Chapter 7 : How To Look, Where To Look

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

How To Look, Where To Look, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817770/9781555812676_Chap07-2.gif


A distinctive feature of microbial communities is that their diversity can be extraordinarily high, not infrequently orders of magnitude greater that the diversity of macrobial ecosystems. The state of "supersaturated coexistence" that defines the coexisting species-limiting resource paradox may be maintained by competition for such resources such that nonequilibrium conditions are generated. The challenge now is to design experiments that can discriminate between these models for supersaturated coexistence, or enable more realistic ones to be formulated. It is increasingly clear that scale effects, both spatial and temporal, are principal determinants of species richness and need to be recognized when attempting to quantify microbial diversity, when addressing basic problems in microbial ecology and microbiogeography, and when maximizing returns from biotechnology search and discovery programs. All too frequently insufficient attention is paid to the design of environment sampling strategies and to evaluating the sampling effort. Despite the spectacular advances in the molecular detection and circumscription of microorganisms and functional genomics, organisms in culture are essential for providing an understanding of microbial interactions, pathogenesis, phenotypic variability, and, in the present context, for delivering biotechnological innovation. Three approaches are presented here: habitat simulation, technological innovation, and taxonomic databases. The success of the molecular detection strategy depends on the quality of the DNA extracted from the environment.

Citation: Bull A. 2004. How To Look, Where To Look, p 71-79. In Bull A (ed), Microbial Diversity and Bioprospecting. ASM Press, Washington, DC. doi: 10.1128/9781555817770.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Achenbach, L. A.,, and J. D. Coates. 2000. Disparity between bacterial phylogeny and physiology. ASM News 66: 714 715.
2. Akkermans, A. D. L.,, J. D. van Elsas,, and F. J. de Bruijn (ed.). 1995. Molecular Microbial Ecology Manual. Kluwer Academic Publishers, Dordrecht, The Netherlands.
3. Alef, K.,, and P. Nannipieri (ed.). 1995. Quality Control and Quality Assurance in Applied Soil Microbiology and Biochemistry. Academic Press Ltd., London, United Kingdom.
4. Atalan, E.,, G. P. Manfio,, A. C. Ward,, R. M. Kroppenstedt,, and M. Goodfellow. 2000. Biosystematic studies on novel streptomycetes from soil. Antonie Leeuwenhoek 77: 337 353.
5. Boyd, R. D.,, J. Verran,, M. V. Jones,, and M. Bhakoo. 2002. Use of the atomic force microscope to determine the effect of substratum surface topography on bacterial adhesion. Langmuir 18: 2342 2346.
6. Brady, S. F.,, M. M. Wagenaar,, M. P. Singh,, J. E. Janso,, and J. Clardy. 2000. The cytosporones, new octaketide antibiotics isolated from an endophytic fungus. Org. Lett. 2: 4043 4046.
7. Brandao, P. F. B.,, M. Torimura,, R. Kurane,, and A. T. Bull. 2002. Dereplication for biotechnology screening: PyMS analysis and PCR-RFLP-SSCP (PRS) profiling of 16S rRNA genes of marine and terrestrial actinomycetes. Appl. Microbiol. Biotechnol. 58: 77 83.
8. Bull, A. T., 1983. Continuous culture for production, p. 405 437. In A. Hollaender,, A. I. Laskin,, and P. Rogers (ed.), Basic Biology of New Developments in Biotechnology. Plenum Press, New York, N.Y..
9. Bull, A. T.,, M. Goodfellow,, and J. H. Slater. 1992. Biodiversity as a source of innovation in biotechnology. Annu. Rev. Microbiol. 42: 219 257.
10. Bull, A. T.,, A. C. Ward,, and M. Goodfellow. 2000. Search and discovery strategies for biotechnology: the paradigm shift. Microbiol. Mol. Biol. Rev. 64: 573 606.
11. Bussmann, I.,, B. Philipp,, and B. Schink. 2001. Factors influencing the cultivability of lake water bacteria. J. Microbiol. Methods 47: 41 50.
