchez. 1996. A marine bacterial strain effective in producing antagonisms of other bacteria. Aquaculture Internat. 4: 289 291.
68. Skerrett, J. 2001. Algal and bacterial interactions in a Tasmanian estuary. Ph.D. thesis, University of Hobart, Tasmania, Australia.
69. Skovhus, T. L.,, S. Kjelleberg,, and N. B. Ramsing. 2001. Abstract 9th International Symposium on Microbial Ecology, 26-31 August, Amsterdam, The Netherlands.
70. Szewzyk, U., C. Holmström, M. Wrangstadh, M. O. Samuelsson, J. S. Maki, and S. Kjelleberg. 1991. Relevance of the exopolysaccharide of marine Pseudomonas sp. strain S9 for attachment of dona intestinalis larvae. Mar. Ecol. Prog. Ser. 75: 259 265.
71. Tanasomwang, V.,, T. Nakai,, Y. Nishimura,, and K. Muroga. 1998. Vibrio-inhibiting marine bacteria isolated from tiger shrimp hatchery. Fish Pathol. 33: 459 466.
72. Uchida, M.,, K. Nakata,, and M. Maeda. 1997. Conversion of Ulva fronds to a hatchery diet for Artemia nauplii utilizing the degrading and attaching abilities of Pseudoalteromonas espejiana. J. All. Phycol. 9: 541 549.
73. Wagner, M.,, and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13: 218 227.
74. Wahl, M. 1989. Marine epibiosis. 1. Fouling and antifouling: some basic aspects. Mar. Ecol. Prog. Ser. 58: 175 189.
75. Wahl, M.,, P. R. Jensen,, and W. Fenical. 1994. Chemical control of bacterial epibiosis on ascidians. Mar. Ecol. Prog. Ser. 110: 45 57.
76. Wieczorek, S. K.,, and C. D. Todd. 1997. Inhibition and facilitation of bryozoan and ascidian settlement by natural multispecies biofilms: effects of film age and the roles of active and passive larval attachment. Mar. Biol. 128: 463 473.
77. Zhou, J.,, and D. K. Thompson. 2002. Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol. 13: 204 207.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error