12. Button, D. K.,, F. Schut,, P. Quang,, R. Martin,, and B. R. Robinson. 1993. Viability and isolation of marine bacteria by dilution culture: theory, procedures, and initial results. Appl. Environ. Microbiol. 59: 881 891.
13. Button, D. K.,, B. R. Robertson,, P. W. Lepp,, and T. M. Schmidt. 1998. A small, dilute-cytoplasm, high-affinity, novel bacterium isolated by extinction culture and having kinetic constants compatible with growth at ambient concentrations of dissolved nutrients in sea water. Appl. Environ. Microbiol. 64: 4467 4476.
14. Cole, S. T.,, K. Eiglmeier,, J. Parkhill,, K. D. James,, N. R. Thomson,, P. R. Wheeler,, N. Honore,, T. Gamier,, C. Churcha,, D. Harris et al. 2001. Massive gene decay in the leprosy bacillus. Nature 409: 1007 1011.
15. Colquhoun, J. A.,, J. Mexson,, M. Goodfellow,, A. C. Ward,, K. Horikoshi,, and A. T. Bull. 1998. Novel rhodococci and other mycolate actinomycetes from the deep sea. Antonie Leeuwenhoek 74: 27 40.
16. Colquhoun, J. A.,, J. Zulu,, M. Goodfellow,, K. Horikoshi,, A. C. Ward,, and A. T. Bull. 2000. Rapid characterisation of deep-sea actinomycetes for biotechnological screening programmes. Antonie Leeuwenhoek 77: 359 367.
17. Courtois, S.,, A. Frostegard,, P. Göransson,, G. Depret,, P. Jeannin,, and P. Simonet. 2001. Quantification of bacterial subgroups in soil: comparison of DNA extracted directly from soil or from cells previously released by density gradient centrifugation. Environ. Microbiol. 3: 341 439.
18. Czaran, T.,, R. F. Hoekstra,, and L. Pagie. 2002. Chemical warfare between microbes promotes biodiversity. Proc. Natl. Acad. Sci. USA 99: 786 790.
19. Eder, W.,, L. L. Jahnke,, M. Schmidt,, and R. Huber. 2001. Microbial diversity of the brine-seawater interface of the Kebrit Deep, Red Sea, studied via 16S rRNA gene sequences and cultivation methods. Appl. Environ. Microbiol. 67: 3077 3085.
20. Eguchi, M.,, M. Ostrowski,, F. Fegatella,, J. Bowman,, D. Nichols,, T. Nishino,, and R. Cavicchioli. 2001. Sphingomonas alaskensis strain AF01, an abundant oligotrophic ultramicrobacterium from the North Pacific. Appl. Environ. Microbiol. 67: 4945 4954.
21. Hengstmann, U.,, K.-J. Chin,, P. H. Janssen,, and W. Liesack. 1999. Comparative phylogenetic assignment of environmental sequences of genes encoding 16S rRNA and numerically abundant culturable bacteria from an anoxic rice paddy soil. Appl. Environ. Microbiol. 65: 5050 5058.
22. Hildebrandt, U.,, K. Janetta,, and H. Bothe. 2002. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ. Microbiol. 68: 1919 1924.
23. Hooper, J. N. A.,, J. A. Kennedy,, and R. J. Quinn. 2002. Biodiversity "hotspots," patterns of richness and endemism, and taxonomic affinities of tropical Australian sponges (Porifera). Biodivers. Conserv. 11: 851 885.
24. Hopkins, D. W.,, S. J. MacNaughton,, and A. G. O'Donnell. 1991. A dispersion and differential centrifugation technique for representatively sampling microorganisms from soil. Soil Biol. Biochem. 23: 217 225.
25. Huisman, J.,, and F. J. Weissing. 1999. Biodiversity of plankton by species oscillations and chaos. Nature 402: 407 410
26. Huisman, J.,, A. M. Johansson,, E. O. Folmer,, and F. J. Weissing. 2001. Towards a solution of the plankton paradox: the importance of physiology and life history. Ecol. Lett. 4: 408 411.
27. Hutchinson, G. E. 1961. The paradox of the plankton. Am. Nat. 95: 137 145.
28. Inagaki, F.,, K. Takai,, T. Komatsu,, T. Kanamatsu,, K. Fujioka,, and K. Horikoshi. 2001. Archaeology of Archaea: geomicrobiological record of Pleistocene events in a deep-sea subseafloor environment. Extremophiles 5: 385 392.
29. Inagaki, F.,, Y. Sakihama,, A. Inoue,, C. Kato,, and K. Horikoshi. 2002. Molecular phylogenetic analyses of reverse-transcribed bacterial rRNA obtained from deep-sea cold seep sediments. Environ. Microbiol. 4: 277 286.
30. Janssen, P. H.,, P. S. Yates,, B. E. Grinton,, P. M. Taylor,, and M. Sait. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the Divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68: 2391 2396.
31. Jaspers, E.,, K. Nauhaus,, H. Cypionka,, and J. Overmann. 2001. Multitude and temporal variability of ecological niches as indicated by the diversity of cultivated bacterioplankton. FEMS Microbiol. Ecol. 36: 153 164.
32. Kaeberlein, T.,, K. Lewis,, and S. S. Epstein. 2002. Isolating "uncultivable" microorganisms in pure culture in a simulated natural environment. Science 296: 1127 1129.
33. Kursar, T. A.,, T. L. Capson,, P. D. Coley,, D. G. Corley,, M. B. Gupta,, L. A. Harrison,, E. Ortega-Barria,, and D. M. Windsor. 1999. Ecologically guided bioprospecting in Panama. Pharmaceut. Biol. 37: 114 126.
34. Lee, D. H.,, Y. G. Zo,, and S. J. Kim. 1996. Nonradioactive method to study genetic profiles of natural bacterial communities by PCR-single-strand-conformation polymorphism. Appl. Environ. Microbiol. 62: 3112 3120.
35. Leser, T. D.,, J. Z. Amenuvor,, T. K. Jensen,, R. H. Lindecrona,, M. Boye,, and K. Moller. 2002. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisted. Appl. Environ. Microbiol. 68: 673 690.
36. Levin, L. A.,, R. J. Etter,, M. A. Rex,, A. J. Gooday,, C. R. Smith,, J. Pineda,, C. T. Stuart,, R. R. Hessler,, and D. Pawson. 2001. Environmental influences on regional deep-sea species diversity. Annu. Rev. Ecol. Syst. 32: 51 93.
37. Li, L.,, C. Kato,, and K. Horikoshi. 1999. Bacterial diversity in deep-sea sediments from different depths. Biodiver. Conserv. 8: 659 677.
38. Lilburn, T. G.,, T. M. Schmidt,, and J. A. Breznak. 1999. Phylogenetic diversity of termite gut spirochaetes. Environ. Microbiol. 1: 331 345.
39. MacNaughton, S. J.,, and A. G. O'Donnell. 1994. Tuberculostearic acid as a means of estimating the recovery (using dispersion and differential centrifugation) of actinomycetes from soil. J. Microbiol. Methods 20: 69 77.
40. Mexson, J. 2001. Selective isolation and taxonomic analysis of the genus Micromonospora. Ph.D. thesis. University of Kent at Canterbury, United Kingdom.
41. Morishima, K.,, F. Arai,, T. Fukuda,, and H. Matsuura. 1998. Screening of single Escherichia coli in a microchannel system by electric field and laser tweezers. Anal. Chim. Acta 365: 273 278.
42. Muyzer, G.,, E. C. de Waal,, and A. G. Uitterlinden. 1993. Profile of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59: 695 700.
43. Myers, N. 1988. Threatened biotas: "hotspots" in tropical forests. Environmentalist 8: 1 20.
44. Myers, N.,, R. A. Mittermeier,, C. G. Mittermeier,, G. A. B. da Fonseca,, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853 858.
45. Noti, M.-I,, H. M., André,, X. Ducarme,, and P. Lebrun. 2003. Diversity of soil oribatid mites (Acari: Oribatida) from high Katanga (Dem. Rep. Congo): a multiscale and multifactor approach. Biodivers. Conserv. 12: 767 785.
46. Osterhage, C.,, M. Schwibbe,, G. M. König,, and A. D. Wright. 2000. Differences between marine and terrestrial Phoma species as determined by HPLC-DAD and HPLC-MS. Phytochem. Anal. 11: 288 294.
47. Pace, N. R. 2000. Community interactions: towards a natural history of the microbial world. Environ. Microbiol. 2: 7 8.
48. Pace, N. R.,, D. A. Stahl,, D. J. Lane,, and G. J. Olsen. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. Microb. Ecol. 9: 1 56.
49. Rainey, P. 2000. An organism is more than its genotype. Environ. Microbiol. 2: 8 9.
50. Roberts, C. M.,, C. J. McClean,, J. E. N. Veron,, J. P. Hawkins,, G. R. Allen,, D. E. McAllister,, C. G. Mittermeir,, F. W. Schueler,, M. Spalding,, F. Wells,, C. Vynne,, and T. B. Werner. 2002. Marine biodiversity hotspots and conservation priorities for tropical reefs. Science 295: 1280 1284.
51. Schippers, P.,, A. M. Verschoor,, M. Vos,, and W. M. Mooij. 2001. Does "supersaturated coexistence" resolve the "paradox of the plankton"? Ecol. Lett. 4: 404 407.
52. Schut, F.,, J. C. Gottschal,, and R. A. Prins. 1997. Isolation and characterisation of the marine ultramicrobacterium Sphingomonas sp. strain RB2256. FEMS Microbiol. Rev. 20: 363 369.
53. Seguritan, V.,, and F. Rohwer. 2001. FastGroup: a program to dereplicate libraries of 16S rDNA sequences. BMC Bioinformatics 2: 9.
54. Smalla, K.,, G. Wieland,, A. Buchner,, A. Zock,, J. Parzy,, S. Kaiser,, N. Roskot,, H. Heuer,, and G. Berg. 2001. Bulk and rhizosphere soil bacterial communities studied by denaturing gradient gel electrophoresis: plant-dependent enrichment and seasonal shifts revealed. Appl. Environ. Microbiol. 67: 4742 4751.
55. Smit, E.,, P. Leeflang,, S. Gommans,, J. van den Broek,, S. van Mil,, and K. Wernars. 2001. Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl. Environ. Microbiol. 67: 2284 2291.
56. Stach, J. E. M.,, and R. G. Burns. 2002. Enrichment versus biofilm culture: a functional and phylogenetic comparison of polycyclic aromatic hydrocarbon-degrading microbial communities. Environ. Microbiol. 4: 169 182.
57. Stahl, D. A.,, D. J. Lane,, G. J. Olsen,, and N. R. Pace. 1984. Analysis of hydrothermal vent-associated symbionts by ribosomal-RNA sequences. Science 224: 409 411.
58. Steinberg, C. E. W.,, and W. Geller,. 1993. Biodiversity and interactions within pelagic nutrient cycling and productivity, p. 43 64. In E.-D. Schulze, and H. A. Mooney (ed.), Biodiversity and Ecosystem Function. Springer-Verlag, Berlin, Germany.
59. Strous, M.,, J. A. Fuerst,, E. H. M. Kramer,, S. Logemann,, G. Muyzer,, K. T. Van de Pas-Schooner,, R. Webb,, J. Gijs Kuenen,, and M. S. M. Jeiten. 1999. Missing lithotroph identified as a new planctomycete. Nature 400: 446 449.
60. Suau, A.,, R. Bonnet,, M. Sutren,, J. J. Godon,, G. R. Gibson,, M. D. Collins,, and J. Dore. 1999. Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl. Environ. Microbiol. 65: 4799 4807.
61. Taberlet, P. 1998. Biodiversity at the intraspecific level: the comparative phylogeographic approach. J. Biotechnol. 64: 91 100.
62. Tankéré, S. P. C.,, D. G. Bourne,, F. L. L. Muller,, and V. Torsvik. 2002. Microenvironments and microbial community structure in sediments. Environ. Microbiol. 4: 97 105.
63. Tiedje, J. M., 1995. Approaches to the comprehensive evaluation of prokaryotic diversity of a habitat, p. 73 87. In D. Allsopp,, R. R. Colwell,, and D. L. Hawksworth. (ed.), Microbial Diversity and Ecosystem Function. CABI Publishing, Wallingford, United Kingdom.
64. Tiedje, J. M.,, J. C. Cho,, A. Murray,, D. Treves,, B. Xia,, and J. Zhou,. 1999. Soil teeming with life: new frontiers for soil science, p. 393 412. In R. M. Rees,, B. C. Ball,, C. D. Campbell,, and C. A. Watson (ed.), Sustainable Management of Soil Organic Matter. CABI Publishing, Wallingford, United Kingdom.
65. Torsvik, V.,, L. Øvreas,, and T. F. Thingstad. 2002. Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296: 1064 1066.
66. Totsche, K., 1995. Quality-project design-spatial sampling, p. 5 51. In K. Alef,, and P. Nannnipieri. (ed.), Quality Control and Quality Assurance in Applied Soil Microbiology and Biochemistry. Academic Press Ltd., London, United Kingdom.
67. Urakawa, H.,, K. Kita-Tsukamoto,, and K. Ohwada. 1999. Microbial diversity in marine sediments from Sagami Bay and Tokyo Bay, Japan, as determined by 16S rRNA gene analysis. Microbiology 145: 3305 3315.
68. Vandermeer, J.,, M. A. Evans,, P. Foster,, T. Hook,, M. Reiskind,, and M. Wund. 2002. Increased competition may promote species coexistence. Proc. Natl. Acad. Sci. USA 99: 8731 8736.
69. Veldkamp, H. 1977. Ecological studies with the chemostat. Adv. Microbial Ecol. 1: 59 94.
70. Wagner, M.,, and A. Loy. 2002. Bacterial community composition and function in sewage treatment systems. Curr. Opin. Biotechnol. 13: 218 227.
71. Willis, K. J.,, and R. J. Whittaker. 2002. Species diversity—scale matters. Science 295: 1245 1248.
72. Xia, B. C,, D. S. Treves,, J. Z. Zhou,, and J. M. Tiedje. 2001. Soil microbial community diversity and driving mechanisms. Prog. Nat. Sci. 11: 818 824.
73. Yang, C.-H.,, D. E. Crowley,, J. Borneman,, and N. T. Keen. 2001. Microbial phyllosphere populations are more complex than previously realized. Proc. Natl. Acad. Sci. USA 98: 3889 3894.
74. Zhou, J.,, and D. K. Thompson. 2002. Challenges in applying microarrays to environmental studies. Curr. Opin. Biotechnol. 13: 204 207.
75. Zhou, J. Z.,, M. E. Davey,, J. B. Figueras,, E. Rivkina,, D. Gilichinsky,, and J. M. Tiedje. 1997. Phylogenetic diversity of a bacterial community determined from Siberian tundra soil DNA. Microbiology 143: 3913 3919.
76. Zhou, J. Z.,, B. C. Xia,, D. S. Treves,, L.-Y. Wu,, T. L. Marsh,, R. V. O'Neill,, A. V. Palumbo,, and J. M. Tiedje. 2002. Spatial and resource factors influencing high microbial diversity in soil. Appl. Environ. Microbiol. 68: 326 334.
77. Zinder, S. H. 2002. The future for culturing environmental organisms: a golden era ahead? Environ. Microbiol. 4: 14 15.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error